
380 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

WiderPerson: A Diverse Dataset for Dense Pedestrian
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Abstract—Pedestrian detection has achieved significant progress
with the availability of existing benchmark datasets. However,
there is a gap in the diversity and density between real world
requirements and current pedestrian detection benchmarks: first,
most existing datasets are taken from a vehicle driving through the
regular traffic scenario, usually leading to insufficient diversity;
second, crowd scenarios with highly occluded pedestrians are still
underrepresented, resulting in low density. To narrow this gap
and facilitate future pedestrian detection research, we introduce a
large and diverse dataset named WiderPerson for dense pedestrian
detection in the wild. This dataset involves five types of annotations
in a wide range of scenarios, no longer limited to the traffic scenario.
There are a total of 13 382 images with 399 786 annotations,
that is, 29.87 annotations per image, which means this dataset
contains dense pedestrians with various kinds of occlusions. Hence,
pedestrians in the proposed dataset are extremely challenging
due to large variations in the scenario and occlusion, which is
suitable to evaluate pedestrian detectors in the wild. We introduce
an improved Faster R-CNN and the vanilla RetinaNet to serve
as baselines for the new pedestrian detection benchmark. Several
experiments are conducted on previous datasets including Caltech-
USA and CityPersons to analyze the generalization capabilities of
the proposed dataset, and we achieve state-of-the-art performances
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on these previous datasets without bells and whistles. Finally, we
analyze common failure cases and find the classification ability
of pedestrian detector needs to be improved to reduce false
alarm and misdetection rates. The proposed dataset is available
at http://www.cbsr.ia.ac.cn/users/sfzhang/WiderPerson.

Index Terms—Pedestrian detection, dataset, rich diversity, high
density.

I. INTRODUCTION

P EDESTRIAN detection is a long-standing problem in com-
puter vision and pattern recognition with extensive appli-

cations including security and surveillance, mobile robotics, au-
tonomous driving, and crowd sourcing, to name a few. The ac-
curacy of pedestrian detection systems has a direct impact on
these tasks, hence the success of pedestrian detection is of cru-
cial importance. Given an arbitrary image, the goal of pedestrian
detection is to determine whether or not there are any pedestrians
in the image, and if present, return the image location and extent
of each pedestrian. While this appears as an effortless task for
human, it is a very difficult task for computers. The challenges
associated with pedestrian detection can be attributed to varia-
tions in pose, scale and occlusion, which need to be addressed
while building pedestrian detection algorithms.

With the remarkable progress over the past few decades,
pedestrian detection has been successfully applied in some prac-
tical application systems under restricted scenarios. The success
of these systems can be attributed to two key steps: (1) advance-
ments in the field of deep Convolutional Neural Network (CNN)
which has had a direct impact on many computer vision tasks in-
cluding pedestrian detection; (2) dataset collection efforts led by
different researchers in the community. Furthermore, improve-
ments in detection algorithms have almost always been followed
by the publication of more challenging datasets and vice versa.
Such synchronous advancement in both steps has led to an even
more rapid progress in the field. In terms of pedestrian detec-
tion, publicly available benchmark datasets such as Caltech-
USA [1], KITTI [2] and CityPersons [3] have contributed to
spurring interest and progress in pedestrian detection research.
Coupled with the development and blooming of deep learning,
modern pedestrian detectors [4]–[8] have achieved remarkable
performance.

Although performance has been significantly improved, it’s
still difficult to assess for real world, since compared with crowd-
counting datasets [9], [10] designed in the crowded condition,
there is a gap in the diversity and density between current existing
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TABLE I
COMPARISON OF PEDESTRIAN DETECTION DATASETS (Training SUBSET

ONLY). ‘-’ MEANS THIS TERM IS UNLIMITED AND CAN NOT BE COUNTED

pedestrian detection benchmarks and real world requirements.
On the one hand, most of existing datasets are collected via
a vehicle-mounted camera through the regular traffic scenario.
This fixed scenario significantly reduces the richness of the fore-
ground and background, leading to low diversity. Specifically,
only pedestrians and backgrounds on the road are taken into
consideration while the other scenarios are severely under rep-
resented. Thus, diversity in pedestrian and background appear-
ances is limited. On the other hand, crowd scenarios with highly
occluded pedestrians are still under-represented. As shown in
Table I, the Caltech-USA and KITTI datasets have less than one
person per image, while the CityPersons dataset has ∼7 persons
per image. Even worse, protocols of these datasets allow anno-
tators to ignore the regions with a large number of persons, since
exhaustively annotating crowd regions is incredibly difficult and
time consuming, resulting in low density and insufficient occlu-
sions cases. To sum up, current pedestrian detection datasets
typically contain a few thousand pedestrians with limited vari-
ations in diversity and density. These limitations have partially
contributed to the failure of some algorithms in coping with
heavy occlusion and atypical scenario. Therefore, more chal-
lenging datasets similar to the real world are needed to trigger
progress and inspire novel ideas.

To move forward the field of pedestrian detection, we in-
troduce a diverse and dense pedestrian detection dataset called
WiderPerson. It consists of 13,382 images with 399,786 an-
notations, i.e., 29.87 annotations per image, varying largely in
scenario and occlusion, as shown in Fig. 1. Besides, the an-
notations have five fine-grained labels, i.e., pedestrians, riders,
partially-visible persons, crowd, and ignore regions. These high
quality annotations provide a rich diverse dataset and enable
new experiments both for training better models, and as new
test benchmark. We split the proposed WiderPerson dataset into
three subsets (training, validation, and testing sets). Annota-
tions of training and validation will be public, and an online
benchmark will be set-up. We show an example of using the
proposed WiderPerson dataset through proposing an improved
Faster R-CNN [11], which consists of finer feature map, ignore
region and tiny pedestrian handling, Region of Interest (RoI) fea-
ture enhancing and dynamic sample strategy to deal with large
density and diversity variations. The cross-dataset generaliza-
tion results of the proposed WiderPerson dataset show that it
is an effective training source for pedestrian detection and we
achieve state-of-the-art performance on existing Caltech-USA
and CityPersons datasets.

Fig. 1. The diversity and density of the newly introduced WiderPerson dataset.
It can bridge the gap between real world requirements and pedestrian detection
benchmarks. For visualization, we use bounding boxes of different colors for
pedestrians (Cyan), riders (Red), partially-visible persons (Green), crowd (Yel-
low) and ignore regions (Blue).

For clarity, the main contributions of this work can be sum-
marized as three-fold:
� We propose the WiderPerson dataset, which provides a

large number of highly diverse and dense bounding box
annotations for pedestrian detection.

� We build an improved Faster R-CNN to show an example of
using WiderPerson, which consists of some improvements
to deal with large density and diversity variations.

� We prove the generalization capabilities of detectors
trained with the new dataset and achieve state-of-the-art
performance on Caltech-USA and CityPersons datasets.

The rest of the paper is organized as follows. Section II re-
views the related work. Description of the WiderPerson dataset
is presented in Section III. Section IV introduces our proposed
baseline detector and Section V shows the experimental results.
Section VI concludes the paper.

II. RELATED WORK

A. Dataset

In the last decade, several datasets have been created for
pedestrian detection training and evaluation. The GM-ATCI
dataset [12] is collected using a vehicle-mounted standard auto-
motive rear-view display camera for evaluating rear-view pedes-
trian detection. The INRIA dataset [13] is one of the most pop-
ular static pedestrian detection datasets. The USC dataset [14]
consists of a number of fairly small pedestrian datasets taken

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on February 25,2021 at 08:45:32 UTC from IEEE Xplore.  Restrictions apply. 



382 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

largely from surveillance video. The ETH dataset [15] is
captured from a stereo rig mounted on a stroller in the urban. The
CVC-ADAS dataset [16] contains pedestrian videos acquired
on-board, virtual-world pedestrians (with part annotations) and
occluded pedestrians. The NICTA dataset [17] is a large scale
urban dataset collected in multiple cities and countries, it has
no motion and tracking information but significant number of
unique pedestrians. The Daimler dataset [18] is captured in an
urban setting and has tracking information and a large number of
labelled bounding boxes. The TUD-Brussels dataset [19] con-
tains image pairs recorded in a crowded urban setting with an
onboard camera. These datasets represent early efforts to collect
pedestrian datasets.

Althought these early datasets have contributed to spurring
interest and progress of pedestrian detection, however, as algo-
rithm performance improves, they are replaced by the larger
and richer datasets. The Tsinghua-Daimler Cyclist (TDC)
dataset [20] focuses on cyclists recorded from a vehicle-mounted
stereo vision camera, containing a large number of cyclists
varying widely in appearance, pose, scale, occlusion and view-
point. In [21], a multi-spectral dataset for pedestrian detection
is introduced, combining RGB and infrared modalities. The
Caltech-USA [1] dataset consists of approximately 10 hours of
640 × 480 30 Hz video taken from a vehicle driving through reg-
ular traffic in an urban environment, which has been extended
by [22] with corrected annotations. The KITTI [2] dataset fo-
cuses autonomous driving and is collected via a standard station
wagon with two high-resolution color and grayscale video cam-
eras, around the mid-size city of Karlsruhe, in rural areas and
on highways, up to 15 cars and 30 pedestrians are visible per
image. The CityPersons [3] dataset is recorded by a car travers-
ing 27 different cities and provides high quality bounding boxes
with larger portions of occluded persons. The EuroCity Persons
dataset [23] provides a large number of highly diverse, accurate
and detailed annotations of pedestrians, cyclists and other riders
in 31 cities of 12 European countries.

Despite the prevalence of these datasets, they all suffer a prob-
lem of from low diversity. Most of existing datasets are col-
lected via a vehicle-mounted camera through the regular traffic
scenario. The diversity in pedestrian and background appear-
ances is limited. Another weakness of both datasets is that the
crowd scenarios are significantly under represented, resulting in
insufficient occlusions cases. The paper aims at solving these
two problems via proposing a diverse and dense pedestrian de-
tection dataset, which can narrow the gap in the diversity and
density between real world requirements and current pedestrian
detection benchmarks to better evaluate detectors in the wild.
Besides, the proposed dataset is also very useful for training a
re-detector for dealing with tracking loss for pedestrian tracking
[24], [25].

B. Method

Generic Object Detection: Early generic object detection
methods rely on the sliding window paradigm based on the
hand-crafted features and classifiers to find the objects of in-
terest. In recent years, with the advent of deep Convolutional

Neural Network (CNN), a new generation of more effective ob-
ject detection methods based on CNN significantly improve the
state-of-the-art performances, which can be roughly divided into
two categories, i.e., the one-stage approach and the two-stage
approach. The one-stage approach [26], [27] directly predicts
object class label and regresses object bounding box based on
the pre-tiled anchor boxes using deep CNN. The main advantage
of the one-stage approach is its high computational efficiency. In
contrast to the one-stage approach, the two-stage approach [11],
[28] always achieves top accuracy on several benchmarks, which
first generates a pool of object proposals by a separated proposal
generator, and then predicts the class label and accurate location
and size of each proposal.

Pedestrian Detection: Even as one of the long-standing prob-
lems in computer vision field with an extensive literature, pedes-
trian detection still receives considerable interests with a wide
range of applications. A common paradigm [29]–[31] to deal
with this problem is to train a pedestrian detector that exhaus-
tively operates on the sub-images across all locations and scales.
Dalal and Triggs [13] design the Histograms of Oriented Gra-
dient (HOG) descriptors and Support Vector Machine (SVM)
classifier for human detection. Dollár et al. [32] demonstrate
that using features from multiple channels can greatly improve
the performance. Zhang et al. [33] provide a systematic analysis
for the filtered channel features, and find that with the proper fil-
ter bank, filtered channel features can reach top detection qual-
ity. Paisitkriangkrai et al. [34] design a new feature built on
low-level features and spatial pooling, and directly optimize the
partial area under the Receiver Operating Characteristic (ROC)
curve for better performance.

Recently, CNN-based detectors [35]–[38] have become a pre-
dominating trend in the field of pedestrian detection. Sermanet
et al. [35] present an unsupervised method using the convo-
lutional sparse coding to pre-train CNN for pedestrian detec-
tion. In [39], a complexity-aware cascaded detector is proposed
for an optimal trade-off between accuracy and speed. Angelova
et al. [40] combine the ideas of fast cascade and a deep network to
detect pedestrian. Yang et al. [41] use scale-dependent pooling
and layer-wise cascaded rejection classifiers to detect objects
efficiently. Zhang et al. [42] present an effective pipeline for
pedestrian detection via extracting self-learned features from the
Region Proposal Network (RPN) [11] followed by a boosted de-
cision forest. Cai et al. [43] propose an architecture which uses
different levels of features to detect persons at various scales.
Mao et al. [44] present a multi-task network architecture to
jointly learn pedestrian detection with the given extra features.
Li et al. [7] use multiple built-in sub-networks to adaptively de-
tect pedestrians across scales. Brazil et al. [38] exploit weakly
annotated bounding boxes via a segmentation infusion network
to achieve considerable performance gains.

Occlusion is one of the most significant challenges in compute
vision, especially for pedestrian detection, which increases the
difficulty in pedestrian localization. Several methods [45]–[49]
use part-based model to describe the pedestrian in occlusion
handling, which learn a series of part detectors and design some
mechanisms to fuse the part detection results to localize par-
tially occluded pedestrians. Besides the part-based model, Leibe
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et al. [50] propose an implicit shape model to generate a set of
pedestrian hypotheses that are further refined to obtain the vis-
ible regions. Wang et al. [51] divide the template of pedestrian
into a set of blocks and conduct occlusion reasoning by estimat-
ing the visibility status of each block. Ouyang et al. [52] exploit
multi-pedestrian detectors to aid single-pedestrian detectors to
handle partial occlusions, especially when the pedestrians gather
together and occlude each other in real-world scenarios. In [53],
a set of occlusion patterns of pedestrians are discovered to learn
a mixture of occlusion-specific detectors. Zhou et al. [54] pro-
pose to jointly learn part detectors to exploit part correlations
and reduce the computational cost. Wang et al. [5] introduce a
new bounding box regression loss to detect pedestrians in crowd
scenarios.

III. PROPOSED WIDERPERSON DATASET

In this section, we present our WiderPerson dataset from as-
pects of collection process, annotation tool, annotation method,
various statistical information and benchmarking.

A. Data Collection

For the diversity of our dataset, we crawl images from multi-
ple image search engines ranging from Google, Bing, and Baidu.
Combined with specially-designed keywords, one of the promi-
nent advantages of using different image search engines together
is the collected images possess diverse features in cities, events,
and scenarios. We design more than 50 keywords (e.g., pedes-
trian, cyclist, walking, running, marathon, square dance and
group photo) during the crawling process and obtain ∼50,000
images as our candidate images. To prevent the duplication of
images, we leverage a simple but powerful mechanism, the
pHash [55], along with the union find, for the removal of the
repetitions. Moreover, images with sparse distribution of people
are filtered out to keep the difficulties of our dataset. Finally, we
have 13,382 images remained, and they are randomly split into
training, validation and testing subsets with 8,000, 1,000 and
4,382 images, respectively.

B. Annotation Tool

We design a new annotation tool whose Graphical User Inter-
face (GUI) is illustrated in Fig. 2. It is written using JavaScript
and built with a very responsive design. The list of images that
need to be marked is displayed on the upper right side. For the
selected image to be annotated, the tool displays five kinds of
annotation examples on the left side to help annotators to mark.
These five different types of annotations are labelled with dif-
ferent colors to better distinguish. All the labelled annotations
are shown on the lower right side and annotators can select any
labelled annotation to display and correct. To complete the an-
notation, the user shall next adjust the position of the bounding
boxes. For this purpose, the keyboard arrows shall be used. More
precisely, the left, right, up and down keys should be used in or-
der to shift the annotations on the image. To help annotators,
there are two buttons (display and hide labels) at the top used to
make labelled annotations optionally visible while annotating. In

Fig. 2. Graphical User Interface (GUI) of our annotation tool.

Fig. 3. Illustration of bounding box annotations for pedestrians and riders. For
each target, the top of the head and middle of the feet is drawn by the annotator.
An aligned bounding box is automatically generated using the fixed aspect ratio
(0.41).

addition, a zooming feature at the top can be used to zooming-in
the corresponding image and annotations. This is implemented
in order to make it easier for the annotators to obtain more precise
locations of the annotations. After getting used to the annota-
tion process, annotators become more and more precise on these
steps, which significantly reduces the time required to annotate
as fewer adjustments are required. Besides, to ensure that profit
is not prioritized over the accuracy and the precision of the anno-
tations, we are highly involved in the process and all annotators
must pass the strict annotation testing.

C. Image Annotation

Our Annotations are finely classified into five categories:
pedestrians, riders, partially-visible persons, crowd and ignore
regions. The annotation process contains the two steps:

1. Annotators are asked to thoroughly search across the
whole image for individuals, and annotate them for us-
ing the similar protocol from [3]. For pedestrians and rid-
ers (shown in Fig. 3(a)), we generate a bounding box by
drawing a line across one’s head and the middle point be-
tween feet, as shown in Fig. 3(b). A bounding box aligned
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TABLE II
STATISTICS OF ANNOTATIONS ON WIDERPERSON DATASET

to the center of the line is then generated with an as-
pect ratio of 0.41 (defined as w/h), as shown in Fig. 3(c).
For partially-visible persons, including individuals that are
heavily-occluded or with unusual poses and viewpoints,
we mark them using bounding boxes with unconstrained
aspect ratios. The crowd in our dataset plays another criti-
cal role contributing to the variances and difficulties. Sim-
ilar to the partially-visible persons, we also annotate a
group of people using a tightly bounded rectangle. Fi-
nally, we annotate regions containing fake human, for in-
stance, human on the posters, reflections, mannequin and
statues, etc.

2. After the above-mentioned annotating process, to ensure
the quality of the labels, we perform three-fold cross-
validation to check the annotations strictly. Each image is
intuitively marked as either correct or erroneous by three
different annotators, and if it marked as erroneous by more
than half of the annotators, it would be re-annotated un-
til it passes the check. Fig. 1 shows some exemplary final
annotations.

D. Dataset Statistic

Capacity: The number of bounding box annotations provided
by our WiderPerson dataset is shown in table II, which illustrates
the capacity of WiderPerson dataset. In a total of 13,382 images,
there are ∼386 k person and ∼13 k ignore region annotations
in the WiderPerson dataset. The number of annotations is more
than 10× boosted compared with previous challenging pedes-
trian detection dataset like CityPersons. The total number of per-
sons is also noticeably larger than the others. We randomly select
8000/1000/4382 images as training/validation/testing subsets.
Following the principle in WIDER FACE [56], we define three
levels of difficulty: ‘Easy’ (≥100 pixels), ‘Medium’ (≥50 pix-
els), ‘Hard’ (≥20 pixels) according to the physical height of
ground-truth bounding boxes. As shown in the Fig. 4, we utilize
EdgeBox [57] to evaluate their detection rates with different
number of proposals. The average recall rates for these three
levels are 81.5%, 73.6% and 63.4% with 10,000 proposal per
image.

Scale: To analyse the scale characteristic across different
datasets, we use the probability density function (PDF) to spec-
ify the probability of scale falling within a particular range of
values, which can specify the distribution of scales. To this end,
we group the persons by their image size (height in pixels) into
some scale bins. As can be observed from Fig. 5, Caltech-USA
and CityPersons have a limited scale distribution, most of their
annotations are between 30 ∼ 100 pixels in height. In contrast,

Fig. 4. Recall rate with different number of proposals. Proposals are generated
by using Edgebox [57]. Lower recall rate implies higher difficulty. We show
histograms of detection rate over the number of proposal for different subsets.

Fig. 5. Scale distribution of different dataset. We use the probability density
function (PDF) to specify the probability of scale falling within a particular
range of values.

TABLE III
DENSITY COMPARISON BETWEEN WIDELY USED PEDESTRIAN DETECTION

DATASETS. IT DEMONSTRATES THE NUMBER AND PROPORTION OF IMAGES

THAT CONTAIN ≥ # PERSONS IN DIFFERENT DATASETS

our WiderPerson dataset covers a much wider range of scale and
the distribution of persons at all scales is relatively uniform.

Density: In terms of density, on average there are ∼28.87
persons per image in WiderPerson dataset, as shown in the
fourth line of Table II. We also report the density from the ex-
isting datasets in Table III. Obviously, WiderPerson dataset is
of much higher crowdness compared with all previous datasets.
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Fig. 6. The location distribution of pedestrians on the image. Pedestrians on the Caltech-USA and CityPersons dataset are distributed in a narrow band across
the center of the image, while WiderPerson has an uniform location distribution.

Caltech-USA suffers from extremely low-density, for that on av-
erage there is only∼1 person per image. The number in CityPer-
sons reaches∼7, a significant boost while still not dense enough.
Both of them are insufficient to serve as an ideal benchmark for
the challenging crowd scenes. Thanks to the pre-filtering and an-
notation protocol of our dataset, WiderPerson can reach a much
better density. As shown in Table II, we notice the density of
persons are consistent across training/validation/testing subsets.

Diversity: Diversity is an important factor of a dataset. We
compare the diversity of Caltech-USA, CityPersons and Wider-
Person in Table I. Since CityPersons testing set annotations
are not publicly available, we only consider the training sub-
set for a fair comparison. The Caltech-USA and KITTI datasets
are recorded in one city at one season, and the CityPersons
dataset is recorded across 18 cities, 3 countries and seasons,
while our WiderPerson dataset has no limitations on these con-
ditions. WiderPerson contains person in a wide range of scenar-
ios, while Caltech-USA and CityPersons are all recorded by a
car traversing on streets. In order to visualize the diversity of
annotations on the different datasets, we count the location dis-
tribution of persons, i.e., iterating over all person annotations, for
each location, if it is inside one annotation, then its count plus 1.
The images of Caltech and CityPersons have a fixed resolution
(640 × 480 and 2048 × 1024, respectively), while our dataset
varies in size, so we resize all images into the same resolution
(1400 × 800) to count the location distribution of persons. Fig. 6
shows the location distribution of persons for different dataset in
the way of heat map. We can see that persons on the Caltech-USA
and CityPersons dataset are distributed in a narrow band across
the center of the image, i.e., persons are concentrated on two
sides of the road and mostly appear at the right side, since their
images are collected by a biased data collection method that
the car drives under the right-handed traffic condition. In con-
trast, our WiderPerson dataset has a uniform location distribu-
tion and persons appear in any position except the upper part
(i.e., the sky).

Also, the number of identical persons is another important
evidence of diversity. As reported in the fifth line in Table I, the
number of identical persons amounts up to∼ 236k in our Wider-
Person dataset. In contrast, the Caltech-USA dataset only con-
tains∼ 1, 300 unique pedestrians, since images in Caltech-USA
are not sparsely sampled, resulting in less amount of identical
persons. While CityPersons frames are sampled very sparsely

Fig. 7. Fine-grained person categories on WiderPerson.

and each person is considered as unique. Like CityPersons, each
person on our dataset can be considered as unique, but one
more order of magnitude. Besides, WiderPerson also provides
fine-grained labels for persons. As shown in Fig. 7, pedestrians
are the majority (64.8%). Partially-visible persons account for
29.9% since our dataset is dense. Although riders only occupy
0.6%, the absolute numbers are still considerable, as we have a
large pool of ∼ 236k persons.

Occlusion: Occlusion is another important factor for evaluat-
ing the pedestrian detection performance. There are two types
of occlusion: inter-class occlusion, which occurs when a per-
son is occluded by stuff or objects from other categories; and
intra-class occlusion (also referred to as crowd occlusion), which
occurs when a person is occluded by other persons. As described
in [5], the intra-class occlusion is a more challenging issue than
the inter-class occlusion. Lots of works have focused on the
former problem and made great progress. However, the crowd
occlusion has not been well researched and solved. On the one
hand, it is difficult because of the problem itself. On the other
hand, there is no suitable dataset. Therefore, we introduce this
diversity and dense pedestrian detection dataset. To demonstrate
its degree of crowd occlusion, we provide statistical information
on pair-wise occlusion. For each image, we count the number of
person pairs with different intersection over union (IoU) thresh-
old. The results are shown in Table IV . In average, few person
pairs with an IoU threshold of 0.3 are included in Caltech-USA.
For CityPersons dataset, the number is less than one pair per
image. However, the number is 9.21 for WiderPerson. Moreover,
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TABLE IV
COMPARISON OF PAIR-WISE OVERLAP BETWEEN TWO PERSON INSTANCES

there are averagely 2.15 pairs whose IoU is greater than 0.5 in
the WiderPerson dataset. These data can demonstrate that vari-
ous occlusion levels are well-represented in WiderPerson, espe-
cially heavily occluded cases, while they can be hardly found in
previous datasets.

E. Benchmarking

With the publication of this paper, we will create a website
for WiderPerson dataset, where its annotations for the train-
ing and validation subsets are made freely available to aca-
demic and non-profit organizations for non-commercial, scien-
tific use. There is also an evaluation instruction on the web-
site for researchers to evaluate the performance of their detec-
tors over the held-out testing annotations. A leaderboard will
be maintained and results are tallied online, either by name or
anonymous.

We follow the same evaluation metric as used for Caltech-
USA [1] and CityPersons [3], denoted as MR, which stands
for the average log miss rate over false positives per-image
ranging in

[
10−2, 100

]
. MR is a suitable indicator for the al-

gorithms applied in the real world applications. When evalu-
ating pedestrian detection performance, riders/partially-visible
persons/crowd/ignore regions are ignored, which means that
those annotations are not considered as false negatives and de-
tections matching with those annotations are not counted as false
positives.

IV. PROVIDED BASELINE METHOD

Before delving into our new dataset, we first build two strong
baseline detectors as a tool for our experiment analyses based
on Faster R-CNN [11] and RetinaNet [58], which are two repre-
sentative detectors from the two-stage and one-stage approach,
respectively. We aim to find a straightforward architecture to
provide good performance on WiderPerson.

A. Improved Faster R-CNN

Faster R-CNN is masterpieces of the detection framework for
general object detection and has dominated the field of object
detection in recent years. It essentially consists of two compo-
nents: a fully convolutional Region Proposal Network (RPN) for
proposing candidate regions which likely contain objects, fol-
lowed by a downstream Fast R-CNN network to classify a region
of image into objects (and background) and refine the bound-
aries of those regions. Although competitive performance has

been achieved on general object detection task, it under-performs
on the pedestrian detection task (as reported in [42]). The rea-
son behind its poor performance on pedestrian detection is
that it fails to handle heavily occluded and dense pedestrians,
which are dominant on our new dataset. In this work, we pro-
pose some improvements to extend the Faster RCNN architec-
ture for occluded and dense pedestrian detection. Our improved
Faster R-CNN is based on VGG-16 [59] and ResNet-50 [60] as
they are very common in pedestrian detection [3], [42], [44].
We use the same anchor setting from [3], i.e., 11 different
anchor-box scales and 1 aspect ratio (w/h = 0.41) are used to
capture objects across all sizes. Moreover, some improvements
are proposed to boost the performance on pedestrian detection as
follows.

Finer Feature Map: The vanilla Faster R-CNN uses a coarse
feature map as the detection layer, i.e., the last conv layer in
the fifth block with stride of 16 pixels. Having such a coarse
stride is harmful to small pedestrian detection, since it reduces
the chances of having a high score over pedestrian and forces
the network to handle large displacement relative to the object
appearance. To increase the feature map resolution, we remove
the fourth down-sampling operation and reduce the stride from
16 to 8 pixels, helping the detector to handle small pedestrians.
Specifically, all layers before the fourth down-sampling opera-
tion are unchanged and all convolutional filters after it are mod-
ified by the “hole algorithm” [61] (i.e., “Algorithm à trous”) to
compensate for the reduced stride.

Ignore Region and Tiny Pedestrian Handling: We implement
an ignore region handling for Faster R-CNN. Ignore regions
might contain objects of a given class without precise localiza-
tion. Simply treating these regions as background introduces
confusing samples and has a negative impact on the detector
quality. The ignore region handling prevents the sampling of
background boxes in those areas that could potentially overlap
with real objects. Besides, training with very tiny samples could
lead to models detecting a lot more false positives. Hence, we
online filter pedestrians whose height is less than 20 pixels af-
ter scaling during training. Filtered pedestrians are handled as
ignore regions in order to ensure that they are not sampled as
background during training.

RoI Feature Enhancing: The RoIPooling layer uses max pool-
ing to convert the features inside any valid region of interest
into a fixed-size feature map, which is used by subsequent Fast
R-CNN network to further classify and regress the proposals
for final detections. Therefore, the representational ability of
the pooled feature is the key to achieve high performance, es-
pecially on our highly diverse dataset. Inspired by [4], [62], we
use a “Squeeze-and-Excitation” (SE) block to enhance the repre-
sentational ability of the RoIPooling feature by explicitly mod-
elling the interdependencies between the convolutional chan-
nels. More specific, the SE block performs sample-dependent
feature re-weighting so as to select the more informative chan-
nel features while suppress less useful ones. As shown in Fig. 8,
the newly added SE block is composed of one global average
pooling layer and two consecutive fully connected layers, which
is easy to implement and can obtain remarkable improvements
while add little additional computational costs.
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Fig. 8. Diagram of our improved Faster R-CNN. Reduced VGG-16 means removing the fourth max pooling and using the “hole algorithm”. RoI feature enhancing
subnetwork is a reimplementation of SENet with an identical block structure, which consists of one global average pooling layer (Fsq) and two consecutive fully

connected layers (Frd and Fex). RoI feature X is re-weighted to generate the output X̃ of the SE block which then be fed directly into subsequent Fast R-CNN
subnetwork.

Dynamic Sample Strategy: The vanilla Faster R-CNN has a
fixed sample strategy, i.e., 256 and 128 samples for RPN and
Fast R-CNN with 1 : 1 and 1 : 3 positive-negative ratio, respec-
tively. Since there are ∼28.87 persons per image in our dataset,
the fixed sample strategy will lead to inadequate use of training
positive samples. To solve this issue, we introduce a dynamic
sample strategy: if there are too many positive samples, we de-
termine the number of negative samples based on the above
positive-negative ratio to ensure that all positive samples are
used, otherwise we follow the original strategy.

B. Vanilla RetinaNet

In addition to the two-stage baseline detector, we also pro-
vide another baseline detector based on RetinaNet, the one-stage
approach, which detects objects by regular and dense sam-
pling over locations, scales and aspect ratios with high effi-
ciency. RetinaNet proposes a focal loss to address the extreme
foreground-background class imbalance by reshaping the stan-
dard cross entropy loss such that it down-weights the loss as-
signed to well-classified examples. We use the same setting of
anchor scales as [58] and only modify the height vs. width ratio
of anchors as 1:0.41 in consideration of the pedestrian shape.

V. EXPERIMENTS

In this section, we will introduce our implementation details
about data processing and training setting. Notably, all the ex-
periments are conducted based on the improved Faster R-CNN
with VGG-16 unless otherwise specified. Firstly, we verify the
effectiveness of our improvements via model analysis. Then, we
conduct some experiments to analyse our WiderPerson dataset in
different aspects, including the detection result, quantity, quality
and error. Finally, the generalization ability of our WiderPerson
dataset will be evaluated on standard pedestrian benchmarks like
Caltech-USA and CityPersons.

A. Implementation Detail.

Data Processing: To improve performance for small sized
pedestrians, the input images are upscaled to a larger size using
the bilinear interpolation algorithm. Specifically, the input image
sizes of Caltech and CityPersons are set to 2× and 1.3× of
the original images. As the images of WiderPerson are both
collected from the Internet with various sizes, we resize the input
so that their short edge is at 800 pixels while the long edge
should be no more than 1400 pixels at the same time. We use
horizontal image flipping as the only form of data augmentation.
Multi-scale training and testing are not applied to ensure fair
comparisons.

Training Setting: For the improved Faster R-CNN, all models
are trained for 180k iterations with an initial learning rate of
0.01, and decreased by a factor of 10 after 120k on our Wider-
Person dataset. On the CityPersons dataset, we set the learning
rate to 10−3 for the first 40k iterations and decay it to 10−4 for
another 20k iterations. On the Caltech-USA dataset, we train the
network for 120k iterations with the initial learning rate 10−3

and decrease it by a factor of 10 after the first 80k iterations.
To fine-tune the improved Faster R-CNN from WiderPerson to
Caltech-USA and CityPersons, the number of iterations is the
same but the learning rate is halved overall. All these models are
optimized by the Stochastic Gradient Descent (SGD) algorithm
on 1 TITAN X (Maxwell) GPU with a mini-batch 2. Weight
decay and momentum are set to 0.0005 and 0.9. Besides, the
RetinaNet baseline on the WiderPerson dataset is trained with
16 batch size for 25k iterations with 0.02 initial learning rate,
which is then divided by 10 at 16k and again at 21k iterations.

B. Model Analysis

We carry out some ablation experiments on the WiderPerson
validation subset to analyze our improved Faster R-CNN. For
all the experiments, we use the same settings, except for spec-
ified changes to the components. We ablate each improvement
one after another to examine how each proposed improvement
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TABLE V
ANALYSIS OF PROPOSED IMPROVEMENTS. ALL MODELS ARE BASED ON

FASTER R-CNN WITH VGG-16, TRAINED ON WIDERPERSON training SET

AND TESTED ON validation SET. NUMBERS INDICATE MR

affects the final performance. Firstly, we replace the dynamic
sample strategy with the original strategy. Secondly, the RoI
feature enhancing module is ablated. Thirdly, we do not han-
dle ignore regions and tiny ground truths during training stage.
Fourthly, we do not reduce the VGG-16 backbone. Finally, we
use original anchor scales rather than new anchor setting [3].

Some promising conclusions can be summed up according to
the ablative results in Tab. V. Firstly, the new anchor setting is
more suitable for the proposed dataset, which reduces the MR
by 3.39%, 2.69% and 2.36% for Easy, Medium and Hard subset,
respectively. Secondly, the finer feature map is used to provide
more anchors and detailed information, which reduces the MR
39.62%, 46.28% and 53.26% to 35.12%, 42.67% and 50.17%
for Easy, Medium and Hard subset, respectively, demonstrating
its effectiveness. Thirdly, the ignore region and tiny pedestrian
handling is proposed to ignore small ground truths and prevent
the sampling of background boxes in those ignored areas. The
comparison between the second and third columns in Tab. V
demonstrates that it can bring 3.67% (Easy), 2.96% (Medium)
and 2.66% (Hard) drops in MR, attributing to not involving
confusing samples in training. Fourthly, according to the third
and fourth columns, we can observe a drop in MR of 1.47%
(Easy), 1.03% (Medium) and 0.86% (Hard), these sharp declines
demonstrate the effectiveness of the RoI feature enhancing. Fi-
nally, the comparison between the fourth and fifth columns in
Tab. V indicates that the dynamic sample strategy decreases the
MR by 0.37% (Easy), 0.28% (Medium) and 0.19% (Hard),
owning to making full use of training samples.

C. Dataset Analysis

All experiments in this subsection are trained based on Wider-
Person training subset and the results are evaluated on the vali-
dation subset. Firstly, we evaluate our improved Faster R-CNN
in detail on validation subset, then study on the quantity and
quality, finally analyze common failure cases.

Detection Results: Table VI illustrates our baselines’ results
on the WiderPerson validation subset. On the one hand, we
achieve promising MR performances, i.e., 31.47%, 40.45%,
48.32% for the vanilla RetinaNet, 29.61%, 38.40%, 46.46%
for the improved Faster R-CNN with VGG-16, and 28.75%,
37.82%, 46.06% for the improved Faster R-CNN with ResNet-
50 on Easy, Medium and Hard subsets, respectively. On the
other hand, from these results, we can find that the proposed

TABLE VI
MR AND SPEED PERFORMANCE OF OUR BASELINES ON THE WIDERPERSON

validation SUBSET

TABLE VII
EXPERIMENTAL RESULTS ON CALTECH-USA

TABLE VIII
EXPERIMENTAL RESULTS ON CITYPERSONS

WiderPerson dataset is a challenging benchmark even for the
state-of-the-art pedestrian detection algorithms. In Table VII
and Table VIII , we also report detection results of the im-
proved Faster R-CNN with VGG-16 on Caltech, i.e., 5.49%
MR, and CityPersons, i.e., 12.49%MR. It further demonstrates
that our WiderPerson dataset is much challenging than the stan-
dard pedestrian detection benchmarks based on the detection
performance. Since our WiderPerson dataset varies largely in
scenario and occlusion, which bring many difficulties to pedes-
trian detection. The illustrative examples of pedestrian detection
based on our improved Faster R-CNN with VGG-16 are shown
in Fig. 9.

Quantity Analysis: As indicated in [63], there is a logarithmic
relation between the amount of training data and the performance
of deep learning methods. To understand the impact of having
a larger amount of training data, we show how the performance
grows as training data increases on our benchmark. For this pur-
pose, we train our baseline methods on different sized subsets
which are randomly sampled from the training set. From Fig. 10
we can observe that logarithmic relation between training set
size and detection performance also holds on our benchmark for
the improved Faster R-CNN across three subsets, i.e., perfor-
mance keeps improving with more data. Therefore, it is of great
importance to provide CNNs with a large amount of data.

Quality Analysis: The importance of fine-grained annotations
for riders and additional annotations for ignore regions is now
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Fig. 9. Qualitative results for pedestrian detection of our improved Faster R-CNN with VGG-16 based on the WiderPerson dataset.

Fig. 10. Detection performance (MR) of our improved Faster R-CNN with
VGG-16 as a function of training set size.

examined. In ablation experiments, we have verified the effec-
tiveness of ignored regions via training the mdoel without ignore
region handling, it is in accordance with earlier findings [3] that
detection performance deteriorates when not using ignore re-
gions during training. Besides, the evaluation protocol described
in Section III-E ignores detected neighboring classes. For pedes-
trians this means that riders are not considered as false positives,
hence training pedestrian detectors generally treat riders as ig-
nore region. To verify whether rider annotations are useful for
pedestrian detection, we can directly train the baseline detec-
tion method by including riders into pedestrians, since pedes-
trian and rider are annotated in the same way with a fixed as-
pect ratio on our dataset. As expected, comparing with train-
ing only with pedestrians, after these neighboring annotations
are involved during training, detection performance increases on
MR from 29.61%, 38.40% and 46.46% to 29.35%, 38.27% and
46.39% for Easy, Medium and Hard subset, respectively. There-
fore, adding fine-grained annotations for riders is helpful for the
pedestrian detection performance, since we can treat them as an
additional training samples.

Error Analysis: We now utilize the detection analysis tool1

to analyze the detection errors of our improved Faster R-CNN
qualitatively on our WiderPerson validation dataset. The detec-
tion errors consist of false positives and false negatives. Firstly,

1http://web.engr.illinois.edu/∼dhoiem/projects/detectionAnalysis

Fig. 11. Distribution of two error modes of false positives on the WiderPerson
validation Hard subset.

we analyse the false positive errors. There are two error modes of
false positives in pedestrian detectors, i.e., location (LOC) and
background (BG). LOC indicates the localization errors that oc-
curs when a pedestrian is detected with a misaligned bounding
box, and BG indicates that a background region is mistakenly
detected as a pedestrian. Fig. 11 shows the distribution of two
types of false positives and BG seems the dominating error mode
among top-scoring detection. Figure 12(a) illustrates some qual-
itative false positives of this method. As can be seen, animals,
clothes and fakes are principal sources for confusion with real
pedestrians. Certain pedestrian poses and aspect ratios can lead
to multiple detections for the same pedestrian as shown in the
Multi Detections category. Non-maximum suppression (NMS)
is used by detection methods to suppress multiple detections. We
use an IoU threshold of 0.5 which is not sufficient to suppress
detections that have very diverse aspects.

Figure 12(b) illustrates some qualitative false negatives of this
method. A lower IoU threshold would lead to more false nega-
tives. These already occur for an IoU threshold of 0.5 as shown in
the NMS Repressing category. Because of the high IoU between
pedestrians, not all of them can be detected because of the greedy
NMS. Thus, NMS is an important part of many deep learning
methods that is usually not trained but has a great influence on
detection performance. Small and occluded pedestrians are a
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Fig. 12. Qualitative detection errors for our improved Faster R-CNN (green: true positives, red: false positives or false negatives).

further common source for false negatives. These two groups
have also been analyzed in [64]. In some scenarios, usually only
the lower part of a pedestrian is occluded due to various obsta-
cles. In our qualitative analysis we have false negatives where the
head is occluded. These are particularly challenging for pedes-
trian detection methods, as these cases are quite rare in the train-
ing dataset. Further challenges are unusual and extreme poses
as shown in the Others group.

D. Generalization Capability

In this subsection, we evaluate the generalization capability
of our WiderPerson dataset. As illustrated in Section III-D, the
size of WiderPerson dataset is obviously more diverse and larger
than the existing benchmarks, like Caltech-USA [1] and CityPer-
sons [3]. Naturally, our dataset, with a reduced bias, should bet-
ter capture the true world and result in superior generalization
capabilities of the detectors which are trained on this dataset. To
demonstrate the increased diversity of our dataset, we first train
the model on our WiderPerson dataset and then fine-tune it on
the other pedestrian detection benchmarks.

Caltech: The Caltech-USA dataset is one of the most popular
and challenging datasets for pedestrian detection, which comes
from approximately 10 hours 30 Hz VGA video recorded by a
car traversing the streets in the greater Los Angeles metropolitan
area. We use the new high quality annotations provided by [65] to
train and evaluate. The training and testing sets contains 42,782
and 4,024 frames, respectively. The results are shown for the
Caltech-USA dataset in Table VII. The overall detection perfor-
mance is superior for the cases in which WiderPerson is used
for pre-training. Our improved Faster R-CNN achieves 5.49%
MR for pedestrians on the Caltech-USA testing set for the rea-
sonable setting. When we directly evaluate the Caltech-USA
trained model on the proposed WiderPerson Easy subset, we get
a very high MR of 82.79% since Caltech-USA has limited den-
sity and diversity. In contrast, our model trained on WiderPerson
without fine-tuning achieves 9.72% MR and can be boost to
4.27% MR with fine-tuning. Based on the pre-training of our
WiderPerson dataset, our algorithm has superior performance
on the Caltech-USA benchmark against the one without Wider-
Person pre-training, and performs on-pair with the state-of-the-
arts.
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CityPersons: The CityPersons dataset is built upon the seman-
tic segmentation dataset Cityscapes to provide a new dataset of
interest for pedestrian detection. It is recorded across 18 dif-
ferent cities in Germany with 3 different seasons and various
weather conditions. The dataset includes 5,000 images (2,975 for
training, 500 for validation, and 1,525 for testing) with 35,000
manually annotated persons plus ∼13,000 ignore region anno-
tations. Both the bounding boxes and visible parts of pedestri-
ans are provided and there are approximately 7 pedestrians in
average per image. The results are shown for the CityPersons
dataset in Table VIII. The same findings hold for the CityPer-
sons benchmark. Training on CityPersons dataset and testing on
WiderPerson Easy subset has 73.45% MR, while training on
WiderPerson dataset and testing on CityPersons validation sub-
set achieves 16.17%MR, indicating the difficulty and expand-
ability of our dataset. Again, our improved Faster R-CNN model
pre-trained on WiderPerson can reduce theMR from 12.49% to
11.13% that is on-pair with the state-of-the-arts, demonstrating
our WiderPerson dataset can serve as an effective pre-training
dataset for pedestrian detection task.

Summary: The superior performance on both Caltech-USA
and CityPersons datasets when using WiderPerson for pre-
training indicates a high dataset diversity. Models trained on
this dataset will have increased generalization capabilities. How-
ever, due to the dataset biases, solely training on a dataset from
the other domain without fine-tuning results in worse detec-
tion performance. Despite the dataset biases, the models are
able to learn general features for the task of pedestrians detec-
tion when pre-trained on WiderPerson which proves useful for
other datasets as well after fine-tuning. Using transfer learning
to pre-train a network on generic data and fine-tune on the target
domain is widely applied and used to increase overall perfor-
mance.

VI. CONCLUSION

Current pedestrian detection benchmark datasets have con-
tributed to spurring interest and progress in pedestrian detection
research. With the help of CNN, modern methods have achieved
remarkable performance on these benchmarks. However, it is
still difficult to assess for real world performance, since there is
a gap in the diversity and density between existing pedestrian
detection benchmarks and real world requirements: 1) most of
current datasets are collected in the fixed traffic scenario, which
significantly reduces the diversity of the foreground and back-
ground. 2) crowd scenarios with occluded pedestrian are still
under represented, limiting the variations in density. These lim-
itations have partially contributed to the failure of some algo-
rithms in coping with heavy occlusion and atypical scenario.
To move forward the field of pedestrian detection, we introduce
a diverse and dense pedestrian detection dataset called Wider-
Person, which consists of 13,382 images with 399,786 annota-
tions and varies largely in scenario and occlusion. Providing high
quality annotations, it enables new experiments both for train-
ing better models and as new test benchmark. We propose some
strong baseline detectors based on Faster R-CNN and RetinaNet
to benchmark the state-of-the-art detector. The cross-dataset

generalization results of WiderPerson dataset demonstrate that
it is an effective training source for pedestrian detection and can
help to achieve state-of-the-art performance on the Caltech-USA
and CityPersons datasets. In the future, we will provide continu-
ous improvements and additions to the WiderPerson dataset. Be-
sides, we plan to annotate the head bounding box for each pedes-
trian and explore their relationship to facilitate further studies
on the dense pedestrian detection.
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