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Abstract—Different ages are closely related especially among the adjacent ages because aging is a slow and extremely non-stationary
process with much randomness. To explore the relationship between the real age and its adjacent ages, an age group-n encoding
(AGEnN) method is proposed in this paper. In our model, adjacent ages are grouped into the same group and each age corresponds to

n groups. The ages grouped into the same group would be regarded as an independent class in the training stage. On this basis, the
original age estimation problem can be transformed into a series of binary classification sub-problems. And a deep Convolutional Neural
Networks (CNN) with multiple classifiers is designed to cope with such sub-problems. Later, a Local Age Decoding (LAD) strategy is
further presented to accelerate the prediction process, which locally decodes the estimated age value from ordinal classifiers. Besides,
to alleviate the imbalance data learning problem of each classifier, a penalty factor is inserted into the unified objective function to favor
the minority class. To compare with state-of-the-art methods, we evaluate the proposed method on FG-NET, MORPH I, CACD and
Chalearn LAP 2015 databases and it achieves the best performance.

Index Terms—Age estimation, deep learning, convolutional neural network, age grouping, data imbalance
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HUMAN age estimation makes an important component
in face attribute analysis [1], which has many applica-
tions in real-world, such as business intelligence, human
computer interaction (HCI) and visual surveillance [2], [3],
[4], [5]. However, human age is still hard to estimate pre-
cisely from a single face image even though the problem
has been extensively studied for many years.

Facial aging process is filled with randomness and is not
stationary for everyone. The randomness exists in many
aspects, such as different diets, living or working environ-
ment, and most importantly, the various genes. All of those
factors can more or less affect human aging and further
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leads to aging differences in the appearance. In real world,
people at the same age may look differently, appearing
slightly older or younger comparing to each other. On the
other hand, faces from close ages look similar [6] because of
the slow and gradual aging process. Sometimes it is hard to
judge which one is older or younger between two faces
from close ages. So, there is a strong correlation between
age classes especially for adjacent ages.

Most previous methods estimated age by casting it as a
classification problem [5], [7], [8], [9] or regression problem
[10], [11], [12], [13], [14]. For age classification, each age class is
assumed to be independent to one another, which ignores the
relationship between different classes. In contrast, regression
problem treats age as continuous value and employs regres-
sion methods to predict age based on extracted features, such
as Partial Least Squares (PLS) [15], Canonical Correlation
Analysis (CCA) [16], Support Vector Regression (SVR) [17].
However, those methods do not involve any aging informa-
tion, either.

Due to the aging randomness in the aging process, there is
an ambiguous mapping rather than exact mapping between
face and its real age. This is particularly evident in senior peo-
ple. We may say that a man looks like in his late thirties but
can never be sure about his exact age just from his appearance.
Thus, assigning each face with a single age label seems diffi-
cult because of the strong correlation among age classes espe-
cially among the adjacent classes. Furthermore, training with
several adjacent ages together for age estimation may be more
helpful than treating each age as an independent class.

Inspired by this, we group the face images within a specific
age range and then regard each age group as an independent
class in the training stage. Our age grouping method is
inspired by [18] but with crucial differences. Unlike [18],
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Fig. 1. The pipeline of our framework for age estimation. It consists of two stages: training stage and testing stage. In the training stage, the training
images with different scales are first processed by face detection, alignment and cropping. All the images are aligned according to the point of the
center of two eyes and the upper lip. Then all the training images are grouped by the age group-n encoding strategy, where the images from adjacent
ages would grouped into the same group. After that, the training images are used to train the CNNs. In the testing stage, the test image is first proc-
essed in the same way as the training stage used. Then, the processed image is input into the trained CNN network, and age group classification is
employed to obtain the probabilities of each group. Finally, the predicted age is obtained by decoding the group classification results.

which needs to group ages for many times and each time they
divide ages into non-overlapped groups, our age grouping
method conducts age division only one time, where all ages
are divided into overlapped age groups. We carefully design
the grouping strategy to encode ages into age groups, which
ensures that each age corresponds to an unique age group set.
Based on this, the exact age can be recovered by decoding the
group classification results according to a certain mapping
relation between the age and age groups. Therefore, our
method could be implemented in a single network rather
than an ensemble of networks [18] or cascaded networks [19].

Using the novel grouping method, we can transform the
age estimation problem into a series of binary classification
problems, where each classifier determines whether the face
image belongs to the corresponding group or not. The CNN
with multiple output layers is also employed in our
approach. Unlike [20], [21], our method aims to explore the
relationship between the adjacent ages based on age group
classification, while the approaches of [20], [21] mainly
exploit the relative order relation among age labels. Besides,
each classifier of the network in [20], [21] acts as a compara-
tor to determine whether or not the age of the input face is
greater than a value, while each classifier of our network
aims to distinguish images within each age group.

For each binary classifier, the number of training images
belonging to the corresponding group is far less than the
others (imbalanced data learning). This is because we group
images only within a small age range. A viable solution to
the imbalance data problem is to modify the algorithm via
cost-sensitive learning [22], [23]. In this paper, we modify
our training algorithm by employing a penalty factor to shift
the bias of the classifier to favor the minority class, which
increases the contributions of the minority class in the learn-
ing stage.

The proposed age estimation framework is shown in
Fig. 1, and the source codes and models are available at the
website.' The main contributions of our work include:

1) A novel age grouping strategy called Age Group-n
Encoding (AGEn) is proposed, where the adjacent

1. http:/ /www.cbsr.ia.ac.cn/users/zctan/ projects/ AgeEncoding
Decoding/main.htm

ages are grouped into the same group and each age
corresponds to n groups. Moreover, unlike employ-
ing an ensemble of multiple networks to obtain the
exact age due to grouping ages for many times [18],
only a single network (see Fig. 1) is used to make the
prediction with our age division.

2) To accelerate the predicting process, a Local Age
Decoding (LAD) strategy is proposed to obtain the
predicted age by locally decoding the outputs of the
binary classifiers.

3) Inspired by previous works [22], [23], we extend the
cost-sensitive learning strategy used in traditional
methods (i.e., Cost-Sensitive Dataspace Weighting
with Adaptive Boosting [23], Cost-Sensitive Decision
Trees [23]) into our designed objective function of
the proposed CNN framework for age estimation,
which is effective to deal with the imbalanced data
problem caused by age grouping.

4)  Our method achieves the state-of-the-art results on
multiple datasets, including FG-NET [24], MORPH
II [25], CACD [26] and Chalearn LAP 2015 data-
bases [27].

2 RELATED WORK

Human Age estimation has been studied extensively for
over 20 years. The earliest work of age estimation was possi-
bly reported by Kwon et al. [29] in the 1990s, which judged
the age range of face images with hand-crafted features,
such as baby, young adult and senior adult. However, only
dozens of face images were analyzed in their work. At that
time, the lack of a large-scale age dataset also hindered the
development of age estimation technology. With the joint
efforts of many scholars from all over the world, large age
datasets such as FG-NET [30], MORPH 1I [25] and CACD
[26] databases are available for the community, which are
also the most popular age datasets nowadays.

With the development of facial analysis technology,
researchers started to predict the exact age rather than simply
estimate the coarse age range from face images. Also, a large
number of methods have been proposed for age estimation,
such as Active Appearance Models (AAM) [31], AGing pat-
tErn Subspace (AGES) [7], [32], age manifold [10], [33], [34],
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Fig. 2. The architecture of the proposed network. Our network is based on the VGG-16 network [28] and we adopt the BGR face image as the input
with the size of 224 x 224. The CNN network consists of two fully connected layers and the later one produces a feature vector for age group classifi-
cation. After that, the network branches out 7" output layers, where each layer is employed as an binary classifier that judges whether the input image

belongs to the corresponding age group or not. Moreover, all the convolutional layers are followed by ReLU non-linearity.

and methods with local features [8], [35], [36]. Particularly,
Biologically Inspired Features (BIF) [8] has the most outstand-
ing ability in age estimation among those local features. After
features extracted by local image descriptors, classification or
regression methods would be employed to obtain the pre-
dicted age, such as BIF+SVM [8], BIF+SVR [8], BIF+CCA [12].
More recently, Geng et al. [6], [37] allowed each face image
labeled with a label distribution rather than a single age label,
where both the real age and its adjacent ages would contribute
to the learning. The work in [38], [39] also integrate the idea of
label distribution into deep learning framework and achieve
promising performance.

Recently, deep learning has gained a lot of success on age
estimation. Yi et al. [14] deployed many parallel CNNs with
multi-scale face images for age estimation. Malli et al. [18]
estimated apparent ages with age grouping to account for
multiple labels per image. However, this work needs an
ensemble of models to further predict the exact age, seem-
ing relatively tedious. Antipov et al. [40] developed a chil-
dren-specialized deep learning method for apparent age
estimation, and achieved the best performance at Chalearn
Looking At People (LAP) challenge 2016. Niu et al. [21]
casted age estimation as an ordinal regression problem with
a multiple outputs CNN, which achieved the state-of-the-
art result on MORPH II database. Zhu et al. [19] first used
age group classifier to acquire the coarse age range of face
images with CNN, and then multiple local age estimators
were employed to predict the exact age. Liu et al. [41]
exploited a general-to-special transfer learning scheme for
age estimation based on GoogleNet [42]. Rothe et al. [9] pro-
posed a Deep EXpectation (DEX) method for apparent age
estimation based on VGG-16 architecture [28] and won the
first place at Chalearn LAP challenge 2015. However, DEX
only conducts the refinement that fuses all ages information
in the prediction phase but neglects the correlation between
different ages in the training stage.

In this work, the correlation between adjacent ages
would be explored through grouping and training the adja-
cent ages together. Different from previous grouping-based
methods, which estimate the age for a facial image through
an ensemble of models or cascaded structures, the proposed
method estimates age from facial images with a single net-
work based on well-designed group-n encoding and decod-
ing processes. To our best knowledge, it is the first work to
conduct age estimation with a single network based on age
group classification.

3 OuR METHOD

The pipeline of our method for age estimation is shown in
Fig. 1, and our method mainly consists of fine-grained age

grouping, age group classification and age decoding. The
specific algorithm is given in Algorithm 1.

Algorithm 1. The Algorithm of the Proposed Method
Input: The training data D = {x;, yi};fv:_ol, and the test data
D' = {«/}N
Output: The predictions {y/ l}f\ial for the test data.

1: conduct age grouping for training data D with AGEn, and

. 1 T—1 N-1 .
obtain the group labels {{gzz =0 }i:o , the age group index

C, for each age a and the age set S, for each group t.

2: train MO-CNN with {z;, {¢/}/)} V! for searching the
optimal network parameters {W, W}.

3: fori=0,1,...,M —1do

4: input the face image «, into MO-CNN

5: obtain {{p(g} = m|a, W, W)}, o}

6 m « argmax, p(gt = m|a,, W, W)

7 fora e S,, do

8 compute P(a|z}, W, W) according to Eq. (7)

9: end forend

10: Y — argmax,cs, P(a‘xé, W, W)

11: end forend

12: return The predictions {y/ }lzgl

3.1 Fine-Grained Age Grouping

Unlike previous age grouping methods where each age cor-
responds to one group, we introduce a novel age grouping
method called Age Group-n Encoding for age estimation,
where each face image is assigned to n groups. The group-
ing rules are given below:

1. Given the age set Y = {ly,;...,lx}, we can group
ages into 7' (T' = K + n) groups. Note that Iy and Ix
are the minimum and maximum ages, respectively,
andlo < ll < e < g

2. Foragel;, itis assigned to group ¢,i+1,...,i+n—1,
where each age corresponds to n groups. Each group
includes at least one age but at most n ages.

.-l?

0 | 48 ‘ 49 | 97 | 98 | 99 ‘
0 l 1 {43‘49 50 osiwlmu]
Group [ 0 ] 1l ‘:9 :u 51‘ . |99 [100]
1]2]3] . [s0]s szi 'nm‘....

Fig. 3. Example of grouping results with Age Group-3 Encoding for age
set {0,1...,100}. There are 103 groups in total and each age corre-
sponds to 3 groups.
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Fig. 4. The distribution of positive and negative samples for each age
group on MORPH Il training set with AGE3, AGE9 and AGE15. When
grouped by AGES3, the distribution is extremely uneven and negative
samples is many times larger than positive samples. The number of pos-
itive samples of middle groups would increase as n rises, but the imbal-
ance is still serious in the marginal groups.

Fig. 3 gives a grouping example when K = 100 and n = 3
for age set {0,1,...,100}. According to our grouping rules,
each age is encoded into a unique group set, which is essen-
tial for the prediction stage that is a decoding process from
group to age. In order to facilitate later parts of the paper,
Co ={co,c1,...,ch1} are used to denote the indices of the
groups that age a belongs to. We also let S; represents those
ages that the tth group includes. For example, as shown in
Fig. 3, C1={1,2, 3} indicates that age 1 is assigned to group
1,2 and 3 and S3={1, 2,3} denotes that group 3 consists of
ages 1,2 and 3.

3.2 Age Group Classification

The network architecture of age group classification, called
Multiple Outputs CNN (MO-CNN), is illustrated in Fig. 2.
The network includes multiple output layers, where each
output layer corresponds to a binary classification task that
judges whether the input sample belongs to the age group
or not. Assuming we have a training set with N samples,
where each sample is attached with a chronological label
and T age group labels where T'= K +n when the Age
Group-n Encoding strategy is employed. Each sample is

represented as {x,;,yi, {gﬁ}iT;Ul}, where z; € R? is the ith

sample, y; €)Y represents the age label for z; and
gt € G ={0,1} is the age group label indicating whether the
ith sample belongs to age group t or not. If x; belongs to age
group t, g = 1; otherwise, g/ = 0. As shown in Fig. 2, the
network extracts high level feature z! through a sequence of
non-linear mappings with a set of parameters w={w;l}.,
where W; represents the weights of layer i. With shared repre-
sentation z!, we conduct the group classifications via multiple
binary classifiers with the parameters W = {W;},', where
W, denotes the weights of tth classifier. Thus, the parameters
of the whole network can be denoted as {W, W}.

For each classifier, the cross-entropy loss is used as the
loss function, thus the objective function of the tth classifier
can be written as

EFFICIENT GROUP-N ENCODING AND DECODING FOR FACIAL AGE ESTIMATION

2613

J, = ——ZZl{g7 =m}log (p(g

i=0 m=|

= mlx;, W, W)), (@]

cxp{(wgn) !}
Zj exp{ (V[/J) zt }

tion and W/ denotes the jth column of the parameter matrix
W, for tth task.

However, the data distribution is extremely unbalanced
for each classifier, and training unevenly could jeopardize the
whole model. Each sample in a binary classifier has two states,
belonging to the group (a positive sample) or not belonging to
the group (a negative sample). As shown in Fig. 4, the number
of positive samples is much less than the negative samples.
To alleviate the imbalanced data learning problem, we
impose penalty factors to penalize positive and negative sam-
ples at different degrees for each task. The penalty coefficients

T-1 .
are represented as p = {p{, p; },_,, where p{ is the penalty
coefficient for negative samples and p; for positive samples.
Thus the objective function of tth task is

= _—Z Z 1{gZ = m}pmlog(

=0 m=0

where p(g! = m|z;, W, W) = is softmax func-

=m|z;, W,W)). (2)

Therefore, we can balance the contribution of positive and
negative samples via adjusting the magnitude of the penalty
coefficients.

We have T binary classification tasks all together and
each task corresponds to an output layer. Let a; denotes the
importance level of the t-task, and the objective function of
the whole CNN can then be written as

i:(azl{gﬁ =m}p|"

7:0 t=0 m=0

log (p(g! = mzs, W, W)))

N-1T-1
1

(3)

In the training process, we apply the stochastic gradient
descent (SGD) [43] to search the suitable parameters
{W, W} for our MO-CNN.

3.3 Age Decoding

We elaborate a delicate CNN with multiple binary classi-
fiers to determine which groups a face image belongs to.
However, we can only acquire an ambiguous age range
using the classification framework. Since only an ambigu-
ous age range can be acquired using the classification
framework, a decoding stage is further developed to obtain
the exact age considering the specific mapping relation
between ages and age groups. Detailed age decoding stage
is explained below.

The objective function, Eq. (3), can be rewritten as

N-1T-1

J:_—10g<HH Z1{g§=m}-

=0 t=0 m= 4)
plgh = mlei, W, W) )
Removing the negative logarithm and average factor

terms of Eq. (4), our learning procedure is actually to maxi-
mize the following equation



2614 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.40, NO.11, NOVEMBER 2018
NATL TABLE 1
p(GIX, W, W) =] (Z 1{g; =m}- Summary of the Databases Used in Our Experiments
=0 1=0 \m=0
' " o ) Database Images Age range
T s MORPH 55244
C=ml|e, WW)T ) MORIE e
p(gl i, W, ) ) ’ 80-20 protocol 5493
N1 71 N-1 Train (80% images) 4395
where X = {z;};_, and G = {{ gt } are the whole Test (20% images) 1098 16-77
-0 f,_, rethewhole (eSS pImases) U0 -
. v . §1-52-S3 protocol 55244
dataset and the corresponding group labels, respectively. s1 10634
In Section 3.1, we use an index set C, to represent the S2 10634
groups that the face images with age a belong to. And FG-SIEIET 313090726 %5
Eq. (5) can be rewritten as following with the indexsetC, - Train | 990@ve)
Test 12(avg.)
N1 apl CACD 162941
p(GIX, W, W) =] <H p(gl = La, W, W)™ 7 Train(1800 celebs) | 1447927 -6
i=0 \teCy, Val(80 celebs) 7585
. (©) Test(120 celebs) 10564
t_ ) ap; Chalearn LAP 2015 4691
H p(gi = Oz, W, W) > """""""" Teain T YAT6TTTT .
teCy, Validation 1136
Note that C,, represents those groups that the face image Test 1079
: 1 I Chalearn LAP 2016 7591
with age y; belongs to, and C,, is the complementary set of =~ ... 2% e e
Cy,. It is assumed that the samples are independent to each Validation 1500 1-89
other. Therefore, we can define the probability of a face Test 1978
image belongs to age a as following;: oo, IMDB-WIKL | 523051
Train 297163 0-100
Val 10000

Plalai W, W) = T] w6t = s, W, )"

teCq

T »(st = Olzi, W, W),

teC,

(7)

where Z is the normalization factor that makes sure
> aey Plalz;, W, W) = 1. In the training stage, our learning
procedure aims to make the probability P(a|x;, W, W) reach
its maximum when «a equals to its real age label y;. There-
fore, the predicting age y; for image z; is

Y, = arg max P(alz;, W, W). ®)
acy

Our age decoding method is to find the maximal probability
of P(a|z;, W, W) for the whole age set )} and take the corre-
sponding age as the final estimated age. This is called
Global Age Decoding (GAD). However, it also leads to an
enormous computational burden because it conducts com-
putation for all ages and then finds the maximum as its cor-
responding age. Actually, we can get the coarse age range
from the age group classification results, and then use the
Local Age Decoding to recover the exact age to reduce
the computational complexity. Assume that group m is
the group with the maximal probability p(g! = 1|z;, W, W)
for image z;, which shows that the images z; is most likely
to belong to group m. Thus LAD only compares the proba-
bilities for the ages in S,,, and it can be written as

Y, = arg max P(alz;, W, W). 9)

aeSm

We have made comparisons between GAD and LAD in
Section 5.3, which shows that the LAD is more efficient.

4 EXPERIMENTS

In this section, we first introduce the databases and explain
some training details about our experiments. Then we pres-
ent the experimental results.

The table contains the age range information, and the number of images of the
corresponding database and its split. The non-face images (e.g., the tattoo
images in MORPH database) are removed in our experiments, thus those
images are not counted in this table.

4.1 Databases

For real age estimation, we evaluate the proposed method
on FG-NET [24], Morph II [25] and CACD [26] databases,
under both the controlled and uncontrolled environments.
We also evaluate the performance of the proposed method
for apparent age estimation on Chalearn LAP datasets [27],
[44]. IMDB-WIKI database [27], [44] is also introduced to
pretrain our network when evaluating our model on FG-
NET, Morph and Chalearn LAP datasets. A summary of
those databases is given in Table 1, including age range
information, the size of each database and its corresponding
spits. Fig. 4 shows some exemplar images of each database.
Here, we take a brief introduction on those databases and
the test protocols.

FG-NET. The FG-NET dataset contains 1,002 color or
grayscale face images of 82 subjects. Those images are taken
in a totally uncontrolled environment with large variations
of lighting, poses, and expressions. When evaluating on this
dataset, we take leave-one person-out (LOPO) cross valida-
tion strategy according to the setup of [5], [33], [45], [46],
and the averaging performance over the 82 splits is
reported.

MORPH 1I. This database is probably the largest data-
base with precise age labeling and ethnicities. The database
includes about 55 thousand face images and age ranges
from 16 to 77 years. In our experiments, we employ two typ-
ical protocols for evaluation on MORPH dataset:

e According to the test protocol® provided by Yi et al.
[14], the MORPH dataset would be split into three

2. http://www.cbsr.ia.ac.cn/users/dyi/agr.html
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Fig. 5. Sample images from Chalearn LAP, FG-NET, MORPH, CACD
and IMDB-WIKI databases. The value below the image is its corre-
sponding age label. FG-NET database includes some old photos (gray
image) as shown in the second row. The face images of Chalearn LAP
and MORPH databases are taken from the ordinary people, while the
images of CACD and IMDB-WIKI databases are from the celebrities.
And this difference can be easily found from the figure. Additionally, the
CACD database contains some noise. For example, the second image
of this databases was wrong labeled. For IMDB-WIKI, it contains more
noise, such as a image contains more than one face (see the second
image of IMDB-WIKI database) or no face (see the last image of IMDB-
WIKI database).

non-overlapped subsets S1, S2, S3 obeying the con-
structing rules that are detailed in the website pro-
vided above. All experiments are repeated twice: 1)
training with S1 and testing with 52+53. 2) training
with S2 and testing with S1+53. Table 1 shows the
number of images in each subset. It can be found
that, in either way, the number of training images is
about a quarter of testing images. For simplicity, we
call this test protocol as S1-S2-S3 protocol.

e Following the experimental setting in[21], [45], [46],
[47], a subset of 5,493 images was used, where the
images are selected from Caucasian descent to
reduce the cross-race influence. We also randomly
split the whole dataset into two non-overlapped
parts: 80 percent images for training and 20 percent
images for testing. The number of images for train-
ing and testing sets are also given in Table 1. In this
way, the number of testing images is a quarter of
training images. And we call this protocol as 80-20
protocol for convenience.

CACD. The Cross-Age Celebrity Dataset (CACD) is the
largest public cross-age database, which is collected from
the Internet Movie DataBase (IMDB). This database, col-
lected from search engines using celebrity name and year
(2004-2013) as keywords, contains more than 160 thousand
images from 2,000 celebrities. However, the database con-
tains much noise because the age was simply estimated by
query year and birth year of that celebrity. We split the data-
base into three subsets: 1,800 noisy celebrities for training,
where the number of images is big enough but the age label-
ing is less precise; 80 cleaned celebrities for validation and
120 cleaned celebrities for testing, where the images are
manually checked and the noise images are removed.
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Chalearn LAP. The Chalearn LAP challenge is the first
competition for apparent age estimation, and it offers
images labeled by at least 10 users and then the average age
is used as the final annotation. Moreover, the dataset offers
the standard deviation for each age label. For the first edi-
tion of Chalearn LAP challenge (2015) [27], the organizers
collected 4,691 images and all images were split into three
subsets: 2,476 images for training, 1,136 images for valida-
tion and 1,079 images for testing. For the second edition of
Chalearn LAP challenge (2016) [44], the dataset has been
extended to 7,591 images, where 4,113 images for training,
1,500 for validation and 1978 for testing. In addition to
increasing the number of images, most ages in the dataset
are not integers and the standard deviation covers a larger
range. Some sample images are given in Fig. 5.

IMDB-WIKI. IMDB-WIKI [5], [9], which contains 523,051
images in total, is the largest dataset for age estimation as
far as we know, where the images are crawled from celebri-
ties in IMDb’ and Wikipedia.* However, this dataset con-
tains much noise. The age label is just calculated based on
the date of birth of the corresponding celebrity and the year
when the photo was taken, thus the accuracy of the age
annotations cannot be guaranteed when wrong timestamp
occurs or the image comes from a wrong celebrity. Addi-
tionally, tiny faces, multiple faces or non-face problems also
occur in the dataset as shown in Fig. 5. Even though this
dataset is not suitable for evaluation, it is still a good dataset
for pretraining for that the majority of the annotations are
correct. To use the dataset effectively, we select about 300
thousand images according to the settings in [5], where all
non-face images and part of images with multiple faces are
removed. What’s more, as shown in Table 1, the selected
images are randomly divided into two parts: 10,000 images
for validation and the rest for training.

4.2 Preprocessing and Experimental Setting

Face Alignment. Face alignment is helpful for age estima-
tion. First, all images are processed by a face detector [48]
and a few non-face images would be removed, for exam-
ple, tattoo images in Morph II database. Then, the active
shape models (ASM) [49] are used to detect facial land-
marks and all faces would be aligned according to the eyes
center and the upper lip. After that, all images are cropped
into the size of 224 x 224 and then fed into the network.
Some aligned images are shown in Fig. 9.

Data  Augmentation. When evaluating on FG-NET,
MORPH II and Chalearn LAP databases, the training
images are extremely insufficient. For example, less than
five thousand images are used for training when evaluation
is taken on Morph dataset with 80-20 protocol. The training
set of Chalearn LAP 2015 dataset contains no more than
three thousand images, which is even more inadequate.
Therefore, increasing training samples is necessary to
improve the performance. Usually, there are two ways to
expand the training data. One is to enrich the training set
with other datasets. For example, we usually pretrain the
network from other larger datasets to improve its perfor-
mance. Another way is to add the virtual image samples.

3. www.imdb.com
4. en.wikipedia.org
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Fig. 6. The network that we used for parameters searching. The network
is based on the AlexNet [43], and the last layer also be replaced with
multiple binary classifiers. More details of the convolution and pooling
layers are shown in the figure.

The first one is a well-known technology and we mainly
introduce the method that is used to increase virtual images
in our experiments. Here, we augment training images with
flipping, rotating by +5° and +10°, and adding Gaussian
white noise with variance of 0.001, 0.005, 0.01, 0.015 and
0.02. The total number of images was increased by 36 times
after augmentation. However, data augmentation is only
conducted for FG-NET, MORPH II and Chalearn LAP data-
sets since it is not necessary for CACD database.
Experimental Setting. We train the deep network with a
weight decay of 0.0005 and a momentum of 0.9. The learn-
ing rate starts from 0.001 and reduced by a factor of 10 along
with the number of iterations increases. We set «; = 0.1 for
all tasks. AGE7 grouping strategy is taken when experi-
menting on Chalearn 2016 dataset and AGE9 is taken for
the others. Moreover, we set ,0% to 1 for the experiments on
CACD dataset and set p; to 2 for the rest experiments. More
details of the setting of AGEn and parameters of balance
strategy can be found in Section 4.4. Our algorithm is imple-
mented within the caffe framework [50] on TITAN X GPU.
And for all experiments the VGG-16 network was initialized
with the weights from training on ImageNet dataset first.
For some experiments, the network would be pretrained on
IMDB-WIKI dataset and we would explain it in the text.

4.3 Evaluation Metrics

For real age estimation, the Mean Absolute Error (MAE)
and Cumulative Score (CS) are usually used as evaluation
metrics. MAE indicates the mean absolute error between
the predicted result and the ground truth for testing set,
and it is calculated as

1 m—1
MAE:@Z:oj!yé—yi!, (10)
where y, denotes the predicting age for ith image and m is
the number of testing face images. MAE is the most fre-
quently used evaluation metric, and obviously, lower MAE
result means a better performance. CS(n) is computed as
follows:
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m

an

where m.<, represents the total number of test images
whose absolute error between the predicting results and the
ground truth is not greater than n years. Obviously, the
higher the CS(n), the better performance it gets.

For apparent age estimation, the e-error is used as a
quantitative measure, which is proposed by the Chalearn
LAP competition. The e-error is computed as

7(.’:7—;1,)2
e=1l—e 22 .

(12)

It not only measures the error between the predicted value =
and the averaging labeled age u, but also takes into consid-
eration the standard deviation o. The final e-error is the
average over all predictions. Of course, lower e-error means
a better performance and it reaches to 0 when the perfect
prediction is achieved.

4.4 Parameters Discussion

As shown in Fig. 11, the distributions of MORPH II and
CACD databases differ greatly. We believe that the optimal
parameters of the model is closely related to training data
distributions. In this section, we find appropriate age group-
ing range n of age grouping strategy and penalty coefficient
p of data balance strategy via conducting the experiments
on validation set with a variety of n and p. For the penalty
coefficient p = {p, p} }tT;Ul. We assume that it is the same for
all tasks, so it can be written as p = {o’, p' }. However, it
would take a lot of effort for p = {0°, p'}. For the sake of
simplicity, we set p” = 1 and only change the value of p' in
the parameter searching process.

The CACD and Chalearn LAP 2015 & 2016 datasets have
offered validation sets. Thus, we directly evaluate the model
on their validation set to choose the appropriate parameters.
However, since validation set is not offered in MORPH II
dataset, we randomly select 2,000 images from its training
set as validation set. These images will, therefore, not be
used for training in the parameter searching process. Ran-
dom selection also ensures that the distribution of training
data remains unchanged. Since training with VGG-16 net-
work consumes a lot of time, we conduct the experiments
with a shallower network, basd on AlexNet [43], which is
shown in Fig. 6.

The results on validation set are shown in Table 2. From
the results, we adopt AGE9 strategy and p' =2,p' =1,p' =2

TABLE 2
MAE Results with a Variety of n and p! on Validation Set

(@)

(b)

(©

(d)

(e)

7

11

5

7

9

11

5

7

11

7

11

5

7

11

P
1 3.61
2 3.38
3 3.26
4 3.63

3.45
3.30
3.28
3.32

3.41
3.21
3.23
3.34

3.32
3.30
3.38
3.45

3.44
3.26
3.20
3.18

3.39
3.18
3.22
3.19

3.22
3.17
3.25
3.17

3.27
3.17
3.25
3.32

5.52
5.26
525
545

5.33
5.34
5.41
5.50

5.23
543
5.54
5.63

5.32
5.33
5.50
5.49

497
4.93
4.96
4.99

497
4.89
5.04
4.96

4.87
4.86
5.03
491

4.90
4.88
4.86
4.99

5.41
5.08
5.15
5.08

5.15
4.94
497
5.14

498
4.99
5.02
5.06

5.01
5.04
5.08
5.15

(a) Results on the validation set of S1 on MORPH I1. (b) Results on the validation set of S2 on MORPH II. (c) Results on the validation set of CACD database.

(d) Results on the validation set of Chalearn LAP 2015 database. (e) Results on the validation set of Chalearn LAP 2016 database.
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TABLE 3
The Comparisons Between the Proposed Method and Other
State-of-the-Art Methods on MORPH Il Database
with the S1-S2-S3 Protocol

Method Train Set Test Set MAE Avg. MAE

Ours(IMDB-WIKI) S1 S2+53 2.82 2.70
S2 S1+53 2.58

Ours S1 S2+S3  3.04 2.86
S2 S1+53  2.68

Soft softmax [38] S1 S2+53  3.14 3.03

(IMDB-WIKTI) S2 S1+583 292

Soft softmax [38] S1 S2+53 3.24 3.14
S2 S1+S83  3.03

Multi-scale CNN [14] S1 S2+53  3.72 3.63
S2 S1+53 3.54

BIF+KCCA [12] S1 S2+53  4.00 3.98
S2 S1+53  3.95

BIF+KPLS [11] S1 S2+S3 4.07 4.04
S2 S1+453  4.01

BIF+rCCA [12] S1 S2+53  4.43 4.42
S2 S1+53  4.40

BIF+PLS [11] S1 S2+53 4.58 4.56
S2 S1+53 4.54

CNN [51] S1 S2+S3  4.64 4.60
S2 S1+53  4.55

BIF+KSVM [12] S1 S2+53  4.89 491
S2 S1+53 492

BIF+LSVM [12] S1 S2+53  5.06 5.09
S2 S1+S83 5.12

BIF+CCA [12] S1 S2+53  5.39 5.37
S2 S1+S3 5.35

for Morph II, CACD and Chalearn LAP 2015 datasets,
respectively. Moreover, AGE7 and p' = 2 are adopted for
Chalearn LAP 2016 dataset. For FG-NET database, it con-
tains too few images and all images would be used to evalu-
ate with LOPO strategy. Therefore, we use n = 9, p! = 2 for
FG-NET by our experience because those two parameters
perform well in most cases.

We can see that AGE9 is a relatively stable grouping
strategy and the model could achieve promising results
with AGE9 strategy on most validation sets. For grouping
range n, when n is smaller, the relationship between the
adjacent ages cannot be explored thoroughly and the imbal-
anced data problem between the images belonging to group
or not is more serious because each group includes fewer
images. When n is bigger, the images within the group
shows greater diversity, which would be harmful to the
model. Thus, AGE9 strategy performs well maybe because
n =9 is an appropriate grouping value which achieves a
good tradeoff between the above two aspects.

4.5 Comparisons
4.5.1 Real Age estimation

In this section we conduct comprehensive evaluations of the
proposed method on Morph, FG-NET and CACD datasets
for real age estimation.

Results on MORPH 1I with S1-52-S3 Protocol. The pro-
posed method achieves an average MAE of 2.86 without
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Fig. 7. (a) and (b) show the last two layers of the network of DEX and
VGG+euclidean, respectively. The architecture of the lower layers of
DEX and VGG+euclidean are the same to our network’s.

pretraining on any additional age dataset. It reduces the
MAE by 0.17 compared with the previous state-of-the-art
result reported in [38] (see Table 3). To the best of our
knowledge, it is the first report with MAE below 3 years
under this protocol. The pretraining on IMDB-WIKI dataset
further improve the performance, which achieves a MAE of
2.70 years. The CS results are shown in Fig. 8, and our
method achieves the best performance.

Results on MORPH II with 80-20 Protocol. Usually, age esti-
mation can be treated as a classification or regression prob-
lem. We take two baseline methods of age classification and
regression for comparison in this protocol. For age classifica-
tion, each age is regarded as an independent class. We take
Deep EXpection [5], [9] as the baseline method for age classifi-
cation. DEX is one of the most popular methods for age esti-
mation, which won the first prize of the ChaLearn Looking At
People ICCV 2015 challenge [60]. For age regression, we take
the classic regression method as the baseline for comparison
where the euclidean loss is employed as the loss function. For
a fair comparison, the network architecture of DEX and
regression-based method are the same to our MO-CNN
except the output layer, which are shown in Fig. 7.

From Table 4, our method achieves the state-of-the-art per-
formance with the MAE of 2.93 when directly finetuning on
Morph dataset. As far as we know, it is also the first work that
reduces the MAE to under 3 years without finetuning on
additional age dataset. To further improve the performance,
the network is first finetuned on the IMDB-WIKI dataset
before finetuning on the Morph dataset, and the proposed
method achieves a MAE of 2.52 years, which reduces the
state-of-the-art performance by 0.18 years. Besides, the CS
comparisons with the state-of-the-art methods are shown in
Fig. 8, again our approach also shows its superiority.

Results on FG-NET. Due to FG-NET dataset contains only
1,002 images, we first pretrain our network on IMDB-WIKI
datset and then finetune on FG-NET. Two baseline methods
have also been added for comparisons. As shown in Table 4,
our method achieves the state-of-the-art performance on
FG-NET database with an average MAE of 2.96. This
improves the previous state-of-the-art result by 0.13. The CS
comparisons are shown in Fig. 8, and the proposed method
also performs better than other methods.

Results on CACD. Only few works conduct evaluation on
CACD database because of its noise. Here, we compare the
result with two baseline methods, which are VGG+euclidean
regression and DEX. The comparisons are shown in Table 7.
Our method achieves the best performance with the lowest
MAE of 4.68 years. When CS is taken as the criteria, our
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Fig. 8. (a) CS comparisons on FG-NET. (b) CS comparisons on MORPH Il with 80-20 protocol when training with 80 percent images and testing with
20 percent images. (c) CS comparisons on MORPH Il with S1-S2-S3 protocol. The experiments are repeated twice: 1) Training with S2 and testing
with S1+S83; 2) training with S1 and testing with S2+S3, and the average CS performance is reported. (d) CS comparisons on CACD when training

with 1,800 celebrities and testing with 120 celebrities.
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Fig. 9. The original and aligned images of Chalearn LAP, FG-NET, Morph and CACD databases. The predicted ages of both good and bad estima-
tion are given in the figure. Note that the predicted age on Chalearn LAP dataset is not an integer due to the averaging of the predictions of the aug-

mented testing images and an ensemble of networks.

method also performs much better than other methods as
shown in Fig. 8. This indicates that our method is capable of
estimating age from face images in the wild. Note that we do
not finetune our network on IMDB-WIKI dataset because
some images from IMDB-WIKI and CACD are duplicated.

4.5.2 Apparent Age Estimation

In this section, the evaluation on Chalearn LAP dataset will
be presented.

Results on Chalearn LAP 2015. As a competition dataset of
apparent age estimation, Chalearn LAP dataset is more
special than other public datasets. Following the tricks
used in [5], [9], [41], we finetune our network on both
training and validation sets after finetuning on a large
additional age dataset, e.g., IMDB-WIKI dataset. In the test
phase, each image is flipped, and then rotated by 0°, £5°,
thus each image would be tested by 6 times and then aver-
aging those predictions. Note that for all results except for
Chalearn LAP dataset in this paper are based on a single
test image. To further improve the performance, an ensem-
ble of 8 networks is employed and we take the average of
the predictions as the final estimated age. But the ensemble
technology is only taken when evaluating on the test set of
Chalearn LAP dataset. We also report the performance on
the validation set with only finetuning on training set.

The experimental results are shown in Table 5. The pro-
posed method achieves a better performance than other teams
with a final e-error of 0.263547. For validation set, our method
also achieves a lower MAE and e-error based on a single net-
work. Due to many tricks we have employed in this evalua-
tion, more training details is presented in Section 5.1.

Results on Chalearn LAP 2016. Different from Chalearn
LAP 2015, most ages in Chalearn LAP 2016 dataset are not

integers. If we train the network with rounding ages, much
information would be sacrificed. To reduce information
lossing, we follow the work [40], [41] to encode each age
label y and its corresponding deviation o into a label distri-
bution. The distribution is a set of possibilities representing
the description degrees of their corresponding labels, which
is defined as follows:

=t L Mok (13)
L, =7 —7—=¢ 2 ,t=0U,..., I\,
Zy,o vV 27'[0'2

where Z, , is the normlization factor related to age label y
and its deviation 0. We generate a random age label for
each image according to its label distribution and regard the
random age label as the ground truth label in the training

TABLE 4
The Results on Morph Il Database with 80-20 Protocol
and FG-NET Database

Method Morph II FG-NET
Human workers [52] 6.30 4.70
AGES [7] 8.83 6.77
MTWGP [53] 6.28 4.83
CA-SVR [46] 5.88 4.67
OHRank [45] 5.69 4.85
DLA [47] 4.77 4.26
VGG+SVR [54] 3.45 -
VGG+euclidean 3.49 4.77
VGG+euclidean IMDB-WIKI) 3.15 4.30
DEX [5] 3.25 4.63
DEX (IMDB-WIKI)[5] 2.68 3.09
Ours 2.93 4.34
Ours (IMDB-WIKI) 2.52 2.96

Our method achieves the state-of-the-art performance on both databases.
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TABLE 5
Comparisons with the State-of-the-Art Methods on the Chalearn LAP 2015 Dataset

Rank Team Validation Set' Test Set” Pretrain Network  Num. of

MAE]| e-error] MAE| e-error| Set Networks
- Ours 3.21 0.28 294  0.263547 IMDB-WIKI VGG-16 8
1 CVLETHZ[5],[9] 3.25 0.28 - 0.264975 IMDB-WIKI VGG-16 20
2 ICT-VIPL [41] 3.33 0.29 - 0.270685 FG-NET Morph, CACD, et al. GoogleNet 8
3 WVU CVL [19] - 0.31 - 0.294835 FG-NET, Morph, CACD, et al. GoogleNet 5
4 SEU NJU [55] - 0.34 - 0.305763 FG-NET, Morph, Adience[56], etal. GoogleNet 6

human reference - - - 0.34 - - -
5 UMD - - - 0.373352 - - -
6 Enjuto - - - 0.374390 - - -
7 Sungbin Choi - - - 0.420554 - - -
8 Lab219A - - - 0.499181 - - -
9 Bogazici - - - 0.524055 - - -
10 Notts CVLab - - - 0.594248 - - -
! The performance on evaluation set is tested based on a single network.
2 The performance on test set is evaluated by a ensemble of multiple networks, where the number of networks used is shown in the last column of the table.
The proposed method achieves the state-of-the-art performance. (|: the smaller the better).
TABLE 6
Comparisons with the State-of-the-Art Methods on the Chalearn LAP 2016 Dataset
Rank Team Test Set” Pretrain Network Num. of
MAE|] e-error| Set Networks

- Ours 3.82 0.3100 IMDB-WIKI VGG-16 1
1 OrangeLabs[40] - 0.2411 cleaned IMDB-WIKI, a private children dataset VGG-16 14
2 palm seu [57] - 0.3214 IMDB-WIKI VGG-16 4
3 cmp+ETH [58] - 0.3361 IMDB-WIKI VGG-16 10
4 WYU CVL - 0.3405 - - -
5 ITU SiMiT [18] - 0.3668 IMDB-WIKI VGG-16 3
6 Bogazici [59] - 0.3740 - VGG-16 8
7 MIPAL SNU - 0.4569 - - -
8 DeepAge - 0.4573 - - -

(]: the smaller the better).

stage. Other experimental settings are the same to Chalearn
LAP 2015's.

We find that the performance of methods [18], [40], [57],
[58] varies on validation set and test set, for example, Orange-
Labs’s method didn’t achieve the best performance on valida-
tion set but outperformed other methods by a large margin on
test set. Therefore, we only conduct the evaluation on test set
for a consistent comparison. The comparisons are reported in
Table 6. Our method achieves the performance on test set
with epsilon error of 0.3100 based on a single network, which
is the second best result only next to OrangeLabs’s [40].
Orangelabs’s method could achieve better performance
mainly due to the following reasons: first, they pretrained
their network on a cleaned IMDB-WIKI dataset that was
arranged and annotated by 26 persons lasting for a few days;
second, they manually collected a private dataset with a con-
siderable quantity of images of children, and they have
trained 3 separate models for estimating apparent ages of chil-
dren using the children dataset; third, they used an ensemble
of multiple models to boost the performance.

4.6 Computation Time Analysis

We train an age group classification network treating adjacent
ages as an independent class. Then a decoding process (LAD
or GAD) is used to obtain the probability of each age. In this
section, we mainly analyze the accuracy and computational

efficiency between the GAD and LAD methods. The compara-
tive experiments are conducted on MORPH II database with
CPU, and we only compare the time consumed in the decod-
ing phase. In decoding, there are only two terms changed
between the probability of @ and a + 1 accordingly to Eq. (7).
To avoid decrease in performance due to rounding error in
the continuous calculation process, P(a), P(a + 1), ... are not
calculated sequentially. Instead, we compute P(a) for each a
in the whole age set Y (GAD) or age group set S,,, (LAD) with
the maximal classification probability. We find that LAD
could spend less time while gets the same performance as
with GAD. As shown in Table 8, LAD only needs 4.6 ms to
analyze one face image while GAD needs 51.7 ms to do so,
which decreases the decoding speed by about 10 times. The
visualization of the age probabilities with both LAD and
GAD is shown in Fig. 10 (a randomly selected sample from
test set). The decoding results are virtually with no difference.

5 DISCUSSION

5.1 Exploring Training Details

Many tricks have been employed when evaluating on
Chalearn LAP dataset, e.g., pretraining, data augmentation,
a ensemble of networks. In this section a step-by-step
investigation is conducted to explore the contributions of
each trick.



2620 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.40, NO.11, NOVEMBER 2018
TABLE 7 1 0.8 0.8
The Comparisons on CACD Dataset - % 0.6 % -
Method Train Set Test Set Avg. MAE E 0.5 Z 04 § 0.4
= =
Ours 1,800 celebs 120 celebs 4.68 & g 0.2 g 0.2
DEX [5] 1,800 celebs 120 celebs 4.79 J o o
VGG+euclidean 1,800 celebs 120 celebs 5.08 046-- 60 80 040 60 30 040 60 30
Age Group Age Age
The Comparison:%zlt_vsesen GAD and LAD Fig. 10. The visualization of age and age group probabilities.
0.06
Methods GAD LAD
Avg. MAE 2.52004 2.52004 . 0.05
Time (per image) 51.7 ms 4.6 ms -
S 0.04
The experiment is conducted on Morph II dataset with 80-20 @
protocol. = 0.03
o
As shown in Table 9, the pretraining on IMDB-WIKI 2 0.02
dataset seems very helpful, which can reduce the e-error g
from 0.3709 to 0.2789. This significant improvement shows 0.01
that the IMDB-WIKI dataset is still useful even though it
0

contains much noise. Also, our data augmentation on train-
ing set also makes a great contribution. The e-error is
dropped by about 0.012 with the training data augmenta-
tion. It is worth noting that the proposed method achieves
an e-error of 0.2669 with a single network, which is very
close to the best result of Chalearn LAP competition [5], [9].

5.2 Detailed Comparison with DEX

To compare with DEX method thoroughly, we re-
implement DEX with the same experimental settings where
both face alignment and data augmentation are used. The
network of re-implemented DEX method is the same to
ours except the last layer as shown in Fig. 7. We conduct the
comparisons on FG-NET, Morph II and CACD datasets.
When experimenting on FG-NET and Moroh II datasets, the
networks are first pretrained on IMDB-WIKI datatset. As
shown in the Table 11, our method could still perform better
than DEX method on those datasets when adopting the
same experimental settings. Furthermore, we also imple-
ment our method with the same training settings as DEX’s.
Besides having selected part of images with small noise of
IMDB-WIKI dataset for pretraining, Rothe et al. [5] have
also equalized the age distribution of the selected images to
improve the model generalization capability. However,
they didn’t make the list of pretraining images public to the
community. Therefore, for a fair comparison, we didn’t pre-
train the model on IMDB-WIKI dataset when conducting
experiments with the same training settings as DEX’s. The

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Age

Morph I, s1 set

Morph 1, s2 set
- Morph Il train set (80-20) CACD train set

Chalearnl5 train set Chalearn16 train set

Fig. 11. The distribution of training sets.

comparisons on FG-NET, Morph and CACD dataset are
shown in Table 11, our method achieves a better perfor-
mance. No matter which training settings are employed,
our method shows superiority to DEX.

5.3 Ablation Study

In this section, we conduct the ablation analysis on the
grouping and decoding components of the proposed
method. We train the network with multiple classifiers
without the grouping component, where each classifier is
used to determine the input image belonging to the corre-
sponding age or not. By removing the grouping stage, the
predicted age could be directly obtained via maximum
probability of the classifiers. So the decoding stage is also
dropped in this way. To make a fair comparison, we also
conduct experiments with a variety of p' to find an appropri-
ate value. As shown in Table 10, the minimum MAE can only
reach 2.70 when grouping and decoding components are
dropped. This means that the performance (or deviation of

TABLE 9
Some Training Details of Our Method on Chalearn Dataset

Crop size of Data augmentation IMDB-WIKI Data augmentation Num. of MAE €-error
training images on training Set pretraining on testing Set networks

224 %224 No No No 1 4.64 0.4027
224 %224 Yes No No 1 4.30 0.3709
224 %224 Yes Yes No 1 3.08 0.2789
224 x224 Yes Yes Yes 1 2.97 0.2669
224 %224 Yes Yes Yes 8 2.94 0.2635

All results are finetuning on both training and validation sets, and then testing on test set.
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TABLE 10
The Comparisons Between with and without Grouping and Decoding Components on Morph Il Dataset Under 80-20 Protocal
With grouping and decoding Without grouping and decoding
o - 1 2 3 4 5 6 7 8 9 10 11
MAE 252! 2.89 2.82 2.79 2.78 2.74 2.73 2.70 2.75 2.71 2.71 2.76

YThe result is got by using AGE9 and p* of 2.

TABLE 11
The Comparisons Between Our Method and DEX on FG-NET,
Morph Il and CACD Datasets

Our training settings
Method FG-NET MorphIl CACD FG-NET Morphll CACD

2.96 2.52 4.68 4.30 3.01 473
3.01 2.66 4.75 4.63 3.25 4.79

DEX’s training settings

Ours
DEX

Note that here we adopt 80-20 protocol when evaluating on Morph II dataset.

age estimation) of model without grouping and decoding
components is 0.18 years less than that with those compo-
nents. When grouping and decoding components are
dropped, each age would be regarded as a single age group
and the relationship between adjacent ages can’t be explored
either. All those result in a decrease in performance. From
this perspective, the grouping and decoding components are
of critical importance to our method.

6 CONCLUSION

In this paper, we propose a deep learning solution for age
estimation based on a single network to account for aging
randomness. First, an age group-n encoding strategy is pro-
posed to group ages, where adjacent ages are grouped into
the same group and each group is regarded as an indepen-
dent class. Then, age group classification is implemented in
a CNN with multiple outputs and we recover the exact age
for each face image by decoding the classification results.
Moreover, we modify our algorithm to address the imbal-
ance data learning problem. Finally, the evaluations on mul-
tiple age databases show that the proposed method
achieves the state-of-the-art performance.
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