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Abstract—Availability of handy RGB-D sensors has brought about a surge of gesture recognition research and applications. Among

various approaches, one shot learning approach is advantageous because it requires minimum amount of data. Here, we provide a

thorough review about one-shot learning gesture recognition from RGB-D data and propose a novel spatiotemporal feature extracted

from RGB-D data, namely mixed features around sparse keypoints (MFSK). In the review, we analyze the challenges that we are

facing, and point out some future research directions which may enlighten researchers in this field. The proposed MFSK feature is

robust and invariant to scale, rotation and partial occlusions. To alleviate the insufficiency of one shot training samples, we augment the

training samples by artificially synthesizing versions of various temporal scales, which is beneficial for coping with gestures performed

at varying speed. We evaluate the proposed method on the Chalearn gesture dataset (CGD). The results show that our approach

outperforms all currently published approaches on the challenging data of CGD, such as translated, scaled and occluded subsets.

When applied to the RGB-D datasets that are not one-shot (e.g., the Cornell Activity Dataset-60 and MSR Daily Activity 3D dataset),

the proposed feature also produces very promising results under leave-one-out cross validation or one-shot learning.

Index Terms—One-shot learning, gesture reco gnition, RGB-D data, bag of visual words model
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1 INTRODUCTION

VISION-BASED gesture recognition [1] is a very important
and active field of computer vision research due to a lot

of varied applications, such as sign language recognition [2],
human computer interaction (HCI) [3], robot control [4], video
surveillance [5], augmented reality [6] and video annotation
[7]. However, the traditional methods are based on strongly
supervised learning [8] and require a large number of training
samples [9], [10]. For example, the authors [10] demonstrated
that the recognition rate can be achieved 96 percent when at
least 50 training samples per class have used to train hidden
markov models (HMM). Nevertheless, the recognition rate
will be unstable when the number of training samples per
class decreases dramatically [10]. In order to explore new
algorithms or strategies that are robust to gesture recognition
with limited training samples, some recent works [9], [11],
[12], [13] have attempted to learn gestures at the other
extreme: one-shot learning (thatmeans only one training sam-
ple per class) gesture recognition from RGB-D data. In this
paper, we also focus on this one-shot learning problem.

One-shot learning gesture recognition from RGB-D data
has gained increasing attentions in recent years. Big challenge
there is learning of discriminant features and a classifier

from very limited training samples. Wu et al. [11] extracted
extended motion history image (Extended-MHI) [14] from
RGB and depth videos respectively, and then applied multi-
view spectral embedding (MSE) algorithm [15] to fuse these
two Extended-MHI features, and finally used maximum cor-
relation coefficient to achieve gesture recognition. Then a
product manifold method [16] is presented, which character-
ize data tensors (gesture videos) as points on a Grassmann
manifold and model it statistically using least squares regres-
sion. Later, Goussies et al. [17] proposed a transfer learning
method based on decision forests to recognize gestures.
Nevertheless, all of the mentioned methods got poor results
(�24% in Levenshtein distance (LD) scores1) on the Chalearn
gesture dataset (CGD) [18]. From the experimental results
[11], [16], [17], they demonstrate that the traditional features
(e.g., Extended-MHI) and classification models (e.g., decision
forest and product manifold) may be not very suitable for
one-shot learning.

Fortunately, some other published papers have revealed
promising results [9], [19], [20]. Some of them used bag of
visual words (BoVW) model with traditional spatiotempo-
ral features [21], [22] or specifically designed features [9].
For example, Wan et al. extended scale invariant feature
transform (SIFT) [23] to spatiotemporal domain and pro-
posed 3D enhanced motion SIFT (3D EMoSIFT) [9] and 3D
Sparse Motion SIFT (3D SMoSIFT) [20] to extract features by
fusing RGB-D data, which are invariant to scale and rota-
tion, and have more compact and richer visual representa-
tions. The evaluations of both MoSIFT-based features under
BoVW models were provided in [9], [20], which revealed
that the best results were below 14 percent in LD scores on
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1. LD distance between two strings is defined as the minimum num-
ber of operations (insertions, substitutions or deletions) needed to
transform one string into the other. LD score is analogous to an error
rate. Lower LD values indicate better performances.
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CGD. Furthermore, Kone�cnỳ and Hagara [19] extracted his-
togram of oriented gradients (HOG) [21] and histogram of
optical flow (HOF) features and used dynamic time warp-
ing (DTW) to recognize gestures. The best results reported
in [19] was about 11 percent in LD scores. From the top
results, we can see that feature selections (whether the spe-
cifically designed features or traditional features) are very
important for one-shot learning.

In this paper, we propose a novel spatiotemporal feature
extracted from RGB-D data, namely mixed features around
sparse keypoints (MFSK) for one shot learning of gesture
recognition. First, spatial pyramids are built over scale
spaces from every depth and grayscale (covered from RGB
images) frames, and initial keypoints are detected using
speeded-up robust features (SURF) [24] detector in scale
spaces. Then, the velocity of each initial keypoint based on
Lucas-Kanade optical flow algorithm [25] is calculated from
two consecutive frames, with those keypoints whose veloci-
ties are below a predefined threshold discarded. After key-
point detection, various descriptors around keypoint
volumes are calculated from RGB-D data: 3D SMoSIFT,
HOG, HOF and motion boundary histograms (MBH). To
cope with varying gesture velocity, the training samples are
augmented by artificially building temporal scales. The
main contributions of our work are summarized below:

� We provide a thorough review on published meth-
ods about one-shot learning gesture recognition
from RGB-D data, in which the challenges are ana-
lyzed and some future research directions are sug-
gested. As far as we known, it is the first such review
which we believe it is a non-trivial work.

� A novel MFSK feature is proposed, inspired by our
previous works [9], [20]. Compared with 3D EMo-
SIFT and SMoSIFT features, the proposed MFSK fea-
ture has two traits. The first is the robustness of
keypoint detection based on the proposed feature.
The other is the fusion of various descriptors, which
leads to consistently higher performance than the 3D
MoSIFT-based features. Furthermore, the proposed
feature is invariant and robust to scale, rotation and
partial occlusions.

� To cope with the problem of different velocity of ges-
ture in the data, the training samples are augmented
by artificially synthesizing versions of various tem-
poral scales, which proves to be beneficial for the
performance.

The rest of the paper is organized as follows. The review
on one-shot learning gesture recognition from RGB-D data
is presented in Section 2. The proposed MFSK feature and
augment of training data is described in Section 3. Then,
extensive experiments are provided in Section 4 to evaluate
and compare our method with the state-of-the-art methods.
Finally, a conclusion is given in Section 5.

2 REVIEW OF THE STATE-OF-THE-ART METHODS

Since the Chalearn gesture challenges took place in 2011 and
2012 based on CGD [18] dataset, one-shot learning gesture
recognition from RGB-D data has gained increasing atten-
tions and a lot of papers about this field have been pub-
lished in recent four years.

In this section, we first introduce the differences and con-
nections between RGB and RGB-D gesture recognition as
well as the related works on one-shot learning in image-
based or video-based domain. Then, we thoroughly analyze
these published papers, and introduce these methods into
three parts: preprocessing, feature extraction, and temporal
segmentation & recognition. In addition, we also introduce
the CGD dataset about one-shot learning gesture recogni-
tion and discuss the challenges (that we are facing) and
trends (which can improve the recognition performances).

2.1 Differences and Connections

Since the release of the Kinect sensor (capturing RGB-D
images) in late 2010 by Microsoft, RGB-D gesture recogni-
tion has gained a lot of attentions. Similar to the RGB ges-
ture recognition, the traditional methods may be applied to
gesture recognition based on RGB-D data. For example,
HOG and HOF features [19], [26], [27] are also widely used
to extract features, and HMM [27] and DTW [20], [28] are
commonly applied in temporal segmentation or gesture rec-
ognition from RGB-D data.

However, compared with gesture recognition based on
general RGB images, RGB-D sensors can capture RGB and
depth images simultaneously. It provides an easy and inex-
pensive access to depth information, which is convenient to
obtain the object mask using the simple Ostu method [11],
[29]. Besides, some elaborately designed features [9], [20],
[30] are also proposed for fusing RGB-D data.

One-shot learning problem is primarily presented by L.
Fei-Fei [31] in computer vision. It used a generative object
category model and variational Bayesian framework for
representation and learning of visual object categories.
Comparing with one-shot learning in image-based domain
[31], [32], we focus on one-shot learning in video-based
domain, especially for RGB-D videos.

2.2 CGD Dataset

The goal of the CGD dataset is to employ systems to per-
form gesture recognition from videos containing diverse
backgrounds, using a single example per class, i.e., one-shot
learning. CGD comprises 54,000 different gestures divided
into 540 batches. Gestures were recorded in RGB and depth
video using Kinect camera. The data set was divided into
development (480 batches), validation (20 batches) and
additional batches for evaluation (40 batches, referred to as
final batches). Each batch is associated to a different gesture
vocabulary, and it contains exactly one video from each
gesture in the vocabulary for training and several videos
containing sequences of gestures taken from the same
vocabulary for testing. Each batch contains 100 gestures.
The number of training videos/gestures ranges from 8 to 12
depending on the vocabulary. There are 47 videos in each
batch (frame size 320� 240, 10 frames/second, recorded by
20 different users) and each video contains one to five ges-
tures. Some samples are shown in Fig. 1.

To test the robustness of recognition to body translation,
images scaling and partial occlusions, CGD provided some
more challenging subsets. Some representative images of
these subsets are shown in Fig. 2 and their descriptions are
illustrated below:

WAN ETAL.: EXPLORE EFFICIENT LOCAL FEATURES FROM RGB-D DATA FOR ONE-SHOT LEARNING GESTURE RECOGNITION 1627



1) utran data (utran01� utran20): The untranslated
data are selected batches from the original data
including a large background area in which no ges-
ture was taking place. It comprises 2,000 gestures.

2) trans data (trans01� trans20): Using the utran data,
one made a different horizontal translation to gener-
ate the trans data.

3) scale data (scale01� scale20): Similarly, one applied
various scaling factors on the utran data to generate
the scale data.

4) uoccl data (uoccl01� uoccl20): This subsets are
selected from CGD as the unoccluded data. It com-
prises 2,000 gestures.

5) occlu data (occlu01� occlu20): One added a red rect-
angle with 10*240 pixels in the center of every frame
of both RGB and depth videos from the uoccl data.
This red rectangle is treated as occlusions.

In order to facilitate our discussions in the following parts,
we list all the methods and recognition results of the pub-
lished papers in Tables 1 and 2, and give some basic notions
here.

Metric of Evaluation: LD score is used to evaluate the per-
formances of different methods, which is explained in Sec-
tion 1. The results shown in this paper are LD scores unless
mentioned otherwise in our experiments.

Explanation of abbreviations: devel means the development
batches (devel01� devel20); valid means the validation
batches (valid01� valid20); final1 means the first 20 batches
for evaluation (final01� final20); final2 means the left 20
batches for evaluation (final21� final40);

2.3 Preprocessing

Before feature extraction from RGB-D data, a few authors
employed some image processing techniques to obtain the
body mask [11], [29], [33]. Wu et al. [11] applied the otsu

Fig. 1. Some samples from CGD. The first row is RGB images and the
corresponding depth images are shown in the second row. It is derived
from [9].

Fig. 2. It shows some samples derived from [20] for the new subsets on
CGD. (a) untranslated; (b) translated; (c) scaled; (d) occluded.

TABLE 1
The Survey of Published Methods about One-Shot Learning Gesture Recognition from RGB-D Data

Index Papers Preprocessing Feature
extraction

Temporal segmentation &
Recognition methods

Simultaneously Published
year

1 [26] No HOG, HOF mcHMM + BoVWmodel + LDA Yes 2012
[27]

2 [11] Yes Extended-MHI Appearance-based & No 2012
Maximum Correlation Coefficient

3 [16] No Raw data Appearance-based & No 2012
(RGB-D) Product Manifolds

4 [28] No Motion maps DTW & No 2013
PCA-based recognition error

5 [35] Yes 3D Histogram of Scene Sliding window + Sparse Yes 2013
[36] Flow + Global HOG coding + linear SVM 2013

6 [9] No 3D EMoSIFT DTW & BoVWmodel + nearest No 2013
neighbors (NN) classifier

7 [29] Yes MEI + HOG DTW & No 2013
PCA-based recognition error

8 [20] No 3D SMoSIFT DTW & BoVWmodel + nearest No 2014
neighbors (NN) classifier

9 [19] No HOG + HOF DTW + Quadratic-Chi Yes 2014
histogram distance

10 [17] No MHI DTW & Transfer learning decision No 2014
trees + naive Bayes model

11 [37] No 3D EMoSIFT DTW & CSMMI No 2014

12 [30] No HOG, HOF, VFHCRH Probability-based DTW & No 2014
BoVWmodel

13 [33] Yes HOG Conditional level Yes 2015
building (CLB)

14 [38] No Improved Principle Motion Appearance-based & No 2015
Multi-layered Classifier
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method of global image threshold [34] to segment human
bodies from the background, then used a median filter and
a morphological operator for noise reduction. As the
authors’ suggestion [11], the performances were improved
about 9 percent via the preprocessing operators. Similarly,
the otsu method and filter techniques are applied to achieve
background or outlier removal in [29]. Besides, image
smoothing via a median filter and in-painting [33] are used
to restore the images in the sequence by filling all the holes.
Some representative results are shown in Fig. 3.

In previous works, the aim of preprocessing is to obtain
more pure human body mask which will be used to extract
more efficient features [11], [29], [33].

2.4 Feature Extraction

As shown in Table 1, the motion and gradient features are
widely used in the published papers. For instance, nearly 50
percent listed papers used HOG or HOF features. In [26],
[27], Malgireddy et al. detected interest points by taking the
difference between two consecutive depth images, and then
extracted HOG and HOF features at each interest point.
Owing to the calculation of descriptors around interest
points, the extracted HOG and HOF features are local. How-
ever, in [19], [29], [33], [35], [36], the HOG or HOF features
are extracted globally because they are directly computed
from RGB or depth frames.

Another traditional features are motion energy informa-
tion (MEI) [29], MHI [39] and its variants. These two fea-
tures are used in [11], [17], [29]. Compared with the MEI or

MHI, the performances of HOG and HOF features are better
from the statistical results shown in Table 2. Moreover, a
new descriptor [30] Viewpoint Feature Histogram Camera
Roll Histogram (VFHCRH) was also introduced at the fea-
ture extraction stage.

Unlike the above mentioned features, some novel fea-
tures are specifically designed for RGB-D videos. In [9],
Wan et al. proposed the 3D EMoSIFT feature which fuses
RGB and depth data to calculate SIFT-based descriptors.
Later, the authors [9] extended their previous works and
presented 3D SMoSIFT [20]. These two SIFT-based features
first detect interest points from the scale spaces, and then
build three dimensional gradient and motion spaces around
each interest point, and finally calculate SIFT-like descrip-
tors on both 3D spaces, respectively. The proposed 3D
MoSIFT-based features are invariant to scale, transition, and
partial occlusions, which can be found in Table 2. We also
find that 3D MoSIFT-based features under the BoVW model
achieve the best performances in most cases from Table 2.

As the above discussions, the traditional features (HOG
and HOF) and the specifically designed features (3D EMo-
SIFT and 3D SMoSIFT) have achieved promising perform-
ances. But HOG and HOF features are sensitive to scaled
and translated data [13], that is because HOG and HOF fea-
tures are rigidly positioned on image feature maps [19]. For
example, in [19], the proposed method using HOG and
HOF features can get 0.2896 on utran data, while the per-
formances drastically declined at least 24 percent on trans
and scaled data. However, in [20], the results via the 3D
SMoSIFT feature are very robust (about 1 percent) to scale
and trans data. Therefore, 3D MoSIFT-based features can
well handle more complex cases, such as scaled, translated
or partially occluded data.

2.5 Temporal Segmentation and Recognition

In order to recognize gestures in continuous video streams,
gesture recognition and temporal segmentation can be
simultaneous or non-simultaneous depending on different
algorithms.

TABLE 2
It Shows the Recognition Performances of the Published Papers on Different Subsets of CGD

Index Papers devel valid final1 final2 utran trans scaled uoccl occlu

1 [26], [27] 0.2409 0.2333 0.1847 0.1853 0.3594 0.3962 0.4152 - -
2 [11] 0.26 0.2969 - - - - - - -
3 [16] 0.2873 - - - - - - - -
4 [28] 0.3016 0.3178 0.2641 0.2124 - - - - -
5 [35], [36] 0.2511 - - - - - - - -
6 [9] 0.1945 0.1595 0.1382 0.1259 0.2635 0.253 0.254 0.1185 0.1375
7 [29] 0.2241 - - - - - - - -
8 [20] 0.1965 - - 0.114 0.257 0.2475 0.263 0.114 0.1335
9 [19] 0.2199 0.2001 0.1702 0.1098 0.2896 0.5993 0.5296 - -
10 [17] 0.3155 - 0.2834 0.2475 - - - - -
11 [37] 0.1876 - - - - - - - -
12 [30] 0.2662 - - - - - - - -
13 [33] - 0.2105 0.1642 0.1687 - - - - -
14 [38] 0.1964 - - - - - - - -

Ours MFSK+BoVW 0.1645 0.1270 0.1395 0.0925 0.2390 0.2120 0.2375 0.1145 0.1150
MFSK+BoVW+TS 0.1590 0.1242 0.1326 0.0900 0.2315 0.2102 0.2300 0.0970 0.1125

The bold value in each column is the best result of the corresponding subsets except the last two rows in which the results of our method are listed. Compared with
the results of published papers, our methods achieve the best performances in all subsets of CGD.

Fig. 3. It shows the results by the preprocessing step. (a) original frame,
(b) image smoothing, (c) background removal. The image is derived
from [33].
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1) Non-simultaneous segmentation and recognition
As shown in Table 1 (see the fifth and sixth columns),

temporal segmentation and gesture recognition are not
done simultaneously in most of the published papers [9],
[11], [16], [17], [20], [28], [29], [30], [37], [38]. Usually those
approaches first perform temporal segmentation to localize
isolate gestures, and then recognize each isolate gesture.

For automatic segmentation, the authors in [9], [17], [20],
[28], [29], [37] used dynamic time warping algorithm to split
the continues gestures into some isolate gestures. More spe-
cifically, the difference image (see Fig. 4b) is first computed
by subtracting consecutive frames in a video. Then a grid of
equally spaced cells is defined over the difference image.
The default size of the grid is 3� 3 as shown in Fig. 4c. For
each cell, the average value is calculated in the difference
image, so a 3� 3matrix is generated. Finally, this matrix can
be flattened into a vector which is called motion feature [9].
Aftermotion feature extraction, the DTWdistance can be cal-
culated between the testing sample and the traing samples,
and then one can apply the Viterbi algorithm [40] to find the
temporal segmentation (see Fig. 4e). The code2 of DTW was
released by the organizers of the Chalearn gesture challenge.

Appearance-based method [11], [16], [38] is another way
to achieve temporal segmentation, which find candidate cuts
based on similarities with respect to the resting position or
the amount of motion. Liu [16] thought that hands return to a
resting position between each pair of neighboring gestures,
and the correlation coefficient were calculated between the
first frame (as a template) and subsequent frames. Then the
gesture segments can be localized by identifying the peak
locations from the correlations. Similarly, Wu et al. [11]
found the frames that are similar to the beginning and end-
ing frames in the unsegmented testing video sequence and
defined them as the interval frames between two gestures in
a video sequence. Jiang et al. [38] measured the quantity of
movement of each frame and then got the candidate bound-
aries based on a predefined threshold, and finally refined the
candidate boundaries using slidingwindows.

After temporal segment, different features can be
extracted from each isolate gesture. Then, in order to recog-
nize gestures, a lot of methods can be selected, such as
BoVW model with nearest neighbor (NN) classifier [9], [20],
class-specific maximization of mutual information (CSMMI)

[37], PCA-based recognition error [28], [29], product mani-
folds [16], transfer learning decision trees (TLDT) with
naive Bayes model [17], and maximum correlation coeffi-
cient [26], [27], which are summarized in Table 1. In addi-
tion, we can see that the traditional generative models (i.e.,
DBN, CRF, ANN) are rarely used for one-shot learning.
That is because it would be very difficult to train these mod-
els effectively due to the lack of training data, and very lim-
ited training samples can easily lead to the underfitting
problem. On the contrary, nonparametric methods, such as
the NN classifier [9], [20] can work surprisingly well for
one-shot learning.

2) Simultaneous segmentation and recognition
The simultaneous segmentation and recognition techni-

ques are very popular to recognize gestures in traditional
methods [41], [42]. For one-shot learning gesture recogni-
tion, some papers [19], [26], [27], [33], [35], [36] also execute
gesture segmentation and recognition simultaneously.

Malgireddy et al. [26], [27] proposed a temporal Bayesian
model for classifying, detecting and localizing gestures in
video sequences. First, after HOG and HOF feature extrac-
tion, the feature descriptors over the entire space of gestures
are converted to “visual words” via the BoVW model and
latent dirichlet allocation (LDA) [43]. So each frame can be
represented by a histogram over the visual words in that
frame. Then, multiple channel HMM (mcHMM) is pro-
posed for gesture spotting and recognition. Unlike classic
HMM, this model has multiple channels, where each chan-
nel is represented as a distribution over the visual words
corresponding to that channel. And mcHMM has multiple
observations per state and channel.

Fanello et al. [35], [36] extracted motion and gradient fea-
tures (3D Histograms of Scene Flow and Global HOGs), and
then adopted sparse coding [44], [45] to capture high-level
patterns from the extracted features, and finally used a slid-
ing window with linear support vector machines (SVMs)
[46], [47] to simultaneously segment and recognize gestures.

Besides, after feature extraction, Kone�cnỳ and Hagara
[19] simply utilized DTW with Quadratic-Chi histogram
distance to segment and recognize gestures. The proposed
method achieves high performances on regular data, such
as valid, devel and final data. But the proposed method is
not good at scaled and translated data (see Table 2). That
means the extracted HOG and HOF features are sensitive to
scaling and translations.

Fig. 4. Examples for the calculation of motion feature vector (a-d) and temporal segmentation by DTWalgorithm (e). Images are derived from [9].

2. http://gesture.chalearn.org/data/sample-code
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Lastly, Krishnan and Sarkar [33] proposed the condi-
tional level building (CLB) method to achieve this purpose.
Unlike the original level building algorithm [46], [48], [49]
using DTW as the distance measure, CLB is based on condi-
tional distances. From the experimental results in Table 2,
CLB can get a relatively high performance.

2.6 Challenges and Trends

Here, we first list some challenges that we are facing for
one-shot learning gesture recognition, and discuss the
trends which can improve recognition performances.

2.6.1 Challenges

We are facing the challenges on one-shot learning problem.
First, there is one training sample per class. It is one of the
biggest challenges to train a robust model using very lim-
ited samples. Second, feature extraction is also one of the
most difficult challenges. The effective features usually can
get better performances. When some errors or omissions
may be happened in performing gestures, it faces great chal-
lenges at the feature extraction stage. Third, large variances
of intra-class and small variances of inter-class are also a
challenging problem. For instance, some users are less
skilled than others when performing gestures or some ges-
tures from different classes are very similar. Fourth, partial
occlusions may occur, and it may face more complex envi-
ronments (i.e., variations in background, clothing, skin
color, lighting, resolution). Lastly, only the RGB-D data is
provided. The skeleton or audio data is not available. More-
over, outliers or black areas may occur in depth videos.

2.6.2 Trends

In order to improve the performance using limited training
samples, we list some trends as below. We think that these
trends may be useful for researchers in this field.

Designing new features from RGB-D data. Feature extrac-
tion is one of the biggest challenges. Different people have
different speeds, trajectories and spatial positions to per-
form the same gesture. Even when a single person performs
the gestures, the trajectories are not identical. In order to
overcome these problems, the extracted features will be
effective if they are robust to scale, translation, rotation and
partial occlusions, i.e., 3D MoSIFT-based features [9], [20]
shown in Table 2.

Fusing different features. The combination of different fea-
tures can also boost the performance. In the following, we
will prove this statement.

Selecting suitable models. Through analysis of the pub-
lished papers in Tables 1 and 2, DTW [19] and BoVW mod-
els [9], [20] can achieve the top performances.

Augmenting training samples. In order to augment training
samples, some strategies can be used to generate new train-
ing samples: 1) building temporal scales, which will be illus-
trated in Section 3; and 2) adding some noise in training
samples to cover more variations in learning.

3 THE PROPOSED APPROACH

We first introduce the MFSK feature and then give the
detailed information about temporal scales to augment the

training samples. Lastly, the inspirations of using MFSK fea-
tures are given, and finally a short summary of the pro-
posed approach is presented.

3.1 Mixed Features around Sparse Keypoints

As the previously proposed features [9], [20], [50], we first
find keypoints and then calculate the descriptors around
the regions of each keypoint. However, MFSK is different
from these MoSIFT-based features [9], [20], [50]: 1) Having
more robust keypoint detection strategies; 2) Having more
descriptors around the detected keypoints.

Concretely, MFSK features broadly consist of three
stages. First, the spatial pyramid as the scale space is built
for every gray and depth frame, which is similar to the 3D
SMoSIFT feature [20]. In order to make this paper more self-
contained, we briefly introduce the processes of building
spatial pyramids. Second, keypoint detection around the
motion regions is applied in scale spaces via SURF detector
[24] and tracking techniques. Third, different descriptors
are calculated in local patches around keypoints.

3.1.1 Spatial Pyramid Building

For a given sample including two videos (an RGB video and
a depth video3), we can obtain a grayscale image Gt (con-
verted from RGB frame) and a depth image Dt at time t.
Then one pyramid can be built from Gt or Dt via downsam-

pling. Formally, at time t, two pyramids Pt
G and Pt

D can be

constructed via Eq. (1).

Gl
tðx; yÞ ¼ Gtð2ðl�1Þx; 2ðl�1ÞyÞ 1 � l � L

Dl
tðx; yÞ ¼ Dtð2ðl�1Þx; 2ðl�1ÞyÞ 1 � l � L;

(1)

where Gl
t (or D

l
t) is the image at the lth level in the pyramid,

ðx; yÞ is the coordinate of Gl
t (or Dl

t). Hence, at time t,

the pyramids Pt
G and Pt

D can be built, that is Pt
G ¼ fG1

t ;

G2
t ; . . . ; G

L
t g, Pt

D ¼ fD1
t ; D

2
t ; . . . ; D

L
t g.

Fig. 5 shows two pyramids Pt
G, P

tþ1
G (or Pt

D, P
tþ1
D ) built

from two consecutive grayscale (or depth) frames at time t
and tþ 1. The original frames are of size 320� 240. As shown
in Fig. 5, each pyramid has three levels and images in the first
level are original frames from RGB-D videos. After building
pyramids, we illustrate how to find robust keypoints around
motion regions in both RGB and depth frames.

3.1.2 Sparse Keypoint Detection

After building spatial pyramids, keypoints around motion
regions can be detected in each spatial scale by two steps.
Initial Keypoint Detection via SURF Detector. Bay et al. [24]
proposed a Fast-Hessian detector. Concretely, for a point
pðx; yÞ in an image I, its Hessian matrix Hðp; sÞ in p at scale
s is defined as follow:

Hðp; sÞ ¼ Lxxðp; sÞ Lxyðp; sÞ
Lxyðp; sÞ Lyyðp; sÞ

" #
; (2)

where Lxxðp; sÞ is the convolution of the Gaussian second

order derivative @2gðsÞ
@2x

with the image I in point p, and

3. The depth values are normalized to [0 255] in depth videos.
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similarly Lxyðp; sÞ ¼ @2gðsÞ
@xy , Lyyðp; sÞ ¼ @2gðsÞ

@2y
. In order to

achieve fast convolution calculation, the second orderGauss-
ian derivatives in Eq. (2) can be computed at a very low
computational cost using integral images [51], and the calcu-
lation time is independent of the gaussian filter size. This is
important when big filter sizes are used. Then, the 9 � 9 box
filters in Fig. 6 are approximations of a Gaussian with
s ¼ 1:2 for computing the blob response maps, which are
denoted by Dxx, Dyy and Dxy. More specifically, the blob
response maps are calculated via filtering one image with
the box filters shown in Fig. 6. The weights applied to the
rectangular regions are kept simple for computational effi-
ciency. So theHessian’s determinant can be approximated as

detðHapproxÞ ¼ DxxDyy� �
wD2

xy

�
; (3)

where w is the relative weight of the filter responses that is
used to balance the expression for the Hessian’s determi-
nant. And w is

w ¼ jLxyð1:2ÞjF jDyyð9ÞjF
jLyyð1:2ÞjF jDxyð9ÞjF

¼ 0:912 . . . ’ 0:9; (4)

where jxjF is the Frobenius norm.
Therefore, the approximated determinant of the Hessian

for every point can be computed in the image. Then the
maxima of the determinant of the Hessian matrix can be
found in a 3� 3� 3 neighborhood [24], and these points
with maxima are our initial keypoints. Initial keypoints can
be easily found via the function SurfFeatureDetector from
opencv library [52].

Keypoint Detection via Motion Filtering. We assume that
the initial keypoints are found at time t, then we can use
Lucas-Kanade optical flow method [25] to track these key-
points at time tþ 1 and calculate their velocities. If the

velocity of one keypoint is very small, this means the region
around this keypoint may have less motion. Therefore,
these keypoints with small velocities will be discarded. That
is to say, when the absolute velocity jvj of a keypoint at the

lth level is larger than a given threshold tl, this point will

become a keypoint. tl is defined as,

tl ¼ max maxðajvlmaxj; 0:5l�1bÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{local constraint

; d
z}|{global constraint

0
B@

1
CA

1 � l � L; 0 < a < 1;

(5)

where jvlmaxj is the maximum value of absolute velocities of

interest points at the lth level in the pyramid. The parameter

maxðajvlmaxj; 0:5l�1bÞ determines the motion constraint at the

lth level. d is the global parameters, whichmeans the absolute
velocity of each keypoint is not less than d. According to [20],
we fixed a ¼ 0:15, b ¼ 0:8 and d ¼ 0:5. And the detected key-
points are shown in Fig. 7. If the values a;b and d are larger,
the selected keypoints will have largemotions.

From the previous work [20], we know that when it uses
the gray images to detect keypoints for both initial keypoint
detection and motion filtering, it will get a relatively high
performance. Therefore, we also use gray images for key-
point detection.

3.1.3 Feature Descriptor Calculation

After keypoint detection, the feature descriptors can be
computed from the local patch around every keypoint. As
shown in Fig. 5, we suppose that one keypoint denoted by
the green circles has been detected. Then we can extract
four local patches (gt; dt; gtþ1; dtþ1) around the keypoint,

Fig. 6. The approximation for the second order Gaussian partial deriva-
tive in x-(Dxx), y-(Dyy) and xy�direction (Dxy). The grey regions are
equal to zero.

Fig. 5. Building four pyramids from two pair of consecutive frames. (a) Pt
G at time t; (b) Pt

D at time t; (c) Ptþ1
G at time tþ 1; (D) Ptþ1

D at time tþ 1. The
detected keypoints are denoted by the green circle, and the extracted local patches are shown within the green rectangles. The four local patches
are denoted by gt; dt; gtþ1; dtþ1 from left to right.

Fig. 7. The detected keypoints via SURF detector and motion filtering.
The keypoints are detected in the first two levels from the pyramids of
Fig. 5, and no keypoints are found in the third level.
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which are denoted by green rectangles. The size of the patch
is G� G pixels. Finally, we compute four descriptors (3D
SMoSIFT, HOG, HOF and MBH) from the extracted local
patches as shown in Fig. 8, and the final descriptor is a con-
catenation of these descriptors. To embed structural infor-
mation, the local patch is subdivided into g � g cells to
calculate HOG, HOF and MBH descriptors.

3D SMoSIFT. As shown in [9], [20], 3D SMoSIFT yields
excellent results for one-shot learning in comparison with
other state-of-the-art descriptors. Especially, as shown in
Table 2, 3D SMoSIFT is robust to scale, translation and par-
tial occlusions.

We compute the 3D SMoSIFT descriptors using the four
patches (gt; dt; gtþ1; dtþ1). For 3D SMoSIFT, 3D gradient and
3D motion spaces are constructed by fusing RGB-D data
shown in Fig. 8. Then in each 3D space, we map 3D space
into three 2D planes: xy, yz and xz plane, and SIFT descrip-
tors are calculated on each plane. Therefore, 3D SMoSIFT
consists of six SIFT descriptors, and 3D SMoSIFT size is 768
(6� 128). The detailed information about the calculation of
3D SMoSIFT can be found in [9], [20].

HOG and HOF. HOG and HOF descriptors [53] are
widely used for action recognition, which have achieved
very promising results [54]. Interestingly, as shown in
Table 1, they are also widely used for one-shot learning ges-
ture recognition. And some papers [19], [26], [27] also
achieved high performances (see Table 2).

We compute theHOGandHOFdescriptors in two patches
gt and dt. For both HOG andHOF, orientations are quantized
into h bins with full orientations, and the magnitudes are
used for weighting [55]. The final descriptor size for both gt
and dt is 2� g � g � h for HOG and 2� g � g � h for HOF.

Motion Boundary Histograms. To overcome the camera
motion, Dalal et al. [56] proposed MBH descriptor by com-
puting derivatives separately for the horizontal and vertical
components of the optical flow. Since MBH represents the
gradient of the optical flow, locally constant camera motion
is removed and information about changes in the flow field
(i.e., motion boundaries) is kept. MBH is more robust to
camera motion than optical flow.

We compute MBH descriptors in two patches gt and dt.
The MBH descriptor separates optical flow into its horizon-
tal and vertical components. Spatial derivatives are com-
puted for each of them and orientation information is
quantized into histograms. The magnitude is used for
weighting. The orientations are also quantized into h bins.
Then we can obtain a h-bin histogram for each component
(i.e., MBHx and MBHy). Then the final descriptor size for

both gt and dt is 2� g � g � h for MBHx, and 2� g � g � h

for MBHy, respectively.

3.2 Building Temporal Scales

To further boost the recognition performance, we artificially
augment the training samples via building temporal scales.
Here, we define the temporal scales as V ¼ ½v1; . . . ;vn�,
where n is the size of temporal scales, vi 2 ½0; 1�. And we
can generate n new videos from one training sample.

Specifically, we assume that a video is represented by

V ¼ ½f1; f2; . . . ; fN � with N frames, where fi is the ith frame,
V is the original video. For a temporal scale value
vi 2 ½0; 1�; 1 � i � n, a new video Vi is generated via linear
interpolation. The full description is given in Algorithm 1.
When there are n temporal scales V ¼ ½v1; . . . ;vn�, we can
generate n new videos V1; V2; . . . ; Vn from the original video
(one video per temporal scale).

Algorithm 1. Building One New Video via a Temporal
Scale Value wi

Input: A temporal scale value: wi;
Input video: V ¼ ½f1; f2; . . . ; fN �;

Output: A new video: Vi

1: Initialization: Vi ¼ ½ �;
2: Calculate the frame number of Vi:N

0 ¼ floorðvi �NÞ, where
N 0 is an integer value;

3: Calculate the step D: D ¼ N=ðN 0 � 1Þ;
4: while idx � N do
5: Selecting one frame f : f ¼ V ðidxÞ
6: Vi ¼ ½Vi f �
7: idx ¼ floorðidxþ DÞ, idx is a integer value
8: end while

3.3 Inspirations and Summary of the Proposed
Approach

Inspirations. There are two reasons that we calculate these
feature descriptors (3D SMoSIFT, HOG, HOF and MBH) for
the MFSK feature.

1) For one-shot learning gesture recognition in RGB-D
data, the 3D SMoSIFT, HOG and HOF can achieve
high performances in previous works [9], [19], [20].

2) For video-based action recognition, the HOG, HOF
and MBH are widely used [53], [54], [55]. For exam-
ple, the dense trajectory method [55] is one of the
state-of-the-art methods for action recognition,
which also used HOG, HOF and MBH.

Fig. 8. Computing the descriptors (3D SMoSFIT, HOG, HOF, MBH) from the local patch around every keypoint.
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Owing to the above reasons, the MFSK feature is pro-
posed. As far as we known, it is the first time the MBH fea-
ture is used for one-shot learning gesture recognition. From
the experiments in this paper, the MFSK feature (combined
with 3D SMoSIFT, HOG, HOF and MBH) can get very
promising results.

Summary. In this section, we propose the MFSK feature,
which includes different descriptors (3D SMoSIFT, HOG,
HOF, MBH). Therefore, the proposed features have similar
properties of these four descriptors. According to our exper-
imental results, the proposed feature outperforms currently
published state-of-the-art methods on challenging data of
CGD. Besides, in order to further boost the recognition per-
formance, we propose a simple method to build several
temporal scales for augmenting training samples.

4 EXPERIMENTAL RESULTS

In our experiments, we use the BoVWmodel to evaluate the
proposed feature, where NN classifier is used for all subsets
of CGD. The LD score (normalized by the length of the truth
labeling) [13] is used to evaluate the performance. We use a
parameter � instead of the codebook size M (which is used
in [9]) in BoVW model. That is because the number of
extracted features from training samples is varied. If a given
codebook size M is too large, it may cause over-clustering
on some batches, which will affect the final performance [9].
Therefore, we set different codebook sizes to different
batches when we use a given value for �. The corresponding
codebook size can be calculated, M ¼ � � Ltr, where Ltr is
the number of features extracted from training samples on a
certain batch. Unless mentioned otherwise, we set � ¼ 0:5
which can obtain a high performance as shown in [9].

First, we discuss the parameters of the proposed method
which include parameters of MFSK features and temporal
scales. Then, we compare our method with current state-of-
the-art methods on CGD, Cornell Activity Dataset-60 (CAD-
60) and MSR Daily Activity 3D datasets. And we note that

we have released the code about the proposed MFSK fea-
ture (https://mloss.org/revision/view/1866/).

4.1 Parameter Settings

This part gives the discussion of parameters in the proposed
method. First, we analyze the parameters of MFSK features:
cell number g, bin number h, the patch size G� G. Then, we
discuss the parameter of temporal scales: V. For determin-
ing the parameters of MFSK features, we test the proposed
feature under the BoVW model without temporal scales.
We should declare that according to the results of [20], we
set the pyramid levels L ¼ 3.

4.1.1 Parameters of MFSK Features

We use a simple strategy to decide these three parameters.
At first, we keep g ¼ 2; h ¼ 8 and set G ¼ ½8; 16; 32; 64�. The
results are shown in Table 3, we can see that the performan-
ces will be better when the patch size increases, and the
result of G ¼ 64 is slightly better than G ¼ 32. With the trade
off between time complexity and recognition performance,
we set G ¼ 32.

Then, we set different values for g 2 ½1; 2; 3; 4� and
h 2 ½2; 4; 8; 16�. As shown in Table 4, the performances of the
MFSK features are very stable, and the best performance is
0.1645 when g ¼ 2; h ¼ 8. Therefore, we set g ¼ 2; h ¼ 8.

4.1.2 Parameters of Temporal Scales

Here, we test three cases: V ¼ ½1�, V ¼ ½0:4; 0:8; 1� and
V ¼ ½0:4; 0:6; 0:8; 1�. The results are shown in Table 5, where
the results for V ¼ ½0:4; 0:8; 1� and V ¼ ½0:4; 0:6; 0:8; 1� are
better than the original results by improving about 0:55 per-
cent. When V ¼ ½1�, it means temporal scales is not used. It
also demonstrates that the performances are very stable
when V is changed. And in our experiments, we set
V ¼ ½0:4; 0:6; 0:8; 1�, because it is more stable when gestures
have different speeds.

From the above discussions, we set g ¼ 2; h ¼ 8;G ¼ 32
and V ¼ ½0:4; 0:6; 0:8; 1� unless mentioned otherwise in our
experiments.

4.2 Comparisons

4.2.1 Comparison within MFSK Features

We know that the MFSK feature consists of four basic com-
ponents, namely 3D SMoSIFT, HOG, HOF and MBH fea-
tures. In order to find the effectiveness of each component,
we evaluate these four features in our experiments sepa-
rately or jointly, and the results are calculated under the
BoVW model without temporal scales. The HOG and HOF
features are used simultaneously, that is because HOGHOF

TABLE 3
Parameters: Cell Number g ¼ 2, Bin Number h ¼ 8

patch size G� G 8 � 8 16 � 16 32 � 32 64 � 64

LD score 0.2550 0.1840 0.1645 0.1630

The LD scores are calculated with different block sizes (devel01� devel20).

TABLE 4
Parameters: Patch Size G ¼ 32� 32

h
g

2 4 8 16

1 0.193 0.185 0.179 0.176
(16) (32) (64) (128)

2 0.1795 0.1775 0.1645 0.171
(64) (128) (256) (512)

3 0.1715 0.176 0.171 0.1815
(144) (288) (576) (1,152)

4 0.1775 0.1765 0.1895 0.2015
(256) (512) (1,024) (2,048)

The LD scores are calculated with different cell number g and bin nmuber
h (devel01� devel20). The values in the brackets are descriptor (HOG+
HOF+MBH) sizes.

TABLE 5
Parameters: g ¼ 2, h ¼ 8, G ¼ 32

temporal scale V LD score

½1� 0.1645
½0:4; 0:8; 1� 0.1590

½0:4; 0:6; 0:8; 1� 0.1580

The LD scores are calculated with different block
sizes (devel01� devel20).
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usually outperforms the HOG and HOF features [9], [30],
[55]. The results are shown in Fig. 9, where we can see that:

1. For individual features, the 3D SMoSIFT gets the best
performance, and the order of performance decrease is 3D
SMoSIFT > HOGHOF > MBH.

2. For the composite features, MFSK achieves the best
performance, which is slightly better than 3D SMoSIFT þ
MBH. And the performances of another two combined fea-
tures (3D SMoSIFT þ HOGHOF, HOGHOF þ MBH) are
poorer than the MFSK or 3D SMoSIFT þMBH.

3. Overall, the combination of features can deliver better
performances than the individual features.

4.2.2 Comparison with Other Spatiotemporal Features

In our experiments, we use the BoVW model without tem-
poral scales to evaluate traditional spatiotemporal features
(i.e., Cuboid4 [57], STIP5 [58] (Harris3D+HOGHOF), dense
trajectory6) [55], and the specially designed features for
RGB-D data: 3D MoSIFT-based features7 (3D MoSIFT [50],
3D EMoSIF [9], 3D SMoSIFT [20]). All features are used
with their default parameters. For traditional features, we
can extract feature descriptors from RGB or depth videos.
Therefore, the results are calculated by these features
under two type data (RGB or RGB-D data). As shown in
Fig. 10, the proposed feature also achieves the best perfor-
mance. Besides, the performance of the dense trajectory
method outperforms other traditional spatiotemporal fea-
tures, but is still 4:4 percent lower than the proposed
MFSK feature.

4.2.3 Comparison with Other Methods

Here, the performances are executed by two settings: MFSK
+BoVW and MFSK+BoVW+TS, where TS denotes temporal
scales. First, we compare with the currently published
papers. The results are shown in Table 2. One can see that
our method consistently outperforms the state-of-the-art
methods (with an improvement of about 2:31 percent on
average), and our method is very robust to scale, transla-
tion, partial occlusions. Then, we also compare with the
results of all top 14 results on CGD data in Table 6. Those

top 14 results are derived from [18]. This table shows that
our method is comparable to the best performance of team
“Alfnie”. More importantly, our method is more robust
than “Alfnie” on challenging CGD subsets, such as tran and
scaled data. For examples, the performances of “Alfine1”
are decreased by 6:75 percent for trans data and 9:31 per-
cent for scaled data, while our performances of “MFSK
+BoVW+TS” are only decreased by 2:13 percent for trans
data, and only 0:15 percent for scaled data, respectively.

4.3 Running Time Analysis

We randomly selected a sample from CGD and tested the
average time with c++ programs and opencv library on a
standard personal computer (CPU: Intel(R) Core(TM) i7-
4790 @3.6 GHz, RAM: 24 GB). The average time of the
MFSK feature is about 98 ms=f (including keypoints detec-
tion, feature description calculation and feature saving in
the disk) without any optimization of the code. Moreover,
we also test the calculation time among different descrip-
tions: HOGHOF, MBH and 3D SMoSIFT. The running time
of HOGHOF and MBH is very similar (about 18 ms=f)
while 3D SMoSIFT costs more time (about 32 ms=f). How-
ever, as shown in Fig. 9, 3D SMoSIFT can get better perform-
ances when these three parts are tested separately.

4.4 Experimental Results on Other RGB-D Datasets

Although the proposed MFSK feature has gained promis-
ing performances on one-shot learning gesture recognition
from RGB-D data, it can also be evaluated on other RGB-D
datasets. Here, we evaluate the proposed feature on Cor-
nell Activity Dataset-60 (CAD-60) [59] and MSR Daily
Activity 3D dataset [60]. Some samples from these two
datasets are shown in Figs. 11 and 12, respectively. We can
see that these two datasets are more challenging for the
noise backgrounds (i.e. moving background, moving sub-
jects). In order to eliminate the noise effect and detect
more accurate keypoints, we first found the local bounding
box of the person based on skeletal information provided
by these two datasets and then computed MFSK features
within that bounding box.

4.4.1 Experiments on CAD-60

CAD-60 has five different environments: office, kitchen,
bedroom, bathroom and living room. Three to four common
activities were identified for each location, giving a total of

Fig. 9. The performances of different components in the MFSK feature
(devel01� devel20). It can be seen that the MFSK feature achieves the
best performance.

Fig. 10. The performances of different spatiotemporal features. It can be
seen that MFSK achieves the best performance. More exactly, the order of
performance decrease is MFSK > 3D SMoSIFT > 3D EMoSIFT >
dense trajectory(R+D) > 3D MoSIFT > dense trajectory(R) > STIP(R
+D) > STIP(R) > Cuboid(R+D) > Cuboid(R).

4. http://vision.ucsd.edu/ pdollar/toolbox/doc/
5. http://www.di.ens.fr/ laptev/download.html
6. http://lear.inrialpes.fr/people/wang/dense_trajectories/
7. https://mloss.org/software/view/499/
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12 unique activities and a random action. This dataset is col-
lected from 4 different people (2 males and 2 females).

Here, we test the proposed feature under two experimen-
tal settings: leave-one-out cross validation setting and one-
shot-learning setting. Besides, the precision, recall and F1

score are used as the evaluation criteria and the performan-
ces by different methods are ranked by the F1 score. The F1

score is the harmonic mean of precision and recall. It can be
computed as:

F1 ¼ 2� precision� recall=ðprecisionþ recallÞ: (6)

Leave-One-Out Cross Validation Setting Following the experi-
ments in [20], [59], we employed leave-one-out cross

validation to test each person’s data, which means the
model was trained on three of the four people from whom
data and tested on the fourth. In Table 7, we show a compar-
ison of our results with the state-of-the-art methods. It
shows that our model can obtain 87:1 percent precision,
83:8 percent recall and 85:42 percent F1 score which indi-
cates the proposed method exhibits a promising result. That
is because: (1) we just used RGB-D data while other state-of-
the-art methods [61], [62], [63] used skeleton information
which is more easier to locate the human body. For exam-
ples, Faria et al. [63] used raw depth images to estimate their
own skeleton model and then a dynamic Bayesian Mixture
Model was used to classify motion relations between body
poses. (2) We used the simple NN classifier. If nonlinear
Support Vector Machine is used, the performances may be
improved further.

One-Shot Learning Setting Similar to the settings of CGD
dataset, we select one sample per each class used for train-
ing and the left samples for testing. Owing to the varied
movements of the random activity, it is almost impossible
to recognize correctly the random activity if only one sam-
ple from the random activity is used in training stage.
Therefore, we only evaluate the proposed method on the 12
unique activities. We randomly repeated the experiments

TABLE 6
Our Method is Compared with the Results of All the Top 14 Results on the Validation, Final, Untranslated,

Translated and Scaled Data of CGD

Name valid final1 final2 utran trans scaled

Alfnie1 0.1426 0.0996 0.0915 0.2316 0.2255 0.2573
Alfnie2 0.0995 0.0734 0.0710 0.1635 0.2310 0.2566
BalazsGodeny 0.2714 0.2314 0.2679 0.4347 0.5636 0.5526
HITCS 0.3245 0.2825 0.2008 0.4743 0.6640 0.6066
Immortals 0.2488 0.1847 0.1853 0.3594 0.3962 0.4152
Joewan 0.1824 0.1680 0.1448 0.2623 0.2612 0.2913
Manavender 0.2559 0.2164 0.1925 0.3644 0.4252 0.4358
OneMillionMonkeys 0.2875 0.1685 0.1819 0.3633 0.4961 0.5552
Pennect 0.1797 0.1652 0.1231 0.2589 0.4888 0.4068
SkyNet 0.2825 0.2330 0.1841 0.3901 0.4693 0.4771
TurtleTamers 0.2084 0.1702 0.1098 0.2896 0.5993 0.5296
Vigilant 0.3090 0.2809 0.2235 0.3817 0.5173 0.5067
WayneZhang 0.2819 0.2303 0.1608 0.3387 0.6278 0.5834
XiaoZhuWudi 0.2930 0.2564 0.2607 0.3962 0.6986 0.6897
Zonga 0.2714 0.2303 0.2191 0.4163 0.4905 0.5776
Ours(MFSK+BoVW) 0.1270 0.1395 0.0925 0.2390 0.2120 0.2375
Ours(MFSK+BoVW+TS) 0.1242 0.1326 0.0900 0.2315 0.2102 0.2300

Our results are comparable to top 2 state-of-the-art methods on regular data (valid, final1, final2 and utran data), and get the best
performances on challenging data (trans and scaled data).

Fig. 11. Sample frames from different actions selected from CAD-60
dataset: (a) Brushing, (b) Opening pill container, (c) Writing on white-
board, (d) Cooking (chopping).

Fig. 12. Sample frames from different actions selected from MSR Daily
Activity 3D Dataset: (a) Drink, (b) Play game, (c) Call cellphone,
(d) Cheer up.

TABLE 7
Comparison with State-of-the-Art on the CAD-60 Dataset

Approach Precision(%) Recall(%) F1 score(%)

Sung et al. 2012 [59] 67.9 55.5 61.08
Wan et al. 2014 [20] 74.8 65.8 70.01
Ni et al. 2013 [64] 75.9 69.5 72.56
Gupta et al. 2013 [65] 78.1 75.4 76.73
Zhang and Tian 2012 [66] 86.0 84.0 84.99
Ours (MFSK+BoVW) 87.1 83.8 85.42
Zhu et al. 2014 [61] 93.2 84.6 88.69
Parisi et al. 2015 [62] 91.9 90.2 91.47
Faria et al. 2014 [63] 91.1 91.9 91.50
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five times and calculated the average precision and recall.
As shown in Table 8, the MFSK feature can obtain 57 per-
cent precision, 57:6 percent recall and 53:8 percent F1 score
while the performances of other features is at least 2 percent
lower than the proposed feature in F1 score measure.

4.4.2 Experiments on MSR Daily Activity 3D Dataset

The dataset includes 16 activities: drink, eat, read book,
call cellphone, write on a paper, use laptop, use vacuum
cleaner, cheer up, sit still, toss paper, play game, lie down
on sofa, walk, play guitar, stand up, and sit down. There
are ten subjects. Each subject performs each action twice
(standing or sitting). The total number of the activity sam-
ples is 320.

For the leave-one-out cross validation setting, we evalu-
ate the proposed feature and the experimental results are
shown in Table 9. The proposed feature outperforms other
methods, demonstrating that the proposed feature is suit-
able for normal RGB-D video-based recognition.

In one-shot learning setting, it is similar to the experi-
ments on CAD-60. The only difference is that we randomly
selected two samples (standing and sitting) of each action
per subject in the training stage. That is because each action
is executed twice: standing and sitting positions. As shown
in Table 10, the proposed feature outperforms other descrip-
tors and achieves 41.2 percent accuracy, which is 4:5 percent
higher than the 3D SMoSIFT.

5 CONCLUSION

We have thoroughly reviewed the research on one-shot
learning gesture recognition fromRGB-D data.We have ana-
lyzed the great challenges, and pointed out some future
research directions. Then, we proposed the MFSK feature,
which is robust and invariant to scale, rotation and partial
occlusions. To further improve the recognition performance,
we have presented amethod to artificially augment the train-
ing samples, based on building temporal scales, which are
beneficial for recognizing gestures with different speeds. We
have also evaluated the proposed method on CGD and
another two RGB-D datasets. Experimentally the proposed
approach has achieved very promising results under either
one-shot learning or leave-one-out cross validation.

TABLE 8
Comparisons between the MFSK and Individual Feature Descriptors on the CAD-60 Dataset Using One-Shot Learning Settings

HOGHOF MBH 3D SMoSIFT MFSK

Location Activity precision recall F1 score precision recall F1 score precision recall F1 score precision recall F1 score

brushing teeth 90 40 54 53.3 26.7 33.3 70 40 47.4 100 53.3 68
bathroom rinsing mouth with water 90 100 94.3 77 93.3 81.5 90 100 94.3 95 85.6 97.1

wearing contact lenses 83.1 97.1 89.5 80.9 91.4 85.2 83.2 94.3 87.9 85.6 100 92.2
Average 87.7 79 79.3 70.4 70.5 66.7 81.1 78.1 76.5 93.5 84.4 85.8

drinking water 36.9 73.3 47 27 40 32.1 15.7 33.3 21 43.3 80 53.7
bedroom opening pill container 80.9 61.8 69.2 73.7 63.6 66.3 72 50.9 59.2 82.3 58.2 67.3

talking on the phone 61.3 46.7 49.3 29 26.7 22.3 21.8 33.3 25 14.7 20 16.7
Average 59.7 60.6 55.2 43.2 43.4 40.2 36.5 39.2 35.1 46.7 52.7 45.9

cooking (chopping) 59.1 60 53.3 39 40 37.3 38 26.7 28 48.3 46.7 46.8
cooking (stirring) 84.7 50.9 59.9 63.8 52.7 55.4 64.1 54.5 56.5 78 63.6 68.5

kitchen drinking water 30.7 53.3 37.3 37.3 40 38.3 33.5 26.7 25.7 31 53.3 37.8
opening pill container 31.7 33.3 30.7 31.9 46.7 36.8 27.6 46.7 33.3 26.9 46.7 33.6
Average 51.5 49.4 45.3 43 44.8 42 40.8 38.6 35.9 46.1 52.6 46.6

drinking water 47.6 80 56.1 33.7 66.7 43.8 26.7 33.3 26 34.5 60 43.1
living relaxing on couch 5 6.7 5.7 14.7 26.7 18.9 12.4 26.7 16.9 36.7 33.3 30.3
room talking on couch 23.3 26.7 24.8 20 6.7 10 33.3 26.7 29.3 53.3 40 45.3

talking on the phone 25 26.7 25.1 10 6.7 8 11.4 26.7 16 19 20 18.7
Average 25.2 35 27.9 19.6 26.7 20.2 21 28.3 22.1 35.9 38.3 34.4

drinking water 50.6 60 48.4 55.3 60 55.8 30.5 46.7 33.7 46.1 53.3 40.9
talking on the phone 40 20 26 10 6.7 8 6.7 6.7 6.7 35 26.7 27.1

office working on computer 100 66.7 80 100 86.7 92 38 26.7 28 100 80 88
writing on whiteboard 41.7 66.7 50.1 58.3 86.7 68.8 17.1 40 24 70.3 80 68.8
Average 58.1 53.3 51.1 55.9 60 56.1 23.1 30 23.1 62.9 60 56.2

Overall Average 56.4 55.5 51.8 46.4 49.1 45 40.5 42.8 38.5 57 57.6 53.8

TABLE 9
Comparison on the MSR Daily Activity 3D Dataset

Approach Average accuracy(%)

Wang et al. 2012 [60] 67.9
Oreifej et al. 2013 [67] 74.8
Ming et al. 2012 [50] 75.9
Li and Ling et al. 2013 [68] 78.1
Wan et al. 2013 [9] 86.0
Wan et al. 2014 [20] 93.2
Ours (MFSK+BoVW) 95.7

TABLE 10
Descriptor Comparisons in the MFSK Feature on the MSR Daily

Activity 3D Dataset under One-Shot Learning Seeting

3D SMoSIFT HOGHOF MBH MFSK

accuracy (%) 36.7 32.1 27.3 41.2
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