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Abstract—The recent studies for face alignment have involved
developing an isolated algorithm on well-cropped face images.
It is difficult to obtain the expected input by using an off-the-
shelf face detector in practical applications. In this paper, we
attempt to bridge between face detection and face alignment by
establishing a novel joint multi-task model, which allows us to
simultaneously detect multiple faces and their landmarks on a
given scene image. In contrast to the pipeline-based framework
by cascading separate models, we aim to propose an end-to-end
convolutional network by sharing and transform feature repre-
sentations between the task-specific modules. To learn a robust
landmark estimator for unconstrained face alignment, three types
of context enhanced block are designed to encode feature maps
with multi-level context, multi-scale context, and global context,
respectively. In the post-processing step, we develop a shape
reconstruction algorithm based on Point Distribution Model
(PDM) to refine the landmark outliers. Extensive experiments
demonstrate that our results are robust for the landmark location
task and insensitive to the location of estimated face regions.
Furthermore, our method significantly outperforms recent state-
of-the-art methods on several challenging datasets including
300W, AFLW, and COFW.

Index Terms—facial landmark localization, face alignment,
convolutional network, point distribution model.

I. INTRODUCTION

FACE alignment or facial landmark localization, which
aims to detect a set of semantic points representing a

face shape, has become a widely studied topic in the field of
computer vision. It usually serves as a crucial intermediate
step in many multimedia and vision applications, such as face
distortion recovery [1], emotion recognition [2], [3], and facial
expression analysis [4]. In the past two decades, there have
been numerous classic methods [5], [6], [7], [8], [9], [10],
[11] and annotated common datasets [12], [13], [14], [15],
[16], [17] proposed for face alignment. Although an impressive
progress has been made for the landmark localization on
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near-frontal faces, unconstrained face alignment is still a
challenging task due to various unexpected conditions in the
wild, such as low resolution, large pose, and heavy occlusion.

The previous works can be roughly classified into two cat-
egories: template fitting methods [5], [6], [7] and regression-
based approaches [8], [9], [10], [11]. The former is to optimize
a parametric deformable model to fit a given face image,
while the latter extracts features from the image, and regresses
a coordinate or response heatmap of each facial landmark
directly. To reduce the difference between experimental sam-
ples and real-world ones, some in-the-wild face datasets [15],
[16], [17] have been proposed to further promote the devel-
opment of the unconstrained face alignment algorithm. With
the increasing number of training samples, the data-driven
methods, especially based on Deep Convolutional Neural Net-
work (DCNN) [18], [19], [20], [21] have achieved significant
improvements for the landmark localization and led to the
state-of-the-art advances. They can learn the discriminative
feature representations from a large number of annotated face
images by resorting to complex network structures.

Despite most of existing methods perform well on the
common face datasets, they usually assume that a well-cropped
face image has been acquired by using either the pre-defined
bounding box, or the ground-truth landmarks. It might result
in that the model easily overfits to the specific face regions and
falls down in the real applications, where an off-the-shelf face
detector is executed but can not provide the expected bounding
boxes. In fact, the problem involves another important vision
task: face detection, which estimates the location of face
bounding boxes in a given scene image.

In the early years, there have been some studies [12],
[22], [23] proposed for jointly face detection and landmark
localization. However, their performance is limited by the
representation ability of hand-crafted features. Recently, some
methods based on DCNN [20], [24], [25], [26] attempted to
reduce the performance gap with the existing single-task ap-
proaches. Most of them [20], [25], [26] developed a pipeline-
based method by cascading multiple independent models. In
addition, these methods [24], [25] were proposed to only
detect a limited number of facial landmarks. It is difficult
to compare them with the existing face alignment algorithms
on the popular challenging datasets [15], [16], [17]. Inspired
by the recent success of Region-based Convolutional Neural
Network (R-CNN) [27], [28], [29] in objection detection,
we establish a new R-CNN variant as our detection module.
Based on the R-CNN architecture, a new region-wise Fully
Convolutional Network (FCN) is designed as the landmark
localization module, which can be easily extended in support
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of different landmark annotations. In contrast to the cascade
structure, we concatenate the feature maps from the task-
specific modules to form an end-to-end architecture.

In this paper, we attempt to bridge between face detection
and facial landmark localization in an elegant way, where
a novel joint multi-task model is proposed to allow us to
simultaneously detect multiple faces and their landmarks on
a given scene image. The contributions of our work are
described as follows:

• We present an end-to-end convolutional network, called
Region-based Context Enhanced Network (RCEN),
which consists of two task-specific modules. One is a R-
CNN variant with two-stage refinement of face bounding
boxes, and the other is a region-wise FCN used to learn
the response maps of facial landmarks.

• To establish a robust multiple face alignment algorithm,
which is less sensitive to various unconstrained con-
ditions, such as low resolution, large pose, and heavy
occlusion, we design three types of context enhanced
block in RCEN to effectively capture multi-level context,
multi-scale context, and global context.

• We develop a PDM-based shape reconstruction algorithm
as the post-processing step of RCEN, which exploits
the global shape constraint to refine the location of the
estimated landmark outliers.

• We demonstrate an advantage of the proposed RCEN over
the isolated face alignment algorithm, since it does not
depend on the well-cropped face images as input. Fur-
thermore, our approach outperforms recent state-of-the-
art results with an obvious margin on several challenging
datasets including 300W, AFLW, and COFW.

II. RELATED WORK

In the literature of facial landmark localization, besides
some classic template fitting methods (such as ASM [5],
AAM [6] and CLM [7]) and traditional regression-based
approaches [8], [9], [10], [11], the recent advances have
been made by data-driven DCNNs. According to the different
purposes, these methods can be categorized as the isolated or
multiple face alignment algorithm.

A. Isolated Face Alignment

In the early works, the DCNNs [30], [31] were used to
directly learn the mapping from a given face image to the
coordinate vector of each landmark. These methods typically
cascade multiple convolutional networks to estimate the land-
marks in a coarse-to-fine manner. A classic cascaded DCNN
was proposed by Sun et al. [30] to design several separate
networks responding to different facial parts and regressing
the corresponding landmark coordinates. Similarly, Zhang et
al. [31] employed multiple auto-encoder networks to process
a given facial image with different resolutions and perform
the coarse-to-fine face alignment. Recently, Lv et al. [32]
presented a deep regression architecture with two-stage re-
initialization of a input face image, which is implemented by
cascading four sub-networks. Besides the cascaded DCNN,
some studies [33], [34] aimed to build an end-to-end DCNN by

resorting to well-designed network structures. Zhang et al. [33]
formulated a multi-task DCNN that simultaneously learns face
alignment and correlated auxiliary tasks for facial attribute
analysis. Trigeorgis et al [34] and Hou et al [35] proposed
an end-to-end recurrent network to estimate the location of
facial landmarks in a coarse-to-fine fashion.

With the appearance of FCN [36], facial landmark local-
ization can be formulated as a heatmap regression problem.
Bulat et al. [37] trained a two-stage convolutional aggregation
model with deconvolution operation to generate the response
map of each landmark. Güler et al. [19] proposed to learn
a dense mapping from a face image to a 3D shape template
by using a regression-based FCN. Yang et al. [38] employed
a stacked hourglass network [39] with a supervised face
transformation to predict the landmark heatmaps of normalized
faces. Bulat et al. [40] extended the hourglass network using
a new bottleneck block to simultaneously consider the 2D and
3D face alignment. In contrast to the coordinate regression,
the heatmap regression naturally exploits the spatial structure
of feature maps in DCNN, and can be solved better for the
fine-grained localization task. Nevertheless, the lack of global
context in FCN limits further improvement of the landmark
localization capacity. To address that, Zhang et al. [41] and
Merget et al. [42] applied the dilated convolution operation
into FCN to encode feature maps with large receptive fields.
In our network, we specially design a global context enhanced
block within a encoder-decoder structure to capture global
information.

B. Multiple Face Alignment

In practice, heatmap regression is naturally supported for the
landmark localization of multiple faces by setting a confidence
threshold to keep multiple landmark sets [42]. However, the
relationship among the predicted landmarks in each set is
not been established explicitly to represent an individual.
Cao et al. [43] proposed a bottom-up landmark localization
scheme to model the joint relationship by using part affinity
fields. Nevertheless, this work focuses on solving human pose
estimation and does not provide more evaluations for facial
landmark localization.

In the early works for joint face detection and alignment,
Zhu et al. [12] used a mixtures of tree models and HOG fea-
tures to simultaneously estimate face bounding box, head pose
and facial landmarks. Shen et al. [22] proposed an exemplar-
based face detector using SIFT features, which integrates a
landmark estimator. Chen et al. [23] presented a cascade-based
method to jointly handle face detection and alignment by using
features of pixel differences. Recently, some methods based on
DCNN [24], [25], [26], [44] have aimed to design a unified
framework for joint face detection and landmark localization.
Zhang et al. [25] cascaded three multi-task DCNNs to estimate
face bounding boxes and facial landmarks in a coarse-to-fine
manner. Instead of cascading multiple separate models, Chen
et al. [24] proposed an end-to-end DCNN by concatenating the
feature maps from two task-specific sub-networks. Although
these methods are better suited for multiple face alignment,
they are limited to the particular scenarios where only a small
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Fig. 1. Overview of the proposed RCEN for multiple face alignment. The network consists of three parts: a) Given a scene image, network backbone generates
hierarchical feature maps with different semantic information. b) Detection module receives the image-wise features from network backbone, and predicts the
location of each face bounding box. c) Landmark localization module extracts the region-wise features according to the detected face regions, and estimates the
corresponding landmark heatmaps. Note: the numbers in a ”Convolution + Relu” operation denote output number and kernel size, the numbers in ”Pooling”
and ”Deconvolution + Relu” operations denote kernel size, and the number in a ”Fully Connection” operation is output number. ”c” denotes the concatenate
operation in a MlCF block. ”n” is the number of predicted facial landmarks.

number of facial landmarks (5 or 21 points) are detected. Hsu
et al. [44] used the Faster R-CNN [29] as a face detector
and designed a tree structured model for face alignment.
Ranjan et al. [26] combined a region proposal algorithm [27]
with an extended multi-task DCNN to simultaneously resolve
face detection, landmark localization and attribute analysis.
By contrast, we aim to build an end-to-end DCNN through
sharing and transforming feature representations between the
face detection and landmark localization modules.

III. REGION-BASED CONTEXT ENHANCED NETWORK

As shown in Figure 1, we propose an end-to-end DCNN for
joint face detection and landmark localization. The network
contains two main modules that are used for the generation of
face bounding boxes and the prediction of facial landmark
heatmaps, respectively. More detail for the design of our
network is discussed in this section. During the training,
we employ a two-stage optimization strategy to minimize
the multi-task loss function. At the inference, the landmark
heatmaps are transformed to corresponding coordinate vectors,
and refined by a post-processing step that involves the PDM-
based shape reconstruction algorithm.

A. Network Architecture

Overall Structure. In this network, we adopt the VGG-
16 [45] as the network backbone containing five convolution
stacks, each of which consists of consecutive convolution

operations along with non-linear activations. These stacks
effectively encode the raw image and generate the hierarchical
feature maps with different semantics. From Figure 2, we can
see that the feature maps from lower layers tend to respond
to the edges and corners of objects, while those from higher
layers are class-specific and depict the concerned regions. In
the detection module, we follow Faster R-CNN [29] and adopt
a typical two-stage detection architecture that consists of a
Region Proposal Network (RPN) used to generate candidate
targets, and a region-wise convolutional network with fully
connected layers for face/non-face decision and bounding box
refinement. A crucial difference is that we introduce a multi-
level context fusion block into the region-wise network to
extract hierarchical features instead of using features only
from the top layer of network backbone. For the landmark
localization module, we design a new region-wise FCN using
encode-decode structure as shown in Figure 1(c). According
to the predicted bounding boxes, the module receives the
facial features mapped from the hierarchical feature maps,
and transforms them to the 120 × 120 response heatmaps
representing the confidence distribution of each landmark as
shown in Figure 2.

Context Enhanced Block. In RCEN, we exploit the fol-
lowing three observations to design the context enhanced
blocks. 1) In DCNN, the low-layer feature maps are high-
resolution, and retain rich texture information with better
localization properties, while the high-layer feature maps are
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Raw Image Conv3_3 Conv5_3

…

Fig. 2. Top row shows the average activations of feature maps from selected layers (conv3 3 and conv5 3) in network backbone. Middle row shows the sum
of all the estimated landmark heatmaps for each detected face. Bottom row shows the corresponding locations of predicted facial landmarks in this image.

semantically strong and suitable for classification tasks [26].
The combination of hierarchical features is natural to provide
the multi-level context cues for learning complex tasks like
face detection and landmark localization. 2) Due to the limited
stride in each convolutional layer, the feature maps only
contain single-scale context information, which is not enough
to cope with the existence of multi-scale faces in the wild.
3) FCN can not explicitly encode the global context by using
the fully connected operation. The lack of global information
would affect the inference of FCN especially for the fine-
grained tasks like semantic segmentation [46] and landmark
localization [42], as the spatial correlation in feature maps can
not be exploited effectively with a global view. Recently, there
have been some works [47], [48] proposed to combine the
multi-level and multi-scale feature maps by using the sparse
or dense skip-connections. However, they tend to perform the
fusion of global feature maps, which is not necessary since we
only consider the local face region. In the following, we will
detail three types of context enhanced block that works on a
region-wise network to capture multi-level context, multi-scale
context and global context, respectively.

• Multi-level Context Fusion: Different from the combi-
nation of global feature maps from multiple layers, we
concatenate the region-wise hierarchical features into a
new feature descriptor by using the skip-connections with
the Region of Interest (RoI) pooling [29]. Comparing with
some existing methods [49], [50] that employ the region-
wise feature fusion for improving detection performance,
we further develop the operation as a generic block to
catch multi-level context in both the detection module
and the landmark localization module. As shown in
Figure 3(a), according to the position of generated bound-
ing boxes, the feature maps in different layers are first
obtained with a fixed size by using RoI pooling. And then,
these feature maps are normalized under an unified scale

through L2 normalization [51]. Finally, we concatenate
all feature maps along the channel axis, and make the
cross-channel fusion of them with reduced dimensions by
using a convolution operation. In the detection module,
the block is grafted after the last three convolution stacks
to generate the 7×7 feature maps with 512 channels. For
the landmark localization, instead of directly working on
the network backbone, the block is used to concatenate
the feature maps from three multi-scale context fusion
blocks, and generate the 14× 14 feature maps with 256
channels.

• Multi-scale Context Fusion: Exploiting multi-scale con-
text in DCNN has received increasing attention for ob-
ject detection [52] and semantic segmentation [53]. The
former applies Spatial Pyramid Pooling (SPP) into the
single-layer feature maps to create a one-dimensional
representation with multi-scale information, while the
latter extends SPP further for the building of three-
dimensional feature maps adapted to the pixel-wise clas-
sification. Inspired by these works, we formulate a Spatial
Pyramid RoI Pooling (SPRP) in the new block to handle
region-wise feature maps. To our best knowledge, the
region-wise multi-scale context is first considered for
the landmark localization. As shown in Figure 3(b), we
first transform global feature maps to multiple groups of
region-wise feature maps with different sizes by using
SPRP. And then, expect for the feature maps with the
largest size, the others are upsampled by a learned
deconvolution operation with non-linear activation. Note
that these feature maps keep the same spatial resolution
but different receptive fields for a region object. In the
landmark localization module, we apply the block into
the hierarchical feature maps output from the last three
convolution stacks using SPRP with 3 sizes {14, 11, 9}.
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(c) Global Context Enhance Block
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Fig. 3. Three types of context enhanced block to capture multi-level context (a), multi-scale context (b), and global context (c), respectively. Note: the
red box in multi-level context fusion block represents a single-level context encoding, which is replaced with a multi-scale context fusion block in the
landmark localization module. The numbers in a ”Convolution + Relu” operation denote output number and kernel size, the numbers in ”RoI Pooling” and
”Deconvolution + Relu” operations denote pooled size and kernel size, respectively, and the numbers outside denote the channel size and spatial size of input
feature maps.

• Global Context Enhance: To capture the global context
in FCN, there have been some works proposed to employ
the stacking dilated convolutions [42] and the separable
large filters [46] to encode feature maps with large recep-
tive fields. Nevertheless, the both methods implicitly lose
a part of information in either the gaps or the boundaries
of the feature maps. In our work, we design a new block
based on the residual architecture [54] to encode the
region-wise feature maps with a global receptive field. As
shown in Figure 3(c), the block consists of a identity map-
ping and two global feature encoders with the separable
convolution operations. As an example, the input feature
maps are first encoded along the horizontal and vertical
directions by the consecutive 1×k1 and k1×1 convolution
operations with non-linear activations, respectively, where
the k1 is set to the input spatial size for global encoding.
And then, the feature maps are upsampled with the orig-
inal size by a following deconvolution operation. Instead
of the element-wise summation used in original residual
block [54], we perform the channel-wise concatenation
for all the feature maps in the last step. In RCEN, the
block is embedded within the encoder-decoder structure
from the landmark localization module, and receives the
14× 14 feature maps with 256 channels.

B. Training
Bounding Box Normalization. During the training,

the positive samples are determined according to their
intersection-over-union (IoU) overlaps with the correspond-
ing ground-truth bounding boxes. To unify the distribution
of annotated bounding boxes for stable training, we need
to normalize the annotations defined on different common
datasets. As shown in Figure 4, we can find that the ground-
truth bounding boxes are either not provided, or annotated
with different styles. In our work, we refer to the definition
of annotated faces on the WIDER FACE dataset [55], and

300W AFLW-PIFA COFWAFLW

Fig. 4. Different styles of annotation on the 300W, AFLW and COFW
datasets. The blue boxes and green points denote the ground-truth bounding
boxes and facial landmarks respectively, while the red dotted boxes denote
the normalized bounding boxes.

provide new ground-truth bounding boxes using the following
steps. 1) An initial bounding box is first obtained with the
minimum area according to the coordinates of the outermost
landmarks. 2) And then, the height of the bounding box is
extended toward the forehead direction with 1/3 increase. 3)
When the contour landmarks are not available on the common
datasets such as AFLW-Full [56] and COFW [17], the width
of the bounding box is also increased along both sides by 2×
distance between the corresponding eyebrow center and outer
corner.

Multi-task Loss Function. In RCEN, we consider three
functions to minimize: Lrpn, Ldet and Llan, representing the
losses of region proposal generation, face detection and facial
landmark localization, respectively. Following the work [29],
Lrpn and Ldet are defined as follows:

Lrpn =
∑
i

Lcls(ei, e
∗
i ) + e∗i λ1Lreg(vi,v

∗
i ),

Ldet =
∑
j

Lcls(hj , h
∗
j ) + h∗jλ2Lreg(wj ,w

∗
j ),

(1)

where i is the index of a reference box (anchor) tiled on the
output map of RPN. ei denotes the predicted probability of
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the i-th reference box being a face. The ground-truth label
e∗i is 1 if the reference box is positive and 0 otherwise. The
vectors vi and v∗

i represent 4 parameterized coordinates of
the predicted region proposal and the ground-truth bounding
box, respectively. hj is the predicted probability of the j-th
generated region proposal being a face, while h∗j denotes a
ground-truth label that is 1 if the region proposal is positive
and 0 otherwise. The vectors wj and w∗

j are the parameterized
coordinates of the predicted face and corresponding ground-
truth bounding box. The function Lcls denotes a softmax
loss with respect to two classes (face/non-face) used for
classification. The regression loss Lreg is the smooth L1
function defined in [28] with a regularization parameter λ.

In our work, the landmark localization is formulated as the
pixel-wise classification in n+ 1 response maps using a per-
pixel softmax and a multinomial cross-entropy loss, where n
is the number of facial landmarks. Llan is defined as follows:

Llan = −
∑
k

∑
xy

n∑
m=0

Im(G∗
k(x, y))log

eM
m
k (x,y)∑n

l=0 e
M l

k(x,y)
, (2)

where G∗
k(x, y) ∈ {0, ..., n} denotes the ground-truth label of

the k-th detected face at pixel location (x, y). Im is an indi-
cator function such that Im(G∗

k(x, y)) is 1 if G∗
k(x, y) = m

and 0 otherwise. It can be used to select the matched response
map to calculate the loss according to the ground-truth label.
Mm

k (x, y) represents the corresponding score in the m-th
response map output from the final convolution layer.

Learning Strategy. Due to the sequence-dependent rela-
tionship between the tasks of face detection and landmark
localization, it is difficult to jointly optimize the detection
module and landmark localization module. To reduce the
learning difficulty, we adopt a two-stage optimization strategy
to train the proposed RCEN. At the first stage, the weights
of network backbone with fully connected layers are first
initialized by the pre-trained VGG-16 model [45]. And then,
the network backbone and the detection module are fine-tuned
by using the training set on WIDER FACE [55], which only
provides annotated face bounding boxes. In this process, we
assign positive labels to reference boxes and region proposals
if their IoU overlaps are higher than 0.5 with the ground-truth
bounding boxes. At the second stage, based on the learned
weights, we employ a common training set with annotated
facial landmarks, described in Section IV-A, to train the
landmark localization module with the specific output. Note
that the weights of network backbone are not updated in this
stage. When the IoU overlaps are higher than 0.7 with the
ground-truth bounding boxes, the detected samples are used
to calculate the Llan loss. To make the most of the ground-
truth landmarks, the bounding box of each positive sample is
expanded with the 0.3 increases of the height and width, and
transformed to the 120 × 120 target heatmaps responding to
the coordinate of each landmark.

C. PDM-based Shape Reconstruction

Inspired by the work of Point distribution model (PDM) [5],
which has been widely used in the classic template fitting
approaches [6], [7] to model the shape of an object, we

Algorithm 1 Proposed Framework for Multiple Face Align-
ment.
Require:

The input scene image I, the pre-trained RCEN including
the network backbone Q, detection module D and land-
mark localization module L, and the PDM-based shape
reconstruction model P .

Output:
The set of face shapes E;

1: Extracting the basic feature maps F by F = Q(I);
2: Predicting the set of facial bounding boxes B by B =
D(F);

3: for k = 1 to K do
4: Estimating the facial landmark heatmaps Hk by Hk =

L(Bk,F);
5: for m = 1 to n do
6: Obtaining Em

k by locating the m-th landmark at the
peak response position in Hm

k

7: end for
8: Updating the face shape Ek by Ek = P (Ek);
9: end for

employ it inversely to reconstruct the estimated landmarks
by exploiting the global shape correlation. The landmark
shape can be denoted as s = [sT1 , ..., s

T
n ]

T ∈ R2n×1 with n
landmarks, where sm ∈ R2×1 represents the coordinate of m-
th landmark. The classic shape model is obtained by Principal
Component Analysis (PCA) as follows:

p = UT (s− s̄), (3)

where p ∈ Rq×1 is a shape parameter vector retaining q
active components. U ∈ R2n×q denotes the shape bases with
q eigenvectors. s̄ ∈ R2n×1 is the mean shape. In order to
remove the similarity transform components from the shapes,
the shape model can be augmented with three global transfor-
mations (scaling, in-plane rotation and translation) by using
Generalized Procrustes Analysis before PCA. This results in a
new expression of shape model for each landmark as follows:

pm = UT
m(cRsm + t− s̄m), (4)

where c, R ∈ R2×2 and t ∈ R2×1 represent the parameters of
scale, rotation and translation, respectively, and are used for
the global similarity transform. Using the orthonormalization
procedure described in [57], the shape model can be briefly
denoted as:

p∗ = U∗T (s− s̄), (5)

where p∗ = (p∗1, ..., p
∗
4, p1, ..., pq)

T ∈ R(4+q)×1 and U∗ =
(u∗

1, ...,u
∗
4,u1, ...,uq) ∈ R2n×(4+q) are the concatenation of

the similarity parameters p∗i and similarity bases u∗
i with above

p and U, respectively. Finally, the reconstructed landmark
shape with global rigid transformations is obtained as follows:

ŝ = s̄ + U∗U∗T (s− s̄). (6)

In our work, we use the reconstructed landmark shape to
correct the location of each predicted landmark with the
confidence in the response map less than a specific threshold.
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Fig. 5. Example results of RCENpd, RCENod and RCENgt on the 300W
fullset, which are shown in top row, middle row and bottom row, respectively.

More detail on the settings of the hyperparameters is discussed
in Section IV-C. The pseudo-code in Algorithm 1 shows the
inference process of the proposed framework including RCEN
and PDM-based shape reconstruction.

IV. EXPERIMENT

A. Experimental Setting

Datasets. To demonstrate the effectiveness of our ap-
proach for facial landmark localization on various uncon-
strained faces, we conduct the performance evaluation on three
challenging datasets including 300W [15], AFLW [16] and
COFW [17].

• 300W [15]: The 300W dataset has been widely used for
the study of facial landmark localization, and provides 68
annotated landmarks for each face. The 300W training
set contains 3, 148 images provided in AFW [12], LF-
PW [13] and HELEN [14]. The 300W test set includes
600 images released in the latest 300W competition [58],
and has the same distribution as the IBUG dataset [15].
The 300W fullset contains 689 images for testing, which
are split into the common subset with 554 images from
LFPW and HELEN, and the challenging subset with 135
images from IBUG.

• AFLW [16]: The AFLW dataset contains 24, 386 uncon-
strained faces with rich pose variations, and provides at
most 21 annotated landmarks for each face. From the
settings of the works [56], [59], the train-test partition on
AFLW is described as follows. The AFLW-Full dataset
contains 20, 000 training images and 4, 386 test images
with 19 reduced landmarks. The AFLW-Frontal dataset
consists of 1, 314 near-frontal images from the AFLW-
Full test set. The AFLW-PIFA dataset provides additional
13 landmarks for each face on the subset of AFLW, and
contains 3, 901 training images and 1, 299 test images.

• COFW [17]: The COFW dataset was proposed for the
study of occluded face alignment. It consists of 1, 852 in-
the-wild face images with different degrees of occlusion,
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Fig. 6. Comparison of CED curves on the 300W test set with 68 landmarks
(a) and 51 landmarks (b).

TABLE I
COMPARISON OF AUC (%) AND FAILURE RATE (%) ON THE 300W TEST

SET WITH 68 LANDMARKS AND 51 LANDMARKS.

Method
68 points 51 points

AUC (%) Failure rate (%) AUC (%) Failure rate (%)

Uricar et al. [60] 21.09 32.17 31.86 20.83
Cech et al. [61] 22.18 33.83 29.51 26.33

Martinez et al. [62] 37.79 16.00 45.80 11.67
Deng et al. [63] 47.52 5.50 57.46 3.83
Fan et al. [64] 48.02 14.83 57.11 14.67
DenseReg [19] 36.05 10.83 - -

DenseReg+MDM [19] 52.19 3.67 - -

RCENod 55.29 1.67 64.75 1.00
RCENgt 55.81 1.17 64.55 0.83

including 1, 345 training images and 507 test images.
In this dataset, each face is annotated with 29 facial
landmarks and the corresponding occlusion states.

Evaluation Metric. Following the common evaluation pro-
tocols in the previous works, we mainly adopt the point-to-
point Normalized Mean Error (NME) in our experiments:

NME =
1

N

N∑
i=1

‖xi − x∗
i ‖2

d
, (7)

where N denotes the number of the tested facial landmarks.
d is the normalization factor like inter-ocular distance. xi

and x∗
i are the coordinate vectors of the predicted landmark

i and the corresponding ground-truth landmark, respectively.
Moreover, the Cumulative Error Distribution (CED) curve with
the Area-Under-the-Curve (AUC) is provided to describe the
relationship between the recall and NME of test samples. The
failure rate is used to evaluate the proportion of failure samples
with a specific threshold for the maximum NME.

Implementation Details. In our experiments, we follow
the train-test partitions on the common datasets, and use the
corresponding training set to learn the landmark localization
task. Each training sample is first resized so that the shorter
side is 600 pixels [28], and then augmented with 3 scale
ratios {0.5, 1, 2}. Note that we do not adopt any spatial
transformation for the data augmentation, which has been
applied into the existing methods [34], [41], [42]. Based on
the setting of the work [29], we use 18 reference boxes
with 6 scales {16, 32, 64, 128, 256, 512} and 3 aspect ratios



1520-9210 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2019.2916455, IEEE
Transactions on Multimedia

8 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. *, NO. *, AUGUST *

TABLE II
COMPARISON OF NME (%) ON THE 300W COMMON SUBSET,
CHALLENGING SUBSET AND FULLSET WITH 68 LANDMARKS.

Method
Common

Subset
Challenging

Subset
Fullset

CDM [67] 10.10 19.54 11.94
RCPR [17] 6.18 17.26 8.35
CFAN [31] 5.50 16.78 7.69

ESR [8] 5.28 17.00 7.58
SDM [9] 5.57 15.40 7.50
ERT [68] - - 6.40
LBF [10] 4.95 11.98 6.32

CFSS [11] 4.73 9.98 5.76
TCDCN [33] 4.80 8.60 5.54
MDM [34] 4.83 10.14 5.88
RAR [69] 4.12 8.35 4.94

FARN [35] 4.23 7.53 4.88
TSR [32] 4.36 7.42 4.96
RDR [70] 5.03 8.95 5.80
CPM [71] 3.39 8.14 4.36

CPM+SBR [71] 3.28 7.58 4.10
SAN [21] 3.34 6.60 3.98

RTSM [44] 6.02 16.52 8.06
HyperFace [26] - 10.88 -
HF-ResNet [26] - 8.18 -

TSRod [32] 4.36 7.56 4.99
SANod [21] 3.41 7.55 4.24

RCENpd 3.28 6.73 3.96
RCENod 3.26 6.84 3.96
RCENgt 3.25 6.70 3.93

{0.5, 1, 2} on RPN. During the training, we set a momentum
of 0.9 and a weight decay of 5e−4, and initialize the two-
stage learning rates to 0.001 and 0.01, respectively, which
are both dropped by 0.1 each 50k iterations until the number
of total iterations is 160k. The proposed RCEN is built by
using the Caffe framework [65], and the PDM-based shape
reconstruction algorithm is implemented based on the Menpo
project [66]. The code will be made publicly available.1

B. Comparison with Existing Methods

In this subsection, we compare our approach with the
existing works, including the typical regression methods like
SDM [9], LBF [10] and RCPR [17], and data-driven DCNNs
such as CFSS [11], TCDCN [33] and MDM [34]. In addition,
several recent state-of-the-art approaches like denseReg [19],
CPM [71] and SAN [21], are also reported and discussed
in our experiments. For fair comparison, we only use the
proposed RCEN at the inference without any post-processing
step. Except for the 300W test set, which does not provide
bounding boxes for given images, we report the results of
RCENpd, RCENod and RCENgt on all the datasets by using
provided detected bounding boxes, our detected bounding
boxes and ground-truth bounding boxes, respectively.

Evaluation on 300W. We make the evaluation on the 300W
test set and fullset. Following the standard setting provided in
the latest 300W competition [58], the mean error is normalized

1https://github.com/Linxuxin/RCEN.git

TABLE III
COMPARISON OF NME (%) ON THE AFLW-FULL AND AFLW-FRONTAL

TEST SETS WITH 19 LANDMARKS.

Method AFLW-Full AFLW-Frontal

CDM [67] 5.43 3.77
RCPR [17] 3.73 2.87
SDM [9] 4.05 2.94
ERT [68] 4.35 2.75
LBF [10] 4.25 2.74

CFSS [11] 3.92 2.68
CCL [56] 2.72 2.17
TSR [32] 2.17 -

DAC-CSR [72] 2.27 1.81
CPM [71] 2.33 -

CPM+SBR [71] 2.14 -
SAN [21] 1.91 1.85

RCENpd 2.12 1.70
RCENod 2.11 1.69
RCENgt 1.78 1.62

by using the inter-ocular distance, and the failure rate is
calculated by setting the maximum NME to 0.1. Figure 6
shows the CED curve of each participant in the competition,
while the corresponding AUC and failure rate are reported
in Table I. Comparing with the previous winners [64], [63],
which show the advantages for facial landmark localization
with 68 points and 51 points, respectively, our method greatly
outperforms all the competitors in both cases. Especially,
we achieve the obvious improvements of AUC increased by
3.62%, and failure rate reduced by 2.5% in contrast to the
recent state-of-the-art method [19]. The results of RCENod

show the slightly degraded performance, which means that
our model is not sensitive to the estimated bounding boxes.
For the 300W fullset, we follow the previous works [33],
[34], [69], and adopt the same NME metric to evaluate the
performance of the proposed RCEN on the common subset,
the challenging subset and the fullset. As shown in Table II,
RCENpd shows the promising results comparing with several
popular methods using provided bounding boxes, including
a related approach [35] using structured RoI pooling and two
recent methods [71], [21] that seem to achieve nearly saturated
performance. We also report several recent works [44], [26],
[32], [21] for joint face detection and alignment, which use
a cascaded region proposal method [26] or an external face
detector [44], [32], [21] like Faster R-CNN [44]. Comparing to
the reduced performance of SANod [21] using its own detected
bounding boxes, RCENod achieves the similar NMEs on all the
sets as RCENpd. By using the ground-truth bounding boxes,
RCENgt outperforms the both methods with a slight margin.
Figure 5 shows the example results of RCENpd, RCENod and
RCENgt on the 300W fullset. More example results on 300W
are provided in Figure 11.

Evaluation on AFLW. We conduct the experiments on
the test sets of AFLW-Full, AFLW-Frontal and AFLW-PIFA
to validate the effectiveness of RCEN on face images with
various challenging poses. To be consistent with the previous
settings [59], [56], [41], the mean error is normalized by the
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TABLE IV
COMPARISON OF NME (%) ON THE AFLW-PIFA TEST SET WITH 21

LANDMARKS AND 34 LANDMARKS.

Method 21 points (vis.) 34 points (vis.)

CDM [67] 8.59 -
RCPR [17] 7.15 6.26
ERT [68] 7.03 -
SDM [9] 6.96 -
LBF [10] 7.06 -

CFSS [11] 6.75 -
PIFA [59] 6.52 8.04

PAWF [73] - 4.72
CCL [56] 5.81 -

CALE [37] 2.63 2.96
KEPLER [74] 2.98 -
PIFA-S [75] - 4.45
DeFA [76] - 3.86
ECT [41] 3.21 3.36

RCENpd 2.72 2.96
RCENod 2.68 2.96
RCENgt 2.56 2.78

square root of the bounding box size, and the NME on AFLW-
PIFA is calculated only considering the visible landmarks.
Table III shows the results of several existing works on AFLW-
Full and AFLW-Frontal, including two recent state-of-the-art
methods [21], [72], in which the former uses the cropped
face images based on ground-truth bounding boxes, and the
latter receives the full images with newly estimated bounding
boxes. Corresponding to our results, RCENgt achieves the new
state-of-the-art performance with 1.78% and 1.62% NMEs on
the both test sets, respectively, while RCENpd and RCENod

are competitive with the work [21], and better than the
method [72]. From Table IV, CALE [37] has outperformed
the previous methods [56], [73], [59] by a large margin on
the AFLW-PIFA test set. Even for the recently proposed
approaches [41], [76], [75], [74], the performance seems to
be difficult for further improvement. By contrast, the results
of our method are encouraging with the slightly reduced NME
by using the ground-truth bounding boxes. Moreover, the
performances of RCENpd and RCENod are still competitive,
and not dramatically degraded due to the deviation of the
detected bounding boxes. Figure 12 shows the example results
of RCENod on AFLW.

Evaluation on COFW. To demonstrate the robustness of
our method on face images with heavy occlusion, we compare
RCEN with the existing methods on the COFW test set.
Similar to the setting on 300W, we normalize the mean error
by using the inter-ocular distance, and adopt the failure rate
with the threshold of 0.1 for the maximum NME. As shown
in Table V, several recent methods [77], [78], [79] have been
proposed to handle the occluded face alignment, including the
state-of-the-art work [78] that almost achieves the human-level
performance. In RCEN, we specially design a new block to
enhance global context for the inference of occluded facial
landmarks. The results of RCENpd and RCENod significantly
outperform all the reported results. By exploiting the ground-
truth bounding boxes, our method achieves further improve-

TABLE V
COMPARISON OF NME (%) AND FAILURE RATE (%) ON THE COFW TEST

SET WITH 29 LANDMARKS.

Method NME (%) Failure Rate (%)

Human 5.60 -
CDM [67] 13.67 -
ESR [8] 11.20 -
SDM [9] 11.14 -

RCPR [17] 8.50 20.00
OC [80] 7.46 13.24
RPP [81] 7.52 16.20
CCR [82] 7.03 10.90

DRDA [77] 6.46 6.00
Wu et al. [78] 5.93 -
TCDCN [33] 8.05 -

RAR [69] 6.03 4.14
SimLPD [79] 6.40 -

DAC-CSR [72] 6.03 4.73
ECT [41] 5.98 4.54

RCENpd 4.44 1.78
RCENod 4.44 2.56
RCENgt 4.27 1.38

ment of performance and gets 4.27% NME and 1.38% failure
rate. The example results of RCENod on COFW are shown in
Figure 13.

Time Complexity. In the experiments, our method is run
on a NVIDIA Tesla K40 GPU and Intel Xeon 3.00GHz
CPU. Given a 256× 256 face image as input, RCENod takes
about 0.2s with the calculation cost of detection module and
landmark localization module. By using the given bounding
boxes, RCENpd and RCENgt require about 0.08s to run.

C. Component Analysis

The proposed RCEN consists of several crucial components
including the built-in detection module and three types of con-
text enhanced block within the landmark localization module.
To validate the effectiveness of these components, we conduct
the extended experiments on the WIDER FACE and 300W
datasets. In addition, we perform the evaluation of PDM-based
shape reconstruction lied on the post-processing step of RCEN
by using the 300W and COFW datasets.

Analysis on Detection Module. In contrast to the popular
face alignment methods, a crucial difference is that our method
exploits a build-in detection module to catch faces, instead of
using an off-the-shelf face detector. By following the training
setting on WIDER FACE, we compare the proposed RCEN
with the recent state-of-the-art face detectors [83], [84], [85],
[86], [87], [88], [89] on the WIDER FACE validation and
test sets. As shown in Figure 7, our detection module gets
competitive performance especially on the easy and medium
test sets, and outperforms two related R-CNN variants (CMS-
RCNN [83] and Face R-CNN [86]). Our result on the hard
set is relatively weak since the detection of tiny face is not
our main concern in this paper. In contrast to another work
(Multitask Cascade CNN [25]) for joint face detection and
alignment, our method achieves significant improvement of
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Fig. 7. Comparison between the proposed RCEN and other methods on WIDER FACE validation and test sets.
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Fig. 8. Variation of recall (a) and NME (%) (b) with different IoU thresholds
on the 300W test set, common subset, challenging subset and fullset.

mAP increased by 8.5%, 9.8% and 22.2% on the easy, medium
and hard test sets, respectively.

To further analyze the effect of the detected face regions
for the landmark localization performance in RCEN, we
evaluate the recall of the detected bounding boxes with the
corresponding NME by setting a IoU threshold that deter-
mines the minimum IoU overlap of positive samples with an
associated ground-truth bounding box. Figure 8 (a) and (b)
show the variation of the recall and NME on 300W with
different IoU thresholds, respectively. We can find that the
recall increases rapidly with the decreasing threshold, and is
saturated when the threshold is 0.5. By contrast, the change
of the NME is more stable than that of the recall even for the
challenging subset where the maximum increase of the NME

is about 1%. It means that the performance of the landmark
localization module is less sensitive to the location of the
estimated bounding boxes, and does not decline sharply even if
considering more samples with no well-matched IoU overlaps.
For the experiments in Section IV-B, we evaluate all the test
samples from each common dataset with a 100% recall by
setting a 0.01 IoU threshold.

Analysis on Context Enhanced Block. In the landmark
localization module, the context enhanced blocks are de-
signed to capture different context information. To validate
the effectiveness of these blocks for improving the landmark
localization performance, we compare the proposed RCEN
with its three variants by adopting the same setting on the
300W dataset. RCEN-GCE is a reduced RCEN without the
use of the global context enhanced block. RCEN-GCE-MsCF
is built by removing all the multi-scale context fusion blocks
from RCEN-GCE. RCEN-GCE-MsCF-MlCF is a simplest
variant of RCEN without using any context enhanced block.
As shown in Figure 9, We can find that the performance of
RCEN-GCE-MsCF-MlCF is quite poor when the landmark
localization module only receives the single feature maps
from the last convolution stack. By introducing the multi-level
context fusion block, the NME and failure rate of RCEN-GCE-
MsCF are both reduced by a large margin. As an example,
the both results on the challenging subset are decreased from
12.62% and 51.85% to 7.39% and 14.81%, respectively. By
exploiting the multi-scale context and the global context in this
network, the performance of RCEN is further improved with
the new state-of-the-art results on all the test sets of 300W.
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Fig. 9. Comparison of NME (%) (a) and failure rate (%) (b) among RCEN
and its three variants on the 300W test set, common subset, challenging subset
and fullset.

Analysis on PDM-based Shape Reconstruction. As de-
scribed in Algorithm 1, the proposed shape reconstruction
algorithm is used to refine the estimated landmark outliers
from RCEN. The algorithm involves two key hyperparameters,
i.e., confidence threshold and number of active components,
where the former is used to determine the maximum con-
fidence of the refined landmarks, and the latter denotes the
length of the shape parameter vector applied into the shape
reconstruction. To estimate the values of them for the inference
on a specific common dataset, we first train the PCA model
within the algorithm by using the corresponding training set,
and then determine the candidate ones by adopting a grid
search strategy. As shown in Figure 10, each scattered dot
represents a pair of available hyperparameter values with
different degrees of NME reduction on the 300W and COFW
training sets. Finally, we apply the hyperparameter pair with
the minimum NME into the shape reconstruction algorithm on
the corresponding test sets. From Figure 10, we can find that
the optimal confidence threshold on COFW tends to a higher
value than that on 300W, which means that the landmark
outliers are more easily induced by the occluded face samples.
Table VI reports the performance of RCEN with or without the
shape reconstruction algorithm, as well as the corresponding
hyperparameter settings on the 300W and COFW test sets. We
can see that the NMEs are further reduced after refining the
landmark outliers, especially on the 300W challenging subset
and the COFW test set.
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Fig. 10. Variation of NME (%) with different confidence thresholds and
numbers of active components on the 300W (a) and COFW (b) training sets.
The colors of scattered dots denote the NME values.

TABLE VI
COMPARISON OF NME (%) BETWEEN RCENS WITH OR WITHOUT

PDM-BASED SHAPE RECONSTRUCTION (PSR) ON THE 300W TEST SET,
COMMON SUBSET, CHALLENGING SUBSET AND FULLSET, AND THE

COFW TEST SET.

Test Set
Confidence
Threshold

Number of Active
Components

w/o
PSR (%)

w/
PSR (%)

300W 0.65 30 4.481 4.442
Common Subset 0.65 30 3.251 3.227
Challenge Subset 0.65 30 6.695 6.626

Fullset 0.65 30 3.925 3.893
COFW 0.95 18 4.265 4.174

V. CONCLUSION

In this paper, we propose a novel convolutional network
called RCEN for simultaneously detecting multi-face land-
marks on a given scene image. Instead of cascading multiple
independent models, we aim at establishing an end-to-end
joint multi-task model by sharing and transforming feature
representations between the task-specific modules. Compared
to the isolated face alignment algorithm, a key advantage
is that our method does not rely on the well-cropped face
images as input, and is insensitive to the estimated bounding
boxes from the build-in detection module. With the well-
designed context enhanced blocks, the proposed RCEN signif-
icantly outperforms recent state-of-the-art methods on several
challenging datasets including 300W, AFLW, and COFW. To
reduce the performance impact of estimated landmark outliers,
a PDM-based shape reconstruction algorithm is presented as
the post-processing step of RCEN. In future work, we will
extend our model further and validate its effectiveness on
other computer vision problems such as multiple human pose
estimation and instance segmentation.
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