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In this paper, we focus on isolated gesture recognition and explore different modalities by involving
RGB stream, depth stream and saliency stream for inspection. Our goal is to push the boundary of this
realm even further by proposing a unified framework which exploits the advantages of multi-modality
fusion. Specifically, a spatial-temporal network architecture based on consensus-voting has been pro-
posed to explicitly model the long term structure of the video sequence and to reduce estimation vari-
ance when confronted with comprehensive inter-class variations. In addition, a 3D depth-saliency con-
volutional network is aggregated in parallel to capture subtle motion characteristics. Extensive experi-
ments are done to analyze the performance of each component and our proposed approach achieves the
best results on two public benchmarks—ChaLearn IsoGD and RGBD-HuDaAct, outperforming the clos-
est competitor by a margin of over 10% and 15% respectively. Our project and codes will be released at
https://davidsonic.github.io/index/acm_tomm _2017.html.
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1. INTRODUCTION

Gesture recognition is a fast expanding field with applications beyond gaming, con-
sumer electronics Ul, automotive, sports training and etc. Continuous gesture recog-
nition [ ; ; ] and isolated
gesture recognition [ ; ; ] are the
two main tasks of gesture recognition in computer vision and the former can be con-
verted to the latter once temporal segmentation is performed on continuous gestures.
In this paper, we concentrate on isolated gesture recognltlon especially for RGB-
D video input, see F1g 1 for an illustration. As is noted in [
1, depth sequence contains structural 1nforma-
tion from the depth channel and are more capable of dealing with noises from back-
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Fig. 1. Examples of different types of modalities listed from up to bottom: RGB images, Depth images,
Optical flow fields (magnitudes obtained from x and y direction are used as color channel), and Saliency

ground, clothing, skin color and other external factors, therefore acting as a supple-
ment to the original RGB sequence. Unlike previous works [Ng et al. 2015; Zhang et al.
2016; Wang and Schmid 2013] which focus purely on RGB modality, we try to build a
unified framework that exploits the inherent advantages of multi-modality modelling,
namely RGB stream, depth stream and saliency stream.

Our main motivations are: 1) how to reduce estimation variance when it comes to
classifying videos of comprehensive inter-and-intra class variations; 2) how to design a
unified and effective framework that is able to take advantage of different modalities.

For the first problem, we notice that unlike other video recognition tasks such as ac-
tion recognition, which contains relatively rich contextual information of body correla-
tions and interactions, the task of gesture recognition usually involves only the motion
of hands and arms. In other words, existing gesture recognition methods [Molchanov
et al. 2016; Molchanov et al. 2015; Pigou et al. 2015] which deal with a limited number
of gestures can make very “biased” estimations when it comes to classifying gesture
datasets that involve comprehensive inter-and-intra class variations like Chalearn
IsoGD [Wan et al. 2016]. Second, current main-stream approaches such as [Simonyan
and Zisserman 2014a; Donahue et al. 2015] usually deal with short-term motions, pos-
sibly missing important information from actions that span over a relatively long time.
For example, some gestures such as “OK” or number signals involve only motions of a
short period while gesticulations denoting forced landing, diving signals or slow mo-
tions require temporal modeling of a relatively long sequence.

To solve the aforementioned issue, we propose a novel two stream convolutional
network (2SCVN) based on the idea of consensus voting adapted from [Simonyan and
Zisserman 2014a; Wang et al. 2016; Feichtenhofer et al. 2016b]. It first takes frames
sampled from different segments of the sequence according to uniform distribution and
stacks their corresponding optical flow fields as input. Compared to dense sampling
or pre-defined sampling interval which may be highly redundant, this leads to less
computations and ensures that videos which are short or those which involve multiple
stages can be completely covered fairly well. These frames are then combined to cover
more diversity before being fed into the spatial and temporal streams of 2SCVN for
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Fig. 2. An overview of our approach. An input video is represented in different modalities, where the RGB
stream and depth stream are handled by Spatial Stream Network while the RGB/Depth Flow Stream are
handled by Temporal Stream Network. Saliency stream and depth stream are fed into Convolutional 3D
Network.

video level predictions. Finally, these predictions are aggregated to reduce estimation
variance.

For the second problem, we realize that as human motions are in essence three-
dimensional, the information loss in the depth channel could cause degradations to the
discriminative capability of feature representation. On the other hand, saliency helps
eliminate ambiguity from possible distractions of color camera. We show in our experi-
ment that saliency information helps boost the overall performance further. To the best
of our knowledge, we are the first to perform investigations that highlight spatial and
temporal combinations from these two modalities, based on which 3D depth-saliency
(3DDSN) fusion scheme is proposed. Eventually, predictions from both 2SCVN and
3DDSN are taken into consideration as the final score. What’s worth noticing is that
our proposed approach also works surprisingly well for other tasks of video recogni-
tion (See Table IV), demonstrating the effectiveness and generalization ability of our
framework.

The overall pipeline is shown in Fig.2. It mainly consists of two network
architectures—Two Stream Convolutional Network (2SCVN) and 3D Depth-Saliency
Convolutional Network (3DDSN) which would be further elaborated in Section 3.1 and
Section 3.2 respectively. The 2SCVN tries to model the spatial-temporal information
from a given modality through two streams. The spatial stream takes into account RG-
B and depth sequences while RGB-Flow and Depth-Flow sequences are fed as input to
the temporal stream. Scores from both the spatial and temporal stream are taken into
consideration as the prediction of 2SCVN. Additionally, we absorb 3D convolution to
implicitly capture both spatial and temporal information. In our network architecture,
we input depth and saliency modality to 3DDSN and do late score fusion for outputs
from these two streams. Finally, scores from 2SCVN and 3DDSN are further aggregat-
ed as the eventual video-level prediction. The main contributions of our paper are:

(1) We proposed a novel framework that combines the merits of 2SCVN and 3DDSN
for multi-modality fusion. It absorbs depth and saliency streams as important con-
stituents to capture subtle spatial-temporal information supplementary to RGB
sequence.

(2) A convolutional network design (2SCVN) based on the idea of consensus voting is
proposed to explicitly model the long term structure of the whole sequence, where
video-level predictions from each frame and its augmented counterparts are aggre-
gated to reduce possible estimation variance.
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(3) We are the first to perform an integration of 3D depth-saliency stream to address
the loss of three-dimensional structural information and distractions from back-
grounds, noises and other external factors.

(4) Our approach performs particularly well not only for RGB-D gesture recognition
but also for human daily action recognition, achieving the best results on ChaLearn
IsoGD [ 1 and RGBD-HuDaAct [ 1 benchmarks.

The remainder of this paper is organized as follows: Section 2 is an review of related
works. Our unified framework is illustrated in Section 3 and validated in Section 4
respectively. Section 5 concludes the paper.

2. RELATED WORK

In this section, we first introduce some works for gesture recognition deploying hand-
crafted features, then we review works related to ours both in the field of action and
gesture recognition that conduct research on different modalities and convolutional
networks.

Many hand-crafted features have been proposed for V1deo analysis in the area of ges-
ture recognition [ ;

] For example, Wan et al [ ] ex-
tracted a novel spatlotemporal feature named MFSK while [ 1
proposed to calculate SIFT-like descriptors on 3D gradient and motion spaces respec-
tively for RGB-D video recognition. Dardas et al [ ] recog-

nized hand gestures via bag-of-words vector mapped from extracted key-points using
SIFT and a multi-class SVM was trained as gesture classifier.

In the camp of action recognition, Karpathy et al [ ] extended
CNNs into video classification on a large-scale dataset of 1 million videos (Sports-1M).
Donahue et al. [ 1 embraced recurrent neural networks to explic-
itly model the complex temporal dynamics. Tran et al. [ 1 proposed to
simultaneously extract the spatio-temporal features with deep 3D Convolutional Neu-
ral Networks (3D-CNN) followed by a SVM classifier for classification. Simonyan et

al. [ ] designed an architecture that captures the com-
plementary information on appearance and motion between frames. Based on which,
Feichtenhofer et al. [ ] studied several levels of granularity

in feature abstraction to fuse spatial and temporal cues. In contrast, Ng et al. [
] utilizes LSTM+CNN structure to model temporal information without re-
sorting to additional optical flow information. Most recently, Feichtenhofer et al. [
1 employs two powerful residual networks to learn stronger
spatiotemporal features for action recognition.

In the other camp, the convolutional neural networks [ 1 have been
introduced to the field of gesture and recognition due to its r1ch capacity for represen-
tation [ ; 1.
For example, Nishida et al [ 1 proposes a multi-stream re-
current neural network that can be trained end to end without domain-specific hand
engineering while [ ] combines 3DCNN with RNN for online ges-
ture detection and classification. Additionally, the rapid emergence of depth-sensor has
made it economically feasible to capture both color and depth videos, providing motion
information as well as three-dimensional structural information. This significantly re-
duces motion ambiguity when projecting the three- d1mens10nal motion onto the two-
dimensional image plane [ ; ]. For
example, Molchanov et al [ ] proposes to use depth and intensity
data with 3D convolutional networks for gesture recognition. Ohn-Bar et al [

] first detects a hand in the region of interaction and then combines
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RGB and depth descriptor for classification. Neverova et al [Neverova et al. 2015] pro-
poses a multi-modal architecture that operates at 3 temporal scales corresponding to
dynamic poses for gesture localization. Our work is different from previous ones main-
ly by the following two difficulties. First, compared to previous gesture benchmarks
which contain relatively few categories, the latest ChaLearn IsoGD dataset is larger
and more challenging, covering 249 gesture labels with comprehensive inter-and-intra
class variations; Second, video sequences of variable lengths are from different modal-
ities, it is essential to design an effective way to capture and combine merits from both
spatial, temporal and multi-modal information.

3. OUR METHOD

Fig.2 is an overview of our proposed approach. It mainly consists of Two Stream
Consensus Voting Network (2SCVN) and 3D Depth-Saliency Network (3DDSN). Vot-
ings from 2SCVN and Fc¢-8 outputs from 3DDSN represent predictions from different
modalities. These scores are further fused as the eventual label for isolated gesture
recognition. In the following subsections, we describe in detail how 2SCVN and 3DDSN
work.

3.1. Two Stream Consensus Voting Network

As is pointed out in Introduction, the bottleneck for improving the performance of
large-scale gesture recognition lies in: 1) comprehensive inter-and-intra class varia-
tions; 2) long-term modeling of motions from sequences of variable lengths. Here we
base our method on top of mainstream approaches [Simonyan and Zisserman 2014a;
Feichtenhofer et al. 2016b] and adopts an Consensus Voting Strategy to reduce estima-
tion variance.

g
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Fig. 3. 2SCVN is based on the idea of consensus voting, where its spatial and temporal stream sample
RGB images (take rgb input as an example) and its stacked optical flow fields from different segments of
a sequence according to a uniform distribution. Consensus from these frames as well as their augmented
counterparts are taken as “votes” for the predictions.

Consensus Voting Strategy: The structure of 2SCVN is illustrated in Fig.3. We
formalize the operations by convolutional networks as F' parameterized by 6:

F o pixwxtxm _ gl f— F(r;0) (1)

where an input snippet 7 of sequential length m > 1 with t channels of size h x w pixels
is transformed into a vector f. Then, we apply softmax function g : ® — R! on top of
vector f

90 )i = et/ 3 el @)
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where the " dimension indicates the probability of the snippet belonging to
class i. Therefore, given an input video V of T snippets, we can calculate
[p(c1|m;), p(calm;)...p(ci|7;)]T, the probability with respect to each category for snippet
7;. By stacking these predictions together, we get the following matrix:

p(ci|m) plei|re) - pleilrr) p(c1]V)
plealm) plealrz) -~ plealrr) | h, | plealV)
palm) plalr) -+ plalrr) p(a|V)

where each column is the class predictions of each snippet and each row being the
class-specific predictions from 7 snippets. The aggregation function (voting) h : R*7 —
! then combines the predictions from each snippet along the horizontal axis to output
the probability of the whole video V' with respect to each class. Therefore, the predicted
label for video V is

y = arg max(p(c|V)) 3
1ES]
Note that the choice of & is still an open question and is determined by each specific
task, here we have tried out Max and Mean function in Section 4.2.
Using the prediction of video V' for each class, we deploy the standard categorical
cross-entropy loss to train our network:

l l
L(y,p) = = > _vi(pi —log Y _e¥) 4)
i=1 j=1

where [ is the number of categories and y; the ground truth label concerning class
1. Each network parameter with respect to the loss function is updated by stochastic
gradient descent with a momentum p = 0.9. Each parameter in the network 6 € w is
updated at every iteration step ¢ by

0 =014+ v — YN0y (5)

oL
Vg = Vg1 — A1) <<50> ) (6)
batch

where ) is the learning rate, v is the weight decay parameter and < §L/§0>patch
is the gradient of cost function I with respect to parameter 0 averaged over the
mini-batch. To prevent gradient explosion, we apply a soft gradient clipping operation
nl 1.

Implementations: We conducted experiments on Inception [ 1
with respect to the choice of ConvNet architecture due to its good balance between effi-
ciency and accuracy. However, training deep networks is challenged by the risk of over-
fitting as current datasets for video recognition are relatively small compared to other
computer vision tasks such as image classification. A common practice is to initialize

the weights with pre-trained models on ImageNet [ 1. To further mit-
igate the problem, we also adopted batch-normalization [ ] and
dropout [ ] layer (dropout ratio: 0.7) for regularization. Data aug-

mentation is also employed to cover the diversity and variability of training samples.
Besides random cropping and horizontal flipping, we also adapted the scale-jittering
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cropping technique [ ] to involve not only jittering of
scales but also aspect ratios.
The optical flow fields are acquired using [ 1. We use Caffe [

] to train our networks. The learning rate is set to 0.1 and decreases to its 1/10 for
every 1500 iterations, lasting for over 20 epochs. It takes about 6 hours and 22 hours
for training the spatial and temporal stream respectively on ChalLearn IsoGD with 2
TITANX GPUs. The parameter settings are the same when applied to RGB and depth

modality.

3.2. 3D Depth-Saliency Network

Network Architecture: We base our method on top of 3D convolutional kernel pro-
posed by Tran et al [ 1 while getting rid of the original Linear SVM
configuration to train in an end to end manner. Compared to previous deep architec-
tures, 3D CNNs are capable of encoding the spatial and temporal information in the
data without requiring additional temporal modeling. Fig. 4 shows the structure of
3DDSN.

4‘] ‘ \r = Convolutional 3D Network — Depth <@\\ H
BRI g &)
: e
Depth Stream »
PN
//OO‘/\J
///{B%%/ )
ﬁ c G . s °
Convolutional 3D Network — Saliency \ bl
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Fig. 4. 3DDSN employs 3D convolution on depth and saliency stream respectively, then takes scores from

each stream for late fusion.

Specifically, we propose to combine depth and saliency stream, based on the obser-
vation that depth incorporates 3-dimensional structural information that RGB doesn’t
while saliency helps reduce the influence from backgrounds and other noises so as to
focus on the salient regions, see Fig.1 for illustration. We didn’t incorporate 3D-RGB
stream for its performance lags far behind than that of 2SCVN-RGB. Each stream
consists of eight 3D convolutional layers, each with a nonlinear Relu layer followed by
five 3D Max Pooling layer. More formally, the 3D convolutional layer of the spatial-
temporal CNN is defined as

SN Fips, (@ + 60,y + 8y) X (04, 6y, 01) (7
ot

5y On

where x and y define the pixel position for a given frame F;. Then, nonlinearities are
injected with Rectified linear unit, followed by the 3D pooling layer, defined as follows

Conv(z,y,t) Conv >0

ReLu(x,y,t) = { 0 otherwise ®

Pool(x,y,t) = ma)g(ReLu(a:, y,t)) 9

)
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Let x = {Vb, Vi,..., V} be a mini-batch of training samples and w be the network’s
parameters. During training, we append a softmax prediction layer to the last fully-
connected layer and finetune back-propagation with negative log-likelihood to predict
classes from individual video V;

x|

1 L
LX) = =11 > log(p(c[VW;w)) (10)
=0

where p(c(?|V(#) is the probability of class label c(*) given video V(¥) as predicted by
3DCNN. Finally, the predictions from the depth and saliency stream are fused to give
the eventual label.

Implementations: Saliency images are extracted using [ 1. We
first re-sampled each sequence to 32 frames instead of 16 originally used in [

] for better performance, using nearest neighbour interpolation by dropping or re-
peating frames [ ]. Given each frame F;, volumes are constructed
using its surrounding 32 frames (F;_15.:116) With the label being the gesture occur-
ring at its central frame. The spatial-temporal kernel size is set to 3 x 3 x 3 in our
experiments and the scale of the pooling is set to 2 x 2 x 2 for all but the first lay-
er. Additionally, the generalization ability of deep learning methods relies heavily on
the data it trains on. In the specific task of gesture recognition, we observe that users
might randomly choose their left or right hands while performing a gesture without
changing the meaning, thus we adopt horizontal flipping as augmentation technique
to incorporate this variability. The network is finetuned on sports-1M model with base
learning rate of 0.0001 (decrease to its 1/10 every 5000 stepsize) for 100K iterations.
It needs about 2 days to finetune and update parameters and takes about 8G graphic
memory for each modality.

3.3. Score Fusion

The process of score fusion first takes place between internal streams of 2SCVN (See
Fig. 3) and 3DDSN (See Fig. 4) respectively, then the two frameworks are further fused
to produce the final prediction.

2SCVN involves RGB, RGB-Flow, Depth and Depth-Flow, where the output of each
stream after consensus-voting is a 249-dimensional vector (take ChaLearn for exam-
ple), denoting the probability of the video for each class. Then score fusion takes place
between a stream and its corresponding flow stream for a specific modality (for ex-
ample 2SCVN-RGB and 2SCVN-RGB-Flow) where the weight for each stream is con-
firmed on the validation set.

3DDSN involves Depth and Saliency stream. Note that 3D convolution inherently
involves temporal information, therefore score fusion takes place between 3DDSN-
Depth and 3DDSN-Sal directly, yielding 3DDSN-Fusion model. Finally, multi-modal
streams of 2SCVN and 3DDSN-Fusion model will be fused together. The modality com-
bination process is validated and presented in Table IV and an obvious performance
improvement can be observed after each fusion.

4. EXPERIMENTS

To tap the full potential of our unified framework for RGB-D gesture recognition, we
have explored extensively with various settings to examine how each component influ-
ences the final performance and experimented a number of good practices in terms of
data augmentation, regularization and model fusion. We also visualize the confusion
matrix, to give an intuitive analysis.
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4.1. Datasets

RGB-D gesture recognition datasets suitable for evaluation of deep-learning based
methods are very rare. Therefore, besides evaluations on ChaLearn IsoGD gesture
recognition dataset[ 1, we also conducted experiments on RGBD-
HuDaAct [ 1, one of the largest RGB-D action recognition datasets, where
our proposed approach beat other methods, achieving state-of-the-art results.

Chalearn IsoGD: The CharLearn LAP RGB-D Isolated Gesture Dataset (IsoGD)
contains 47933 RGB-D two-modality video sequences manually labeled into 249 cat-
egories, of which 35878 samples belong to the training set. Each RGB-D video repre-
sents one gesture instance, having 249 gesture labels performed by 21 different indi-
viduals. The IsoGD benchmark is one of the latest and largest RGB-D gesture recogni-
tion benchmarks and has a clear evaluation protocol, upon which the 2016 ChaLearn
LAP Large-scale Isolated Gesture Recognition Challenge has been held [

1. In this paper, all models are trained using training set with parameters val-
idated on the validation set and we report our performance based on the testing set.
For the following evaluations, we conduct our experiments and report our accuracies
on this dataset if not specifically mentioned.

RGBD-HuDaAct: The RGBD-HuDaAct database [ ] aims to encourage
research efforts on human activity recognition on multi-modality sensor combination
and each video is synchronized with color and depth streams. It contains 1189 samples
of 13 activity classes (including background videos which are added to the existing 12
classes) performed by 30 volunteers with rich intra-class variations for each activity
representation. Following [ ], all results reported are based on the testing
set.

As is pointed out in Section 1, the consideration for the variations of action length
is essential in isolated gesture recognition. Therefore, we conduct a survey related to
the variation statistics of these two datasets, which shows the min/max number of
frames of action and the mean/standard deviation in Table I. To get a better visualiza-
tion about the variation statistics for each action category, we also plotted the above
statistics for RGB-D HuDaAct which has 13 categories (Fig. 5).

Table I. Variation statistics for ChaLearn LAP IsoGD and RGB-D HuDaAct

Dataset Min frames Max frames Mean frames Standard deviation
ChaLearn LAP IsoGD 10 404 49 18
RGB-D HuDaAct 6 1640 387 275

As can be seen, there exists a large variance in terms of length for different videos,
even those in the same category. This also holds true for ChaLearn LAP IsoGD. There-
fore, its essential to cover different video lengths so as to reduce estimation variance,
which is why we proposed consensus-voting in the first place.

4.2. Aggregation Function Discussion

In this subsection, we focus on discussions related to 2SCVN. As is mentioned in Sec-
tion 3.1, aggregation function used for “voting” h is an open problem and is determined
by a specific task. Here we empirically evaluated two kinds of functions, max and
mean. Table II shows the accuracies of the spatial and temporal stream of 2SCVN
under different aggregation functions. “-F” indicates corresponding optical flow fields
while “(2:1)” means the combination ratio between the two streams. The ratio is cho-
sen according to the accuracy of separate stream. For a specific modality, if optical flow
stream is much higher than that of spatial stream, we will give more credence (i.e.
weight) to the optical flow stream. On the validation set, the ratio given below yields
almost the optimal performance.
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Fig. 5. Variation statistics for different action categories in RGB-D HuDaAct, where the blue/pink/green
bar show max/min/mean frames respectively for each action category.

Table II. Accuracies of different aggregation functions

2SCVN RGB RGB-F RGB+RGB-F (1:2)
Max 45.65% 58.36% 62.72%
Mean 43.52% 56.74% 61.23%

Depth Depth-F Depth+Depth-F (1:1)
Max 50.31% 49.85% 57.81%
Mean 47.14% 47.44% 54.31%

From Table II, we can draw the following conclusions: 1) Considering only spatial
stream, depth modality is more accurate than RGB modality. However, when combined
with their corresponding flow fields, RGB spatio-temporal fusion yields higher accura-
cies compared to Depth modality. This is mainly due to the fact that RGB-F stream
encodes more temporal information which are essential for enhancing discriminative
capability; 2) The performance of temporal stream is equivalent or higher compared
to spatial stream, especially in RGB modality, which is reasonable because the spatial
stream only captures actions at a fixed frame while the temporal stream takes into
consideration motions at different time steps; 3) In terms of “voting”, max aggrega-
tion seems to be more effective than mean aggregation and we leave other aggregation
approaches as future work for related fields; 4) Compared to each modality, the com-
bination of spatial and temporal stream leads to a large improvement in performance,
indicating that both spatial and temporal information are essential for video recogni-
tion.

4.3. Fusion Schemes

In this subsection, we focus on discussions related to SDDSN and explored the follow-
ing questions: 1) How do RGB, depth, saliency perform individually; 2) Whether fea-
ture fusion does better than score fusion; 3) Any need for pre-processing before fusion?
We conduct experiments on the Chalearn IsoGD benchmark using the aforementioned
network configuration for each stream and explored their combinations. Table III re-
ports the highest accuracies on IsoGD benchmark of different modalities and their
combinations according to the evaluation protocol. “-” indicates that softmax is not
used while“+” indicates vice-versa. D is short for Depth while S for saliency. “(2:1)”
means the combination ratio between the two streams. It is also chosen according to
separate modality performance.

We trained the mainstream 3D + SVM approach [ 1 as our base-
line and used the same network architecture mentioned above, except that the
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Table Ill. Accuracies of different fusion schemes

3DDSN RGB Depth Saliency D:Sal(2/1)
Softmax - 46.08 54.95% 43.36% 58.86%
Softmax + 46.08 54.95% 43.36% 56.37%

spatial-temporal features from depth and saliency streams were concatenated to train
the SVM classifier. The training of SVM takes about 6 hours and the accuracy on
IsoGD [ 1is 53.60%.

The following conclusions can be derived: 1) 3SDDSN-Depth seems to be the more
effective and discriminative than 3DDSN-saliency and 3DDSN-RGB; 2) Although for
one modality, whether or not using softmax to convert the output to range [0 — 1] yields
the same accuracy, it generally reports higher accuracies for modality fusion without
the ”softmax” pre-processing. This is perhaps that the conversion reduces variance
of features, thus abating the discriminative ability of model ensemble; 3) Compared
with 3D + SVM baseline which employes feature-level fusion, score fusion seems to
be more preferable, since features from different modalities may have very different
distributions, therefore simple concatenation is not valid.

4.4. How does depth matter?

Besides recognition accuracies, to get a full appreciation of the potential from depth
information, we compared RGB and RGB + Depth model trained using the architec-
ture mentioned in Section 3.2 and counted the changes after fusing the depth into rgb
stream and depth bring changes to “Correct” and “Error”.

35 r— T T T T T T T T T T T T T T T T T T T T T T 1

Fig. 6. Changes after fusing the depth stream into RGB stream. The x-axis denotes the category ID while
the y-axis represents the number of changes. For an individual ID, “Correct” means that rgb stream makes
the wrong predictions but rgh+depth fusion are correct. Conversely, “Error” indicates that the number of
changes when the vice-versa is true.

A big “Correct/Error” means that depth brings positive/negative effect on RGB
stream while zero means depth has no effect on the final prediction of that class. As
shown in Fig.6, RGB stream works well in the range of 110 — 140, however there are
some class ranges such as 90 to 100, we have seen a huge improvement in terms of
correct changes brought about by depth stream. The higher the green line (“Correct”),
the more samples which have originally been predicted wrong are now correct. As the
height of the green line is generally higher than that of red line, it confirms that depth
indeed provides important supplementary information to RGB stream. Note that as
the RGB stream of 3DDSN performs worse than that of 2SCVN, therefore this stream
is not adopted in our final framework.

4.5. Visualization of Confusion Matrix
Fig.7 displays the confusion matrix of RGB, Depth, Saliency and overall approach.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39, Publication date: January 2017.



39:12 Jiali Duan and Jun Wan et al.

From Classes such as 9 in RGB stream (Fig.7(a)) are not misclassified while there
exist some confusions in RGB-Flow (Fig.7(b)). On the other hand, classes such as 11
which are confused in RGB stream perform relatively well in RGB-Flow. Thus, the
spatial and temporal information actually supplements each other.

10
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(f) SDDSN-RGB  (g) 3DDSN-Depth (h) 3DDSN-Salien (i) proposed

Fig. 7. Performance confusion matrix of 2SCVN for RGB and RGB-F and 3DDSN for Depth and Saliency
as well as the proposed fusion model on ChaLearn IsoGD dataset. The first 20 categories are used for
visulization due to page size and the whole confusion matrix can be inferred from supplementary materials.

The confusion matrix of Depth and Saliency stream from 3DDSN on ChaLearn
IsoGD are shown in Fig.7(g) and Fig.7(h) respectively. Fig.7(i) shows the confusion
matrix of our proposed approach after modality fusion, which is obviously better than
seperate streams. Note that we only displayed the first 20 categories due to page size
and the whole confusion matrix are available in supplementary materials.

4.6. Qualitative Results

Example recognition results are shown in Fig.8 where the prediction distribution to-
gether with its confidence is displayed. We also show the ground-truth and top-3 pre-
dicted labels of each recognition result. As can be seen from the figure, our proposed
approach correctly recognizes most of the gestures and attains pretty good accuracy
even under challenging scenarios. However, the forth video in the first row is mis-
classified because the first prediction (4th video) is very similar to ground-truth (3rd
video).

Fig.9 displays the recognition result of each category in RGBD-HuDaAct, where the
first nine classes achieve an average accuracy of over 90%. For accuracies of different
classes on ChaLearn IsoGD, please infer our supplementary material.

4.7. Comparison with State of the Art

We compare our proposed approach with competltors ranking top on the leaderboard of
ChaLearn IsoGD benchmark [ 1 and state-of-the-
art results on RGB-HuDaAct [ ] datasets We also tested each modality of
our proposed framework as well as their combinations. Final results are summarized
in Table IV. “(S)” represents spatial stream while “(T)” means temporal stream. Small
number marked on the top right of a specific stream is used to represent this stream
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Make a phone call Background activity Put on jacket Drink water

Make a phone call Background activity Put on jacket Drink water
Sit down Exit the room Background activity Eat meal
Stand up Take off jacket Mop floor Make a phone call

Fig. 8. Qualitative recognition results of our proposed approach on ChaLearn IsoGD (1st row) and RGB-D
HuDaAct (2nd row) benchmarks. Bars colored blue indicate ground truths while green indicate correct and
red wrong. The length of the bar represents confidence.

Go to bed
Sit down
Mop floor
Stand up
Eat meal
Drink water
Enter room

E
&
£
o
=
£
=
i

Make a phone call
Get up from bed
Put on jacket

Take off jacket
Background activity

Fig. 9. Qualitative recognition results of our proposed approach on RGBD-HuDaAct benchmark

for indexing. For example, 2SCVN-3DDSN (5+6+8) means the model ensemble uses
modality 5, 6, and 8 model indexed in Table IV.

On ChaLearn IsoGD, hand-crafted features such as MFSK [Wan et al. 2016] as well
as its variant which combines DeepID feature [Wan et al. 2016] scores relatively low
compared to deep learning based methods such as AMRL [Pichao Wang and Ogun-
bona 2016] which incorporates three representations DDI, DDNI and DDMNI based
on bidirectional rank pooling and ICT [Xiujuan Chai 2016] which trains a two-stream
RNN for RGB and depth stream respectively.

2SCVN-RGB achieves an accuracy of 45.65% which is pretty good considering that
it only uses one modality and that it only encodes static information. It is more prefer-
able than 3DDSN-RGB (62.72% vs 46.08% on ChaLearn IsoGD and 96.13% vs 94.23%
on RGBD-HuDaACt), therefore 3SDDSN-RGB is not included in our final framework.
Besides, 2SCVN-Flow acquires a huge gain in performance as it captures motion infor-
mation through stacked optical flow fields, which is reasonable because the accuracy
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of video recognition relies on the extent of understanding of the whole sequence. This
is also what motivates us to explore consensus voting, a strategy that models the long
term structure of the whole sequence to reduce estimation variance. The accuracy of
2SCVN-Fusion is further boosted as it combines the merits from spatial (2SCVN-RGB)
and temporal stream (2SCVN-Flow).

Table IV. Comparison with state-of-the-art methods on ChalLearn IsoGD and RGBD-HuDaAct

benchmarks(%)
ChaLearn IsoGD Dataset

Method Result Method Result
NTUST 20.33% MFSK+DeepID [ ] 23.67%
MFSK [ 1 24.19% TARDIS 40.15%
XJTUfx 43.92% ICTNHCI [ 1 46.80%
XDETVP-TRIMPS 50.93% | AMRL [ 1| 55.57%

FLiXT 56.90% - -
2SCVN-RGB! (S) 45.65% 3DDSN-RGB (S+T) 46.08%
2SCVN-Depth? (S) 50.31% 3DDSN-Depth? (S+T) 54.95%
2SCVN-RGB-Flow* (T) 58.36% 2SCVN-Depth-Flow® (T) 49.85%
2SCVN-RGB-Fusion (1+4) |62.72% 2SCVN-Depth-Fusion (2+5) 57.81%
3DDSN-Fusion (3+6) 56.37% 3DDSN-Salb (S+T) 43.35%
2SCVN-3DDSN (1+2+3+4+5) | 66.75% 2SCVN-3DDSN (1+2+3+4+5+6) 67.26%

RGBD-HuDaAct Dataset

Method Result
STIPs(K=512) [ ] 79.77%
DLMC-STIPs(M =8) [ ] 79.49 %
DLMC-STIPs(K=512,SPM) [ ] 81.48%
3D-MHIs(Linear) [ ; 1 70.51%
3D-MHIs(RBF) [ ; ] 69.66%
2SCVN-RGBI(S) 83.91% 3DDSN-RGB (S+T) 94.23%
2SCVN-Depth? (S) 88.19% 3DDSN-Depth? (S+T) 92.26%
2SCVN-RGB-Flow*(T) 95.32% 2SCVN-Depth-Flow® (T) 90.84%
2SCVN-RGB-Fusion (1+4) |96.13% 2SCVN-Depth-Fusion (2+5) 93.89%
3DDSN-Fusion (3+6) 93.68% 3DDSN-Sal® (S+T) 92.06%
2SCVN-3DDSN (1+2+3+4+5) | 96.13% 2SCVN-3DDSN (1+2+3+4+5+6) 97.83%

The performance of 3SDDSN-Depth and 3DDSN-Sal are really impressive as they
all score high compared to competing algorithms, due to rich representation capabil-
ity of 3D convolution. Besides, although 2SCVN-RGB-Fusion scores rather high, the
performance gain brought about 3DDSN after integration is still remarkable. This is
in accordance with our observation that depth and saliency is supplementary to RGB
modality. As can seen from Table IV, the saliency stream helps boost the overall model
by about 0.51% and 1.70% on the two datasets. Visual interpretations in Section 4.4
and 4.5 of the paper also confirms the fact. The usefulness of saliency stream can al-
so0 be verified by comparing 3DDSN-Depth with 3DDSN-Fusion model. For ChalLearn
LAP IsoGD, the performance of 3DDSN-Sal is a lot lower than 3DDSN-Depth (43.35%
vs 54.95%), however 3DDSN-Fusion is still 1.42% higher than 3DDSN-Depth (56.37%
vs 54.95%), confirming the effectiveness of saliency stream. It’s also worth noting that
we are the first to take saliency into account for isolated gesture recognition. Final-
ly, our proposed approach outperforms other competing algorithms by a large margin
with over 10% and 15% accuracy on ChaLearn IsoGD (validation set: 49.17%, test-
ing set: 67.26%) and RGB-D HuDaAct (97.83%), demonstrating the effectiveness and
generalization ability of our approach in dealing with challenging scenarios with com-
prehensive inter-and-intra class variations.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a multi-modality framework for RGB-D gesture recog-
nition that achieves superior recognition accuracies. Specifically, 2SCVN based on the
strategy of consensus voting is employed to model long term video structure and re-
duce estimation variance while 3DDSN composed of depth and saliency streams are
aggregated in parellel to capture embedded information supplementary to RGB modal-
ity. 3D-RGB stream is not adopted as it is inferior to 2SCVN. Extensive experiments
show the effectiveness of our framework and codes would be realsed to facilitate future
research.

APPENDIX

In the paper, some of the figures and statistics are not complete due to the limit of page
size. For the sake of completeness, in this appendix we first present the recognition
result on ChaLearn IsoGD with respect to each of the 249 categories to supplement
Section 4.6. Then, we give the complete confusion matrices for ChaLearn IsoGD and
RGBD-HuDaAct respectively to supplement Section 4.5.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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A. CHALEARN ISOGD

The ChaLearn IsoGD benchmark was proposed in the workshop of CVPR 2016 and was
later used as the evaluation dataset for ChaLearn LAP Large-scale Isolated Gesture
Recognition Challenge [ 1, on the platform of CodaLab [
1. For results and details of the competition, please refer [
1

The benchmark is one of the largest and latest RGB + D dataset with more than
50,000 gestures, manually labelled into 249 categories [ 1. The distribu-
tion of different gestures in Chalearn IsoGD can be found in the original paper and
Fig.10 displays the recognition result for each category on Chalearn IsoGD mentioned
in Section 4.6.

B. CONFUSION MATRIX

In Section 4.5, we visualize the confusion matrix of different modalities on ChalLearn
IsoGD, but only list the first 20 categories due to page size. Here, we present the con-
fusion matrix of complete 249 categories in the paper (See Fig.11).

As can be seen from the figures, depth modality is very discriminative, as it has
higher accuracy compared to RGB and saliency. The overall accuracy after combin-
ing 2SCVN and 3DDSN brings an additional 5% gain in performance compared to
2SCVN alone, demonstrating the effectiveness of modality-fusion. The final accuracy
of our proposed approach is 67.26%, outperforming the best result on leaderboard of
ChaLearn IsoGD by a large margin.

For integrity, we also list the overall confusion matrix of our proposed approach on
RGBD-HuDaAct (See Fig.12). Our method also achieves the best performance with an
accuracy of 97.83%.

© 2017 ACM. 1551-6857/2017/01-ART39 $15.00
DOI: 0000001.0000001
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Accuracy

Fig. 10. Per class accuracy of our proposed approach on ChaLearn IsoGD benchmark
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(c) 2SCVN-Depth (Accuracy: 50.31%) (d) 2SCVN-Depth-Flow (Accuracy: 49.85%)
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(e) 3DDSN-Depth (Accuracy: 54.95%)

(f) 3DDSN-Sal (Accuracy: 43.35%)

Fig. 11.
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Performance confusion matrix of the proposed approach on ChaLearn IsoGD (Accuracy: 67.26%)
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Fig. 12. Overall performance confusion matrix of our proposed approach on RGBD-HuDaAct (Accuracy:
97.83%)
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