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Abstract— Context prediction plays a crucial role in imple-
menting autonomous driving applications. As one of important
context-prediction tasks, crowd-and-vehicle counting is critical
for achieving real-time traffic and crowd analysis, consequently
facilitating decision-making processes for autonomous vehicles.
However, the completion of crowd-and-vehicle counting also
faces challenges, such as large-scale variations, imbalanced data
distribution, and insufficient local patterns. To tackle these
challenges, we put forth a novel frequency feature pyramid net-
work (FFPNet) in this paper. Our proposed FFPNet extracts the
multi-scale information by frequency feature pyramid module,
which can tackle the issue of large-scale variations. Meanwhile,
the frequency feature pyramid module uses different frequency
branches to obtain different scale information. We also adopt the
attention mechanism to strength the extraction of different scale
information. Moreover, we devise a novel loss function, namely
global-local consistency loss, to address the existing problems
of imbalanced data distribution and insufficient local patterns.
Furthermore, we conduct extensive experiments on six datasets
to evaluate our proposed FFPNet. It is worth mentioning that
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we also construct a novel crowd-and-vehicle dataset (CROVEH),
which is the only dataset that contains both crowd-and-vehicle
annotations. The experimental results show that FFPNet achieves
the best performance on different backbones, e.g., 52.69 mean
absolute error (MAE) on P2PNet with FFP module. The codes
are available at: https://github.com/MUST-AI-Lab/FFPNet.

Index Terms— Context prediction, frequency feature pyramid,
discrete cosine transformation, global-local consistency loss.

I. INTRODUCTION

AS A crucial component in the future smart transportation
system, self-driving vehicles or autonomous vehicles

have received tremendous attention recently [1]. However,
both the safety and reliability of autonomous driving are major
concerns before the wide proliferation of this technology [2].
The lack of context awareness and context prediction in
transportation systems is one of the obstacles for autonomous
driving. Contexts in transportation systems include various
events, traffic flows, pedestrian crowd, and surroundings
[3]–[8], among which the number of vehicles and persons
is an important indicator to determine a transportation con-
text. Therefore, recent studies [9], [10] concentrate on crowd
(or vehicle) counting. Crowd (or vehicle) counting aims to
predict the number of persons or the number of vehicles by
estimating the crowd or vehicle density distribution in a scene.
This task can be achieved by a density map estimation of the
crowd or vehicle distribution.

A. Motivation

Despite recent advances in crowd-and-vehicle counting,
we still face three major challenges.

Challenge 1 (Large-Scale Variations of Persons and Vehi-
cles): Fig. 1(a) shows a real scenario at a crosswalk, in which
there are pedestrians and vehicles. Some of them are close to
the camera while some of them are far from the camera. There-
fore, there are large-scale variations caused by the different
sizes of heads and vehicles. To address this issue, the extrac-
tion of multi-scale information is very important. For extract-
ing multi-scale information, two common methods include
using multiple convolution kernels of different sizes [12]–[17]
and leveraging multiple down-sampling operations with dif-
ferent scaling factors [18], [19]. Multi-column Convolu-
tional Neural Network (MCNN) [12] uses three parallel
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Fig. 1. Three challenges in crowd-and-vehicle counting: (a) large-scale
variations; (b) imbalanced data distribution; (c) insufficient local patterns.
In Fig. 1(c), the input image is on the left, the predicted density map generated
by CSRNet [11] is in the middle, and the ground truth is on the right.

sub-networks (subnets), which have the convolutional kernel
with the varied size to capture heads or vehicles with different
sizes while it suffers from insufficient capacity. Although
Context-Aware Network (CAN) [19] extracts the multi-scale
information using the pooling layers with varied-size kernels,
the multi-scale information obtained from arbitrary size input
is represented as the fixed-size feature maps, consequently
losing much detailed information. Despite the advent of
Path Aggregation Network (PANet) [20], Neural Architec-
ture Search Feature Pyramid Network (NAS-FPN) [21] and
bi-directional feature pyramid network (BiFPN) [22] based
on the Feature Pyramid Network (FPN) [23], they all suffer
from the interference of shallow features containing too much
redundant information on the regression of highly abstracted
density maps.

Challenge 2 (Imbalanced Data Distribution): There are
several major datasets for crowd-and-vehicle counting:
UCSD dataset [24], UCF_CC_50 dataset [14], ShanghaiTech
dataset [12], UCF-QNRF dataset [25], and TRANCOS
dataset [26]. However, those five commonly-used datasets have
imbalanced data distribution. Fig. 1(b) plots the distribution
of these five datasets. Kindly note that ShanghaiTech dataset
is divided into two datasets: SHA (for dense dataset) and SHB
(for sparse dataset). We observe that SHA dataset suffers from
strong imbalanced data distribution, e.g., most of data samples
of them are sparsely distributed (i.e., < 300 samples). The
imbalanced-data-distribution problem also exists in the other
three datasets, UCF_CC_50 dataset, SHA dataset, and UCF-
QNRF dataset. The imbalanced data distribution is a general
problem in both classification and regress tasks though the
difference between classification and regression tasks is caused
by different evaluation metrics of them. The evaluated metric,
e.g., mean Average Precision (mAP) of classification tasks

suggests the model be partial to the categories of fewer sam-
ples via resampling or reweighting methods such as the Focal
Loss. However, the evaluated metrics, such as Mean Absolute
Error (MAE) and mean squared error (MSE) of regression
tasks induce the model to discard outliers, i.e., fewer samples
of extremely dense and sparse. Although SmoothL1 [27]
can alleviates the negative influence of outliers, it does not
take into account inliers and is not everywhere differentiable.
Similarly, BalancedL1 [28] can be applied in this regression
task while it is designed to balance classification loss and
localization loss in detection tasks.

Challenge 3 (Insufficient Local Patterns): Many deep mod-
els also suffer from insufficient local patterns. Fig. 1(c)
presents a complex scenario, in which lots of people stand
in front of a wall. As shown in Fig. 1(c), we observe that
a part of the wall is mistakenly regarded as a dense crowd
(i.e., the red box) by Congested Scene Recognition Network
(CSRNet) [11]. This problem often occurs when the scene
contains umbrella surfaces, asphalt roads, leaves, leaves shad-
ows, bushes, and weeds, which may contain features similar to
the dense crowd. Most of existing methods consider the entire
image while failing to restrict the area of the crowd, thereby
leading to inaccurate predictions. To address this problem,
Scale Aggregation Network (SANet) [13] uses a combined
loss that considers the local correlation and Adversarial Cross-
Scale Consistency Pursuit (ACSCP) [29] adopts a scale-
consistency regularizer that enforces the sum-up of people
counts from local patches to be the same as the overall counts
of the whole region.

B. Contributions

In this paper, we propose a frequency feature pyramid
network (FFPNet) to address the above challenges. Different
from previous approaches of extracting multi-scale informa-
tion from the spatial domain, we replace the pooling and
up-sampling operations within the feature pyramid using dis-
crete cosine transformation (DCT) and inverse discrete cosine
transformation (IDCT) to extract the multi-scale information
from the frequency domain, as shown in Fig. 2. Meanwhile,
as shown in recent studies [30] and [31], the attention mecha-
nism can enhance the valuable features in the region of people
gathered. Inspired by these studies, we also incorporate the
attention mechanism to improve the scale expression ability for
feature maps. Moreover, we design a global-local consistency
loss, which contains weighted log-cosh loss and the gradient
magnitude similarity. The weighted log-cosh loss mitigates
the drastic gradient changes caused by the imbalanced data
distribution which is not of interest to researchers. Meanwhile,
it also represents the global pattern of the density map. The
gradient magnitude similarity is used to refine the insufficient
local patterns. Details about our FFPNet will be given in
Section III and Section IV.

Furthermore, most of existing datasets only contain a sin-
gle type of objects (either vehicles or persons) in a scene.
Therefore, they are not suitable for more complex scenarios
of crowd-and-vehicle counting. To this end, we introduce a
hybrid crowd-and-vehicle dataset (CROVEH) that includes
7,587 persons and 6,361 vehicle annotations. It allows us to
estimate the number of multiple targets in the scene at the
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Fig. 2. Architecture of our FFPNet, which consists of front-end, FFP module, attention module, and back-end.

same time, especially for complex scenarios in autonomous
driving and intelligent transportation.

Our contributions can be summarized as follows:
• We propose a module called frequency feature pyramid

to address large-scale variations. It uses 3D DCT and
IDCT to extract the multi-scale contextual information
from the frequency domain. We also utilize the attention
mechanism to enhance the response of the crowd in
complex scenarios.

• We design a global-local consistency loss, which weakens
the drastic gradient changes resulted from imbalanced
data distribution and refines the local patterns while
keeping the global prior.

• We construct CROVEH dataset, which allows us to
estimate the density map of multiple types of targets in
complex scenes at the same time.

• We conduct extensive experiments on six challenging
datasets: CROVEH, TRANCOS [26], UCF-QNRF [25],
UCSD [24], UCF_CC_50 [14] and ShanghaiTech [12].
Experimental results show that our FFPNet achieves supe-
rior performance on these datasets (refer to Section IV).

II. RELATED WORK

In the following, we review crowd (or vehicle) counting
methods from deep learning approaches, which mainly include
methods to extract multi-scale information, methods to add
additional supervision information, and novel strategies.

The aim of effective crowd-counting methods [12]–[19],
[32], [33] is to enhance the density map response by extract-
ing multi-scale information. Cao et al. [13] uses a scale
aggregation module composed of multiple convolution ker-
nels of different sizes to extract multi-scale information.
Hossain et al. [17] Introduce multi-scale feature extractors
with different convolution filter sizes to capture multi-scale
information, and use the attention mechanism on different
scales. Jiang et al. [15] construct a Multi-scale Encoder with
different sizes of convolution kernels in trellis encoder-decoder
network (TEDnet) to extract multi-scale information and uses
a multi-path decoder to fuses multi-scale information. Scale
pyramid network (SPN) [16] employs multiple sizes dilated

convolutions in parallel instead of traditional convolutions
with different sizes to extracting multi-scale information.
In summary, all the above methods use different sizes of
convolutions to extract multi-scale information from the spatial
domain. By contrast, our method uses DCT and IDCT to
extract multi-scale information from the frequency domain.
Jiang et al. [32] utilized multi-scale information by generating
and using different scaling factors for areas with different
densities. Zhao et al. [33] propose a new depth embedding
module to exploit the depth cues to obtain multi-scale infor-
mation. Both of these two works proposed a novel method of
using multi-scale information. Kang and Chan [18] propose a
method of dividing the input image into multiple scales before
training to obtain multi-scale information. In contrast to our
multi-scale information acquisition in the network, this work
is to obtain multi-scale information by constructing image
pyramids in data preprocessing. Tian et al. [34] proposed a
transformer with CNN, which consists of a pyramid vision
transformer backbone, a pyramid feature aggregation mod-
ule and an efficient regression head with multi-scale dilated
convolution.

Moreover, adding additional supervision information is
also a common way to improve the accuracy of estimation.
Cao et al. design SANet [13], which consists of the encoder
that captures multi-scale information by scale aggregation
modules and the decoder that uses transposed convolutions to
generates higher quality density map. Shen et al. [29] design
a novel scale-consistency loss, which causes the total crowd
counts of the local patch to be consistent with the total crowd
counts of the regional union. In [15], a new combination loss
is used to measure the map similarity with respect to local
coherence and spatial correlation. Although these methods
considered the local correlation of the density map, they
ignored the imbalanced data distribution on the datasets.

Some researchers have proposed effective training strate-
gies to generate higher quality density maps. Sam et al. [35]
propose a hierarchical clustering method, which constructs
multiple different image clusters and creates a group of
expert CNNs for each cluster. Shi et al. [36] propose to
use deep negative correlation learning to generalize features.
Sam et al. [37] develop a switch CNN that can automatically
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transfer patches to the corresponding regressor. Shi et al. [38]
propose a novel perspective-aware CNN, which integrates the
perspective information to solve the large-scale variations of
persons.

III. METHODOLOGY

A. Architecture

Fig. 2 depicts the proposed FFPNet, in which we also
adopt VGG-16 [39] due to its powerful and effective network
structure. We first train front 14 layers (both convolution and
pooling layers) with the pre-trained model to extract lower
semantic features. Meanwhile, we remove the first pooling
layer to extract more valid contextual information. Moreover,
we also use the FFP module to gather and emphasize the
frequency-based multi-scale information. Each sub-network in
the FFP module is denoted by “Conv(κ) − (γ ) − (δ)”, where
κ , γ , and δ are the kernel size, the number of channels, the
dilation rate, respectively. Finally, we deploy the dilated convo-
lution to aggregate long-ranged information while keeping the
output resolution for generating a high-quality density map.

Inspired by [30] and [31], we fuse and enhance the multi-
scale information using the attention mechanism as shown in
Fig. 2. The input feature map is denoted by x . The output at
spatial position i and channel c is denoted by Fi,c(x). We then
have the following expression for Fi,c(x)

Fi,c (x) = �
1 + Hi,c (x)

� × Gi,c (x) , (1)

where H (x) is the learnable mask with a range from 0 to 1 and
G(x) is the output of the front-end sub-network. Through the
concatenation operation, we fuse four scales of feature maps.
After using softmax, element-wise production, and element-
wise summation, we emphasize significant features.

B. Frequency Feature Pyramid Module

One of the effective methods for extracting multi-scale
information is to construct the spatial feature pyramid through
down-sampling operations, as shown in the upper part of
Fig. 3. As an orthogonal transformation, DCT captures the
important multi-scale information of the given images more
directly and efficiently while avoiding learning extra para-
meters. Therefore, we propose the FFP module to extract
the multi-scale information by applying different coefficients
of DCT and IDCT. Our FFP module retains more detailed
information on the corresponding scale than the spatial feature
pyramid.

As shown in Fig. 3, the spatial-based multi-scale informa-
tion is generated by down-sampling and up-sampling. The
down-sampling is used to build the feature pyramid of different
scales while the up-sampling is deployed to keep the feature
maps that have the same size. The frequency-based multi-
scale information is obtained by coding of DCT with low-
pass filters and reconstructing of IDCT. Columns a, b, c, and
d depict the difference between the spatial-based multi-scale
information and the frequency-based multi-scale information
with the same coefficient. Regarding Column a, the spatial
feature map obtained by down-sampling the image to 1/4 and
then up-sampling to the original size, the frequency feature

Fig. 3. Comparison between the spatial-based multi-scale information and
the frequency-based multi-scale information. The corresponding coefficients
for columns a, b, c, and d are 1/4, 1/16, 1/64, and 1/256, respectively.
For the spatial-based multi-scale information, the coefficients indicate the
scaling ratio. For the frequency-based multi-scale information, the coefficients
represent the passing low-frequencies to reconstruct images. For facilitate
viewing, the first row is not strictly displayed in proportion.

map is depicted by using the 1/4 low frequencies of DCT
and the reconstruction of IDCT. Remaining Columns b, c,
and d are similar operations to Column a. For the same
coefficient feature map, we found that the feature map captured
by frequency domain has more contextual information than
the feature map generated by spatial domain, as shown in the
second row and the third row of Fig. 3.

To capture the correlation between the feature map chan-
nels, the FFP module extracts the multi-scale information by
using 3D DCT and IDCT. We denote the number of rows,
columns, and channels of the feature map by N , M , and C ,
respectively. We denote the spatial domain signal at location
(x, y, z) by f (x, y, z) and the cosine transform coefficient at
frequency (u, v,w) by F(u, v,w). We then have the 3D DCT
of f (x, y, z) as follows,

F(u, v,w) = c(u)c(v)c(w)

N−1�
x=0

M−1�
y=0

C−1�
z=0

f (x, y, z)

· cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2M

× cos
(2z + 1)wπ

2C
, (2)

where u, v, and w are the frequency variables corresponding to
different dimensions and c(u), c(v), and c(w) are the constant
terms. We have c(v) = c(w) = c(u), where c(u) is given by

c(u) =

⎧⎪⎪⎨
⎪⎪⎩

	
1

N
, if u = 0

	
2

N
, otherwise.

(3)
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The definition of IDCT is as follows,

f (x, y, z) = c(u)c(v)c(w)

N−1�
u=0

M−1�
v=0

C−1�
w=0

F(u, v,w)

· cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2M

× cos
(2z + 1)wπ

2C
. (4)

As shown in Fig. 2, the FFP module has four branches with
different frequency coefficients, i.e., 1/4, 1/16, 1/64, 1/256.
Each branch has 1×1 convolution and 3×3 convolution where
the 1 × 1 convolution is a powerful operation to reduce the
number of parameters. Therefore, we use 1×1 convolution to
compress the channels in each branch. The 3 × 3 convolution
layer is used to extract high-level semantic features. The inte-
gration of high-level semantic features uses the concatenation
operation to restore the number of channels.

C. Global-Local Consistency Loss

In order to address both the imbalanced-data distribution
problem and the insufficient local-pattern problem, we propose
a novel global-local consistency loss. Firstly, we use the
weighted log-cosh loss to overcome the imbalanced data
distribution. Then, the gradient magnitude similarity is used
to constrain the response of crowd or vehicle features on the
local pattern. We then design two forms of the global-local
consistency loss to illustrate how to solve the imbalanced data
distribution and the insufficient local patterns.

1) Weighted log-cosh: For imbalanced data distribution,
the outliers produce the excessively large gradients that are
harmful to training. SmoothL1 [27] that only focuses on the
negative influence of outliers is not differentiable everywhere.
Therefore, our proposed weighted log − cosh loss can not
only reduce the gradient of outliers and increase the gradient
of interior points, but also ensure that it is differentiable
everywhere. The weighted log-cosh loss is defined as follows,

Lwlc = 1

N

N�
i=1

α log



cosh



Yi − Y P
i

��
, (5)

where α is 1.313. When Lwlc satisfies error = 1 and
gradient = 1, we can get α = 1.313. This ensures that Lwlc
has a larger gradient of inliers than SmoothL1 though the
cost of the outlier gradient only increases a little, as shown in
Fig. 4. Compare to SmoothL1, Lwlc not only increases the
gradient of inliers but also controls the gradient of outliers to
be a small range. This implies the increased overall gradients,
thereby speeding up the convergence of the model.

2) Gradient Magnitude Similarity: The gradient of the
image is sensitive to image distortion. Xue et al. [40] propose
the gradient magnitude similarity (GMS) to measure the image
similarity by capturing local gradient changes. GMS has better
efficiency, in both speed and performance. Therefore, we use
GMS to measure the local correlation between the estimated
density map and ground truth density map.

Given an input image, GMS is defined as the root mean
square of directional gradients of the image along both vertical

Fig. 4. The curves show that the inlier gradient of the weighted log-cosh
loss is larger than SmoothL1 loss while the outlier gradient of the weighted
log-cosh loss has a small upper bound, i.e., 1.313.

and horizontal directions. The gradient is computed using
the convolutional operation with the 3 × 3 Prewitt filters.
We denote the gradient magnitude of the estimated density
map Y P and ground truth density map Y by mY P and mY ,
respectively. They can be computed by convolving hx and hy

on Y P and Y , where hx and hy indicate the horizontal direc-
tions and the vertical directions of Prewitt filters, respectively.
We then have the definition of mY P as follows,

mY P =
��

Y P ⊗ hx
�2 + �

Y P ⊗ hy
�2

. (6)

Similarly, we have the definition of mY as follows,

mY =
�

(Y ⊗ hx )
2 + �

Y ⊗ hy
�2

, (7)

where symbol ⊗ denotes the convolution operation.
Then GMS (with range from 0 to 1) is computed as follows,

GMS = 2mY P × mY + c

m2
Y P + m2

Y + c
, (8)

where c is the positive constant that avoids division by zero.
A higher GMS means a higher similarity to a ground truth
density map. The gradient magnitude similarity loss denoted
by LGMS is defined as follows,

LGMS = 1

N

N�
i=1

(1 − GMSi ) , (9)

where the range of LGMS is the same as GMS.
3) Global-Local Consistency Loss: To constrain the

response of crowd or vehicle feature on the global and local
pattern simultaneously, we combine the weighted log-cosh
loss and the gradient magnitude similarity loss to construct
the global-local consistency (GLC) loss. It has two forms of
combination. The first form of the global-local consistency
loss denoted by L(1)

GLC is defined as follows:

L(1)
GLC = 1

N

�N

i=1


α log



cosh(Yi −Y P

i )
�
+β1



1−GMSi

��
,

(10)

where β1 is the weight to balance Lwlc and LGMS. The term
Lwlc enlarges the gradients of inliers and restricts the maxi-
mum gradient of outliers. It reflects the error of the estimated
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density map on the global pattern. The term LGMS constrains
the similarity between the ground truth and the estimated
density map on the local pattern. In experiments, we let α
be 1.313 and β1 be 1.6.

Because the generalization error of the crowd-and-vehicle
counting task is measured by MAE and MSE. In order to make
the empirical error closer to the generalization error, we design
the second form of the global-local consistency loss denoted
by L(2)

GLC given as follows,

L(2)
GLC = 1

N

�N

i=1


α log



cosh(Yi −Y P

i )+β2
�
1−GMSi

���
,

(11)

where α is 1.313 and β2 is 1.0 in our experiments.
According to the definitions of two forms of global-local

consistency loss as defined in Eq. (10) and Eq. (11), we find
the following relation between them.

Lemma 1: The second form of the global-local consistency
loss is no greater than the first form of the global-local
consistency loss,

L(2)
GLC ≤ L(1)

GLC, if αβ2 ≤ β1. (12)

Proof: Let x = cosh(Yi − Y P
I ) and y = 1 − GMS(i).

Suppose that the inequality holds for x ≥ 1 and 0 ≤ y ≤ 1.
The above inequality can be represented as follows,

α log(x + β2 y) ≤ α log(x) + β1 y. (13)

Rearranging it, we have,

α log(x + β2 y) − α log(x) ≤ β1 y. (14)

We then have,

α log(1 + β2
y

x
) ≤ β1 y. (15)

We next obtain

α log(1 + β2
y

x
) ≤ α

β2 y

x
≤ β1 y. (16)

Inequality (15) is true. Therefore, inequality (12) is proved. �
We observe that L(2)

GLC has a lower upper bound of gener-
alization deviation than L(1)

GLC. This means L(2)
GLC will make

the model obtain better generalization than L(1)
GLC on testing

dataset. We will show that L(2)
GLC is better than L(1)

GLC through
experiments in Section IV.

IV. EXPERIMENTS

A. Implementation Details

At present, the method of the density map estimation is
the most effective for the crowd-and-vehicle counting task.
Our density map generation method follows MCNN [12].
Parameter setting follows CSRNet [11]. We crop each image
into nine patches. Each patch is 1/4 of the original image.
The four quarters and the centre are the first five patches. The
remaining four patches are located in the left-centre, right-
centre, top-centre and bottom-centre of the original image.
After flipping all of the nine patches, we get 18 patches.
Because some patches have fewer persons (or even zero),
we remove those patches containing persons smaller than the

minimum number of persons of the dataset, e.g., the patches
with a number of persons smaller than 33 on ShanghaiTech
part_A dataset are removed. Since TRANCOS [26], CROVEH,
and UCSD datasets [24] are too sparse, we just flip samples
without cropping.

We train FFPNet using first 14 layers of VGG-16 as our pre-
trained model. Based on experience and experimental results,
we use a Gaussian distribution with mean of 0 and standard
deviation of 0.01 to initialize the rest layers. Meanwhile, Adam
optimizer is deployed to training. The learning rate is fixed at
5e − 6, momentum is 0.95 and decay is 5e − 4.

B. Evaluation Metrics

We use MAE and MSE to assess the performance of
the model, where MAE indicates the accuracy of the esti-
mated crowd (or vehicle) count and MSE is a measure
of the robustness. For testing images, MAE and MSE are

defined as MAE = 1
N

�N
i=1

��Ci − CGT
i

�� and MSE =�
1
N

�N
i=1

�
Ci − CGT

i

�2
, where N is the number of images

in the testing set, Ci is the predicted count of persons
(or vehicles) in the i -th testing image, and CGT

I is the cor-
responding ground truth count. Particularly, Ci is defined as

Ci = �H
h=1

�W
w=1 ph,w, where H and W indicate the height

and width of the density map, Ci is the pixel value at location
(h, w) of the density map.

C. Datasets

We choose six crowd-and-vehicle counting datasets:

• CROVEH dataset has 426 samples that contain both
7,587 persons and 6,361 vehicle annotations. Each sample
has at least 11 persons and 11 vehicles, and at most
98 persons and 38 vehicles. The average numbers of
persons and vehicles are 17.8 and 14.9. These samples are
selected from nuImages [44] and Cityscapes [45] datasets.
We eliminate ego vehicles, bicycles, and motorcycles
from vehicle annotations. We also change the annotations
of riders to persons. Due to the large size of the original
images, we scale each image to a half of its original size.
We divide the source dataset into the training set and test-
ing set. CROVEH dataset can reflect the real congestion
on the street. This may help the context awareness and
context prediction of intelligent transportation systems.

• TRANCOS dataset [26] is a public traffic and congestions
dataset, which includes 1,244 images with 46,797 vehicle
annotations for different congested scenes. The perspec-
tives of images are not fixed and the images are collected
from very different scenarios. The region of interest (ROI)
is also provided. Grid Average Mean Absolute Error
(GAME) [26] is used to assess the counting accuracy.

• ShanghaiTech Dataset [12] contains 330,165 annotations
in 1,198 images. This dataset includes two parts: SHA
has 482 images of congested scenes captured from the
Internet; SHB consists of 712 sparse scenes got from
urban streets. We follow the splits of the training and
testing sets provided by the authors for our experiments.
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Fig. 5. The first row shows samples from testing sets of UCF-QNRF and
SHA. The second row shows the ground truth for each sample. The third and
fourth rows show the density maps predicted by CSRNet [11] and FFPNet,
respectively.

• UCF-QRNF Dataset [25] collects 1,535 dense-crowd
images with 1,251,642 annotations from the Internet,
which is divided into training and test splits of 1,201
and 334 images, respectively.

• UCF_CC_50 Dataset [14] contains 50 extremely-dense
crowd images with 64,000 annotations. The number of
persons per image is between 94 to 4,543 and the average
count is 1,280. We also conduct 5-fold cross-validation
suggested by [14].

• UCSD dataset [24] has 2,000 images collected from a
pedestrian walkway using surveillance cameras. These
sparse crowds range from 11 to 43 have an average of 25.
We follow the setting of [24] to divide the dataset with
2,000 frames: taking the frames from 601 to 1,400 as
the training split and the rest as the testing split. ROI is
provided as well for the whole dataset.

D. Results and Analysis

Figs. 5 and 6 present representative estimated density
maps for the test scenes from ShanghaiTech [12] and UCF-
QNRF [25] datasets. In Fig. 5, FFPNet utilizes the FFP module
to strengthen the crowd or vehicle response and eliminate the
incorrect feature, implying the effectiveness of the FFP module
in extracting multi-scale information. As shown in the second
and fourth columns of Fig. 6, the GLC loss eliminates the
inaccurate response in red boxes. In the first and third columns,
density maps estimated using GLC loss have more obvious
responses locally, even on large-scale targets, indicating that
the GLC loss can handle insufficient local patterns.

We evaluate the overall performance of our approach in
comparison to existing approaches on these six datasets as
shown in Table I. Compared with existing methods, our
FFPNet achieves superior performance in crowd-and-vehicle
counting. For example, compared with CSRNet [11], FFPNet

Fig. 6. The first row shows samples from the testing set of UCF-QNRF and
SHA. The second row shows the ground truth for each sample. The third and
fourth rows show the density maps predicted by FFPNet [11] and FFPNet
with the GLC loss, respectively.

Fig. 7. The first row shows samples from the testing set of CROVEH. The
second row shows the ground truth for each sample. And the third row shows
the predicted density map.

reduces MAE and MSE by 8.2% and 6.5%, respectively
on CROVEH_C (crowd) dataset; it reduces MAE and MSE
by 25.1% and 25.6%, respectively on CROVEH_V (vehicle)
dataset. On CROVEH dataset, FFPNet can estimate the dis-
tribution of crowd and vehicles separately at the same time.
In order to facilitate the display of congestion, we merged
the crowd density map and vehicle density map into one,
as shown in Fig. 7. Particularly, FFPNet outperforms other
methods in estimating the density map of crowd and vehicles.
On TRANCOS [26], we conduct another experiment to count
the number of vehicles. The comparison results are shown
in Table II. Fig. 8 illustrates some examples of the predicted
density maps. Compared with existing methods, our approach
achieves the best performance in GAME(0), GAME(1), and
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TABLE I

COMPARISON WITH STATE-OF-THE-ART METHODS ON SHANGHAITECH, UCF-QNRF, UCF_CC_50, UCSD, CROVEH DATASETS

TABLE II

COMPARISON ON TRANCOS DATASET

Fig. 8. The first row shows samples from the testing set of TRANCOS with
ROI. The second row shows the ground truth for each sample. The third row
shows the predicted density map.

GAME(2) (except for GAME(3)), e.g., 19.3% lower than the
second best result in GAME(0); this demonstrates that our
approach is more robust and generalized than other methods.

SHA [12], UCF-QNRF [25], and UCF_CC_50 datasets [14]
contain a lot of extremely-dense samples, leading to the
imbalanced data distribution. They also suffer from large-scale
variations caused by camera heights and angles. On SHA [12],
we get 7.7% MAE lower than CAN [19] and 12% lower

than ADCrowdNet [41]. Our approach reduces MAE and
MSE by 8.6% and 7.8% on UCF-QNRF, respectively. Since
UCF_CC_50 dataset [14] only contains 50 samples, it is diffi-
cult for training supervised DL models though our FFPNet still
achieves competitive results. It illustrates that our approach
can better handle extremely-dense scenes, imbalanced data dis-
tribution, and large-scale variations. For the relatively-sparse
datasets like SHB [12], the samples are disturbed by the com-
plex background in streets. Our approach delivers 5.2% MAE
lower than ADCrowdNet [41] and 12.3% MSE lower than
CAN [19]. This validates our approach can reduce the negative
influence of complex background. For UCSD dataset [24]
with extremely-sparse scenes, we get 1.0% MAE lower than
ADCrowdNet [41] and much lower MSE than MMCNN [50].
These experiments demonstrate that our approach achieves
superior performance not only on extremely-dense scenes but
also on sparse scenes. Therefore, our approach is better in
dealing with crowd estimation in dense scenes. Compared
with the methods such as MCNN [12], CSRNet [11], and
CAN [19], our approach can better extract and utilize multi-
scale information, consequently solving imbalanced data dis-
tribution and insufficient local patterns.

E. Ablation Experiments

1) Ablation Studies on Architecture: To analyse the effec-
tiveness of our model, we conduct a series of ablation exper-
iments with several configurations including CSRNet [11],
P2PNet [51], data augmentation, attention mechanism, the
FFP module, global-local consistency loss on SHA dataset.
Table III presents the results. Firstly, CSRNet∗ reduces MAE
and MSE by 2.8% and 7.3%, respectively in comparison to
the baseline. With our data augmentation, CSRNet further
reduces MAE and MSE by 1.0% and 4.6%, respectively. The
experimental results show that it is effective for model training
by removing the patches with fewer persons to eliminate the
negative effects. We then use this model as our new baseline
and fine-tune it in the following experiments. In particular,
FFPNet without (w/o) attention mechanism increases MAE
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TABLE III

ABLATION STUDIES OF ARCHITECTURE ON SHA DATASET. FFPNET
INDICATES FFPNET3D WHICH USE 3D DCT AND IDCT.

THE SYMBOL ∗ MEANS OUR RE-IMPLEMENTS

Fig. 9. The first row shows the testing image from SHA, the ground truth,
the estimated density map from FFPNet with SMS and FFPNet. The second
and the third row show the density maps of four branches from FFPNet with
SMS and FFPNet, respectively.

and MSE by 2.9% and 0.7%, respectively, implying that
the attention mechanism can significantly enhance the valid
features of the crowd data. Moreover, FFPNet with data
augmentation also reduces MAE and MSE by 2.5% and 2.1%,
respectively, implying that our FFPNet can effectively extract
more multi-scale information by FFP module. At last, FFPNet
with the proposed global-local consistency loss has achieve
the best performance in terms of 7.5% MAE and 11.1%
MSE decrement in comparison to the variant without the
global-local consistency loss. This result demonstrates that
our global-local consistency loss can alleviate the influence
of imbalanced data distribution and insufficient local patterns.
To further demonstrate the effectiveness of FFPNet, we con-
duct experiments using P2PNet, one of the best-performing
methods, as the baseline. P2PNet estimates the number of
people by predicting a set of heads in the image directly. In our
experiments, P2PNet with the FFP module achieves better
results, in terms of 0.02% MAE and 0.25% MSE decrement
than P2PNet. This shows that FFPNet can effectively extract
and utilize multi-scale information on non-heatmap regression
counting. Compared with the state-of-the-art CCTrans [34],
P2PNet with FFP module still reduces MSE by 0.02%.

2) Ablation Studies on Feature Pyramid: Moreover, we also
study different multi-scale configurations, as shown in
Table III. In order to study the effectiveness of DCT and

TABLE IV

COMPARISONS FOR DIFFERENT LOSS FUNCTIONS ON SHA DATASET

TABLE V

ABLATION STUDIES OF GLOBAL-LOCAL CONSISTENCY

LOSS FUNCTIONS ON SHA DATASET

IDCT by replacing the pooling and up-sampling operations.
We construct a spatial multi-scale module (SMS) using pool-
ing and up-sampling operations to extract the multi-scale
information. We observe that FFPNet with SMS achieves 2.8%
higher MSE and 4.8% higher MAE than FFPNet (DCT),
respectively, implying that FFPNet with DCT captures the
multi-scale information more effectively than FFPNet with
SMS. Fig. 9 presents visualized results to further demonstrate
this effect. In Table III, FFPNet1D and FFPNet2D represent
using 1D DCT with IDCT and 2D DCT with IDCT to con-
struct the feature pyramid of the frequency-based multi-scale
information, respectively, where 1D transformation indicates
the operations on the columns of the feature map and 2D
transformation indicates the operations consisting of separated
row transformation and column transformation on the entire
feature map. Similarly, FFPNet denotes FFPNet3D, where
3D transformation uses 1D transformation on the channel
dimension based on 2D transformation. The results of FFPNet
are better than FFPNet2D and FFPNet1D, suggesting that
FFPNet with the channel dimension can effectively extract
more high-level semantic features. The final values of MAE
and MSE reach 62.11 and 98.99, respectively.

3) Ablation Studies on Global-Local Consistency Loss:
Finally, we compare nine types of losses on SHA, as shown
in Table IV. Table V also presents the ablation studies of
Global-Local Consistency loss. In particular, SmoothL1 and
Lwlc slightly increase MAE than LMSE, implying that there are
a few outliers in SHA dataset. Libra R-CNN [28] proposes the
Balanced BalancedL1 loss to solve the sampling imbalance
problem. SANet [13] proposes a joint loss to combine MSE
and weighted structural similarity index measure (SSIM) to
enforce the local structural similarity. The experiment results
show that FFPNet with LSANet has no improvement than LMSE
(i.e., decreasing MAE and MSE). When we use LGMS to
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constrain the local correlation of density map, both L(1)
GLC and

L(2)
GLC contribute to the performance improvement. Compared

with L(1)
GLC, L(2)

GLC get the best performance. It validates
L(2)

GLC has the lower upper bound of generalization deviation
than L(1)

GLC. We further define the global-local consistency loss
with SSIM as follows,

L(3)
GLC = 1

N

�N

i=1


α log



cosh(Yi −Y P

i )+β3
�
1−SSIM

���
,

(17)

where α = 1.3. Because L(3)
GLC and L(2)

GLC are the same in form,
we set β3 = 1.0. This result demonstrates that SSIM does
not apply to our approach compared to GMS. From Table V,
we observe that β1=1.6 is the best for L(1)

GLC and β2=1.0 for
L(2)

GLC. The best performance is achieved by L(2)
GLC at β2=1.0,

i.e., MAE is 57.46 and MSE is 88.04.

V. CONCLUSION

In this paper, we propose an effective crowd-and-vehicle
counting approach that consists of the FFPNet and global-
local consistency loss. The FFPNet uses FFP module to
effectively extract more multi-scale contextual information.
The global-local consistency loss can alleviate the negative
influence caused by the large gradient of the outliers and
improve the local pattern correlation of estimated density
map. Extensive experiments show that our FFPNet is robust
and generalized in crowd-and-vehicle counting. Meanwhile,
it can effectively produce high-quality density maps, which
depict the distribution of crowd and vehicles in the natural
scenes. We also construct the crowd-and-vehicle dataset for
multi-target counting on a complex scene. It can help us
estimate the number of persons and vehicles at the same time.
Finally, we conduct several groups of experiments to evaluate
the proposed FFPNet in comparison with recent state-of-the-
art (SOTA) methods. The results demonstrate that FFPNet
achieves the best results on different backbones, e.g., SOTA
performance in terms of 52.69 MAE on P2PNet with FFP
module.
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