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Abstract

The issue of ethnic bias has proven to affect the perfor-
mance of face recognition in previous works, while it still
remains to be vacant in face anti-spoofing. Therefore, in
order to study the ethnic bias for face anti-spoofing, we
introduce the largest CASIA-SURF Cross-ethnicity Face
Anti-spoofing (CeFA) dataset, covering 3 ethnicities, 3
modalities, 1, 607 subjects, and 2D plus 3D attack types.
Five protocols are introduced to measure the affect under
varied evaluation conditions, such as cross-ethnicity,
unknown spoofs or both of them. As our knowledge,
CASIA-SURF CeFA is the first dataset including explicit
ethnic labels in current released datasets. Then, we propose
a novel multi-modal fusion method as a strong baseline to
alleviate the ethnic bias, which employs a partially shared
fusion strategy to learn complementary information from
multiple modalities. Extensive experiments have been
conducted on the proposed dataset to verify its significance
and generalization capability for other existing datasets,
i.e., CASIA-SURF, OULU-NPU and SiW datasets. The
dataset is available at https://sites.google.
com/qq.com/face-anti-spoofing/welcome/
challengecvpr2020?authuser=0.

1. Introduction
Face anti-spoofing (FAS) [5, 19, 22] is a key role to avoid

security breaches in face recognition systems. The pre-
sentation attack detection (PAD) technique is a vital stage
prior to visual face recognition. Although ethnic bias has
been verified to severely affect the performance of face
recognition systems [1, 4, 24], it still remains to be vacan-
t in face anti-spoofing. Based on the experiment in Sec-
tion 5.3, the state-of-the-art (SOTA) algorithms also suf-
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fer from ethnic bias. More specifically, the value of At-
tack Presentation Classification Error Rate (ACER) [2] is
at least 8% higher in Central Asia than that of East A-
sia in Table 5. However, there is no available dataset
with exactly ethnic labels and protocol for evaluating this
bias issue. Furthermore, as shown in Table 1, the ex-
isting face anti-spoofing datasets (i.e. CASIA-FASD [32],
Replay-Attack [7], OULU-NPU [6] and SiW [19]) has lim-
ited number of samples and most of them just contain the
RGB modality. Although CASIA-SURF [31] is a large
dataset in comparison to the existing alternatives, it stil-
l provides limited attack types (only 2D print attack) and
single ethnicity (East Asia). Therefore, in order to allevi-
ate the above problems, we release the CASIA-SURF CeFA
dataset (briefly named CeFA), which is the largest face anti-
spoofing dataset up to date in terms of ethnicities, modali-
ties, number of subjects and attack types. The comparisons
of current datasets are listed in Table 1. Concretely, attack
types of the CeFA dataset are diverse, including printing
from cloth, video replay attack, 3D print and silica gel at-
tacks. More importantly, it is the first public dataset de-
signed for exploring the impact of cross-ethnicity. Some
original frame of the data sample and the processed sample,
i.e., keep only face region, are shown in Fig. 1(a).

Moreover, to relieve the ethnic bias, a multi-modal fu-
sion strategy is introduced in this work based on this con-
sideration that indistinguishable real or fake face which is
cased by ethnic factors may exhibit quite different proper-
ties under other modality. Some fusion methods [31, 20]
are published, which restrict the interactions among dif-
ferent modalities since they are independent before the fu-
sion point. Therefore, it is difficult to effectively utilize the
modality relatedness from the beginning of the network to
its end. In this paper, we propose a Partially Shared Multi-
modal Network (PSMM-Net) as a strong baseline to allevi-
ate ethnic and attack pattern bias. On the one hand, it fuses
multi-modal features from each feature scale instead of s-
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(a) (b)

Figure 1: (a): Processed samples of the CeFA dataset. It contains 1, 607 subjects, 3 different ethnicities (i.e., Africa, East
Asia, and Central Asia), with 4 attack types (i.e., print attack, replay attack, 3D print and silica gel attacks) under various
lighting conditions. Light red/blue background indicates 2D/3D attack. (b): Gender and age distributions of the CeFA.

Table 1: Comparisons among existing face PAD databases. (i indicates the dataset only contains images. * indicates the
dataset contains 4 ethnicities, while it does not provide accurate ethnic labels for each sample and does not study ethnic bias
for the design protocol. AS: Asian, A: Africa, U: Caucasian, I: Indian, E: East Asia, C: Central Asia.)

Dataset Year #Subject #Num Attack Modality Device Ethnicity
Replay-Attack [7] 2012 50 1200 Print,Replay RGB RGB Camera -
CASIA-FASD [32] 2012 50 600 Print,Cut,Replay RGB RGB Camera -

3DMAD [10] 2014 17 255 3D print mask RGB/Depth RGB Camera/Kinect -
MSU-MFSD [26] 2015 35 440 Print,Replay RGB Cellphone/Laptop -
Replay-Mobile [9] 2016 40 1030 Print,Replay RGB Cellphone -

Msspoof [8] 2016 21 4704i Print RGB/IR RGB/IR Camera -
OULU-NPU [6] 2017 55 5940 Print,Replay RGB RGB Camera -

SiW [19] 2018 165 4620 Print,Replay RGB RGB Camera
AS/A/
U/I*

CASIA-SURF [31] 2019 1000 21000 Print,Cut RGB/Depth/IR Intel Realsense E

CeFA
(Ours) 2019

1500 18000 Print, Replay
RGB/Depth/IR Intel Realsense A/E/C99 5346 3D print mask

8 192 3D silica gel mask
Total: 1607 subjects, 23538 videos

tarting from a certain fusion point [31, 20]. On the other
hand, it allows the information exchanges and interactions
among different modalities by introducing a shared branch.
In addition, for each single-modal branch (e.g., RGB, Depth
or IR), we use a simple and effective backbone, Resnet [15],
to learn the static features for subsequent feature fusion.

To sum up, the contributions of this paper are sum-
marized as follows: (1) We release the largest face anti-
spoofing dataset CeFA up to date, which includes 3 ethnic-
ities, 1607 subjects and 4 diverse 2D/3D attack types. (2)
We provide a benchmark with five comprehensive evalua-
tion protocols to measure ethnic and attack pattern bias. (3)
We propose the PSMM-Net as a strong baseline to alleviate
the ethnic bias. (4) Extensive experiments have been con-
ducted on the proposed dataset to verify its significance.

2. Related work

2.1. Datasets

Several studies [13, 17, 21, 24] have uncovered ethnici-
ty bias in face recognition algorithms, and Wang et al. [24]
has collected a face recognition dataset containing 4 eth-
nicities used for algorithm design to eliminate ethnicity
bias. However, there is no publicly available face anti-
spoofing dataset with ethnic labels for research this issue in
face anti-spoofing. One can see the following deficiencies
from Table 1 which lists existing face anti-spoofing dataset-
s: (1) The maximum number of available subjects was
165 on the SiW dataset [19] before 2019; (2) Most of the
datasets just contain RGB data, such as Replay-Attack [7],
CASIA-FASD [32], SiW [19] and OULU-NPU [6]; (3)
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Most datasets do not provide ethnicity information, except
SiW and CASIA-SURF. Although SiW provides four eth-
nicities, it has neither a clear ethnic label nor a standard
protocol for measuring ethnic bias in algorithms. This lim-
itation also holds for the CASIA-SURF dataset.

2.2. Methods

VIS-based Methods. Since most FAS systems adop-
t RGB camera, a considerable part of face PAD method-
s [19, 27, 25, 28] were designed in VIS spectrum. There-
fore, the color texture information is an important clues for
FAS task. Recently, some works [11, 18] attempts to learn
CNN-based features by utilizing deep learning framework
in an end-to-end manner. Concurrent to the supervision of
using softmax loss, another works derive inspiration from
physical cues, that establish a commonality for genuine face
and distinction from fake ones. Liu et al. [19] design a
CNN-RNN model to leverage Depth map and rPPG sig-
nal as supervision. In this work, we employ a simple and
effective Resnet [15] as baseline to learn the static texture
feature.

Multi-modal Fusion Methods. Zhang et al. [31] proposed
a fusion network with 3 streams using Resnet-18 as the
backbone, where each stream is used to extract low level
features from RGB, Depth and IR data, respectively. All
previous methods just consider as a key fusion component
the concatenation of features from multiple modalities. Un-
like [31, 20, 23], we propose the PSMM-Net, where three
modality-specific networks and one shared network are con-
nected by using a partially shared structure to learn discrim-
inative fused features for face anti-spoofing.

3. CeFA dataset
In this section, we introduce the CeFA dataset in detail,

such as acquisition details, attack types, and protocols.

Acquisition Details. We use the Intel Realsense to capture
the RGB, Depth and IR videos simultaneously at 30fps.
The resolution is 1280× 720 pixels for each frame in video.
Subjects are asked to move smoothly their head so as to
have a maximum of around 300 deviation of head pose in
relation to frontal view. Data pre-processing is similar to the
one performed in [31], expect that PRNet [12] is replaced
by 3DDFA [33, 14] for face region detection.

Statistics. As shown in Table 1, CeFA consists of 2D and
3D attack subsets. As shown in Fig. 1(a), for the 2D attack
subset, it consists of print and video-replay attacks captured
by subjects from three ethnicites (e.g., African, East Asian
and Central Asian). See from the Table 2, each ethnicity
has 500 subjects, and each subject has 1 real sample, 2 fake
samples of print attack captured in indoor and outdoor, and
1 fake sample of video-replay. In total, there are 18, 000

Table 2: Statistics of the 2D attack subset of the CeFA.

Ethnicity Real & Attack styles # RGB # Depth # IR Subtotal

African
East Asian

Central Asian

Real 500 500 500 6000
6000
6000

Cloth-indoor attack 500 500 500
Cloth-outdoor attack 500 500 500

Replay attack 500 500 500
Total: 1500 subjects, 18000 videos

Table 3: Statistics of the 3D attack subset of the CeFA.

3D Mask Attack Attack styles # RGB # Depth # IR Subtotal

Print mask
99 Subjects & 6 Lighting

Only mask 594 594 594
5346Wig without glasses 594 594 594

Wig with glasses 594 594 594
Silica gel mask

8 Subjects & 4 Lighting
Wig without glasses 32 32 32 192Wig with glasses 32 32 32

Total: 107 subjects, 5538 videos

videos (6, 000 per ethnicity). The age and gender statistics
for the 2D attack subset of CeFA is shown in Fig. 1(b).

For the 3D attack subset in Table 3, it has 3D print mask
and silica gel face attacks. Some samples are shown in
Fig. 1(a). In the part of 3D print mask, it has 99 subject-
s, each subject with 18 fake samples captured in three at-
tacks and six lighting environments. Specially, attack types
include only face mask, wearing a wig with glasses, and
wearing a wig without glasses. Lighting conditions include
outdoor sunshine, outdoor shade, indoor side light, indoor
front light, indoor backlit and indoor regular light. In to-
tal, there are 5, 346 videos (1, 782 per modality). For silica
gel face attacks, it has 8 subjects, each subject has 8 fake
samples captured in two attacks styles and four lighting en-
vironments. Attacks include wearing a wig with glasses and
wearing a wig without glasses. Lighting environments in-
clude indoor side light, indoor front light, indoor backlit and
indoor normal light. In total, there are 192 videos (64 per
modality).

Evaluation Protocols. The motivation of CeFA dataset is
to provide a benchmark to measure the generalization per-
formance of new PAD methods in three main aspects: cross-
ethnicity, cross-modality, cross-attacks, and the fairness of
PAD methods in different ethnicities. We design five proto-
cols for the 2D attacks subset, as shown in Table 4, totalling
12 sub-protocols (1 1, 1 2, 1 3, 2 1, 2 2, 3 1, 3 2, 3 3, 4 1,
4 2, 4 3, and 5). We divide 500 subjects per ethnicity into
three subject-disjoint subsets (second and fourth columns
in Table 4). Each protocol has three data subsets: training,
validation and testing sets, which contain 200, 100, and 200
subjects, respectively.
• Protocol 1 (cross-ethnicity): Most of the public face PAD
datasets lack of ethnicity labels or do not provide with a
protocol to perform cross-ethnicity evaluation. Therefore,
we design the first protocol to evaluate the generalization of
PAD methods for cross-ethnicity testing. One ethnicity is
used for training and validation, and the left two ethnicities
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Table 4: Five protocols are defined for CeFA: (1) cross-ethnicity, (2) cross-PAI, (3) cross-modality, (4) cross-ethnicity&PAI,
(5) bias-ethnicity

. Note that the 3D attacks subset are included in each testing protocol (not shown in the table). & indicates merging; ∗ ∗
corresponds to the name of sub-protocols. R: RGB, D: Depth, I: IR. Other abbreviated as in Table 1.

Prot. Subset Ethnicity Subjects Modalities PAIs # real videos # fake videos # all videos
1 1 1 2 1 3

1
Train A C E 1-200 R&D&I Print&Replay 600/600/600 1800/1800/1800 2400/2400/2400
Valid A C E 201-300 R&D&I Print&Replay 300/300/300 900/900/900 1200/1200/1200
Test C&E A&E A&C 301-500 R&D&I Print&Replay 1200/1200/1200 6600/6600/6600 7800/7800/7800

2 1 2 2

2
Train A&C&E 1-200 R&D&I Print Replay 1800/1800 3600/1800 5400/3600
Valid A&C&E 201-300 R&D&I Print Replay 900/900 1800/900 2700/1800
Test A&C&E 301-500 R&D&I Replay Print 1800/1800 4800/6600 6600/8400

3 1 3 2 3 3

3
Train A&C&E 1-200 R D I Print&Replay 600/600/600 1800/1800/1800 2400/2400/2400
Valid A&C&E 201-300 R D I Print&Replay 300/300/300 900/900/900 1200/1200/1200
Test A&C&E 301-500 D&I R&I R&D Print&Replay 1200/1200/1200 5600/5600/5600 6800/6800/6800

4 1 4 2 4 3

4
Train A C E 1-200 R&D&I Replay 600/600/600 600/600/600 1200/1200/1200
Valid A C E 201-300 R&D&I Replay 300/300/300 300/300/300 600/600/600
Test C&E A&E A&C 301-500 R&D&I Print 1200/1200/1200 5400/5400/5400 6600/6600/6600

5

5
Train A&C&E 1-200 R&D&I Print&Replay 1800 5400 7200
Valid A&C&E 201-300 R&D&I Print&Replay 900 2700 3600
Test A C E 301-500 R&D&I Print&Replay 600/600/600 3800/3800/3800 4400/4400/4400

are used for testing. Therefore, there are three different e-
valuations (third column of Protocol 1 in Table 4).
• Protocol 2 (cross-PAI): Given the diversity and unpre-
dictability of attack types from different presentation attack
instruments (PAI), it is necessary to evaluate the robustness
of face PAD algorithms to this kind of variations (sixth col-
umn of Protocol 2 in Table 4).
• Protocol 3 (cross-modality): Inspired by heterogeneous
face recognition, we define three cross-modality evaluation-
s, each of them having one modality for training and the t-
wo remaining ones for testing (fifth column of Protocol 3
in Table 4). Although there are no real world scenarios for
this protocol until now, if algorithms trained on a certain
modality data are able to perform well on other modalities
data, this will greatly enhance their versatility for differen-
t scenes with different devices. Similar to [30], we aim to
provide this cross-modal evaluation protocol for those pos-
sible real-world scenarios in the future.
• Protocol 4 (cross-ethnicity & PAI): The most challeng-
ing protocol is designed via combining the condition of both
Protocol 1 and 2. As shown in Protocol 4 of Table. 4, the
testing subset introduces two unknown target variations si-
multaneously.
• Protocol 5 (bias-ethnicity): Algorithm fairness has start-
ed to attract the attention of researchers in Artificial Intelli-
gence (AI). According to this criterion: an ideally fair algo-
rithm should have consistent performance on different pro-
tected attributes. In this paper, in addition to measuring the
generalization performance of the new methods on cross-
ethnicity (i.e., Protocol 1), we also consider the fairness of
an algorithm, where it is trained with data that includes all

ethnicities, and assessed on different ethnicities, respective-
ly. Like [6], the mean and variance of evaluate metrics for
five protocols are calculated in our experiments. Detailed
statistics for the different protocols are shown in Table 4.

4. Proposed Method

First, a simple and effective Resnet [15] is employed in
this work to learn the static texture features for each modal-
ity. It consists of 5 blocks (i.e., conv, res1, res2, res3,
res4) and 1 Global Average Pooling (GAP) layer. Then,
the PSMM-Net is presented by learning the fusion features
from multiple modalities.

4.1. PSMM-Net for Multi-modal Fusion

The architecture of the proposed PSMM-Net is shown
in Fig. 2. It consists of two main parts: a) the modality-
specific network, which contains three Resnet-18 [15] to
learn features from RGB, Depth, IR modalities, respective-
ly; b) and a shared branch for all modalities, which aims to
learn the complementary features among different modal-
ities. For the shared branch, we adopt Resnet-18, remov-
ing the first conv layer and res1 block. In order to capture
correlations and complementary semantics among differen-
t modalities, information exchange and interaction among
modality-specific branches and the shared branch are de-
signed. This is done in two different ways: a) forward
feeding (i.e., black arrow) of fused modality-specific fea-
tures to the shared branch, and b) backward feeding (i.e.,
light green arrow) from shared branch modules output to
modality-specific block inputs.
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Figure 2: PSMM-Net diagram consists of two main part-
s: (1) Modality-specific network, which contains three
Resnets; (2) A shared branch for all modalities, which aims
to learn the complementary features among different modal-
ities. we divide residual blocks of the modality-specific
branch into a set of modules {Mt

κ}4t=1 according to fea-
ture level, where κ ∈ {color, depth, ir} is an indicator of
the modality and t represents the feature level.

Forward Feeding. We fuse modality-specific features from
all modality branches and feed them as input to its corre-
sponding shared block. The fused process at tth feature
level can be formulated as:

S̃
t
=

∑
κ

Xt
κ + St t = 1, 2, 3 (1)

where Xt
k is the output of the modality-specific block,

k ∈ {color, depth, ir} is an indicator of the modality and
t represents the feature level. In the shared branch, S̃t de-
notes the input to the (t + 1)th block, and St denotes the
output of the tth block. Note that the first residual block is
removed from the shared branch, thus S1 equals to zero.

Backward Feeding. Shared features St are delivered back
to the modality-specific networks. The static texture fea-
tures Xt

κ add with St for feature fusion. This can be denot-
ed as:

X̃t
κ = Xt

κ + St, t = 2, 3 (2)

After feature fusion, X̃t
κ become the new features, which

are then feed to the next moduleMt+1
κ .

Loss Optimization. The binary cross-entropy loss is used
as the loss function. In summary, there are two kinds of
losses employed to guide the training of PSMM-Net. The
first corresponds to the losses of the three modality-specific
branches, i.e. color, depth and ir modalities, denoted as
Lcolor, Ldepth and Lir, respectively. The second corre-
sponds to the loss that guides the entire network training,
denoted as Lwhole, which bases on the summed features

from all branches. The overall loss L of PSMM-Net is de-
noted as:

L = Lwhole + Lcolor + Ldepth + Lir (3)

5. Experiments
In this section, we conduct a series of experiments on Ce-

FA and public available face anti-spoofing datasets to show
the significance of the presented dataset and generalization
capability.

5.1. Datasets & Metrics

We evaluate the performance of PSMM-Net on two
multi-modal (i.e., RGB, Depth and IR) datasets: CeFA and
CASIA-SURF [31], while evaluate the modality-specific
network on two single-modal (i.e., RGB) face anti-spoofing
benchmarks: OULU-NPU [6] and SiW [19]. Similar
to [31], experiments on other datasets only verify the gen-
eralization performance of the proposed CeFA by setting
the with/without of CeFA as pre-training. In order to per-
form a consistent evaluation with prior works, we report
the experimental results using the following metrics based
on respective official protocols: Attack Presentation Clas-
sification Error Rate (APCER) [2], Bona Fide Presentation
Classification Error Rate (BPCER), Average Classification
Error Rate (ACER), and Receiver Operating Characteristic
(ROC) curve [31].

Inspired by the competition of “Looking at People Fair
Face Recognition challenge ECCV20201”, the participants
will be asked to develop their fair face verification method
aiming for a reduced bias in terms of gender and skin color
(protected attributes). Before illustrating the definitions of
fairness in this work, we checked whether the method that
uses this dataset exhibits ethnicity-related bias via calculat-
ing the value of BiasEER:

BiasEER =
∑
e

ERRe −mine′ERRe′ (4)

where ERR denotes the error metric, such as APCER,
BPCER, or ACER, e represents the ethnicity in CeFA, such
as AF, CA, or EA, e

′
is the ethnicity with the lowest ERR,

and BiasEER means the total bias (non-negative value) of
the algorithm in one metric. Informally, we define an algo-
rithm as fair if it achieves the same error for all protected
ethnicities under the metric of ACER.

5.2. Implementation Details

The proposed PSMM-Net is implemented with Tensor-
flow [3] and run on a single NVIDIA TITAN X GPU. We
resize the cropped face region to 112×112, and use random

1http://chalearnlap.cvc.uab.es/challenge/38/
description/
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rotation within the range of [−300, 300], flipping, crop-
ping and color distortion for data augmentation. All models
are trained for 25 epochs via Adaptive Moment Estimation
(Adam) algorithm and initial learning rate of 0.1, which is
decreased after 15 and 20 epochs with a factor of 10. The
batch size of each CNN stream is 64.

5.3. Performance Biases of Diversity Ethnicities

In this section, we investigate the performance biases of
different ethnicities when two SOTA algorithms on the three
ethnicities of our CeFA, respectively. The MS-SEF [31]
is trained on CASIA-SURF for the multi-modal data while
FAS-BAS [19] is trained for the RGB data on OULU-NPU.
Then, the trained models are tested on CeFA. The result-
s are shown in Table 5. It shows that the results of both
methods is different among three ethnicities, such as East
Asian (11.4%) versus Center Asian (19.6%) for MS-SEF
and African (14.2%) versus Center Asian (26.1%) for MS-
SEF under the ACER metric. In addition, we found the
two methods that achieved relatively good results on East
Asians (e.g., the values of ACER are 11.4%, 15.4%, respec-
tively) due to the most of samples belong to East Asians on
CASIA-SURF and OULU-NPU. It indicates that the exist-
ing single-ethnic anti-spoofing datasets limit the ethnic gen-
eralization performance of existing methods.

5.4. Baseline Model Evaluation

Before exploring the traits of our dataset, we first pro-
vide a benchmark for CeFA based on the proposed method.
From the Table 6, we can draw the following conclusions:
(1) The ACER scores of three sub-protocols in Protocol 1
are 2.3%, 4.8% and 3.4%, respectively, which indicating the
necessity to study the generalization of the face PAD meth-
ods for different ethnicities; (2) In the case of Protocol 2,
when print attack is used for training/validation and video-
replay and 3D mask are used for testing, the ACER score is
1.6% (sub-protocol 2 1), while video-replay attack is used
for training/validation, and print attack and 3D attack are
used for testing, with an ACER score of 9.1% (sub-protocol
2 2). The large gap between the results caused by the dif-
ferent PAI (i.e., different displays and printers); (3) Protocol
3 evaluates cross-modality. The best result is achieved for
sub-protocol 3 1 (ACER=6.2%); (4) Protocol 4 is the most
difficult evaluation scenario, which simultaneously consid-
ers cross-ethnicity and cross-PAI. All sub-protocols achieve
poor performance which highlighting the challenge of our
dataset, being 4.2%, 8.4%, and 7.6% ACER scores for sub-
protocols of 4 1, 4 2, and 4 3, respectively; (5) In order to
measure the fairness of the algorithm, we first train a model
with a training set that combines three ethnicities (i.e., AF,
CE, EA), then evaluate its performance on different ethnici-
ties based on the model, and finally calculate the bias of the
model according to formula 4. It can be seen from Protocol

Table 6: PSMM-Net evaluation on the five protocols of Ce-
FA dataset, where A B represents sub-protocol B from Pro-
tocol A, and Avg±Std indicates the mean and variance op-
eration.

Prot. name APCER(%) BPCER(%) ACER(%)

Prot. 1

1 1 1.7 2.8 2.3
1 2 2.5 7.1 4.8
1 3 2.9 3.8 3.4

Avg±Std 2.4±0.6 4.6±2.3 3.5±1.3

Prot. 2
2 1 1.3 1.9 1.6
2 2 14.0 4.2 9.1

Avg±Std 7.7±9.0 3.1±1.6 5.4±5.3

Prot. 3

3 1 9.5 2.9 6.2
3 2 24.3 6.2 15.3
3 3 24.5 5.9 15.2

Avg±Std 19.4±8.7 5.0±1.8 12.2±5.2

Prot. 4

4 1 5.0 3.3 4.2
4 2 7.7 9.0 8.4
4 3 10.8 4.3 7.6

Avg±Std 7.8±2.9 5.5±3.0 6.7±2.2

Prot. 5

AF 1.2 1.4 1.3
CA 1.4 1.5 1.5
EA 1.6 1.6 1.6
Bias 0.6 0.3 0.5

5 in Table 6 that our baseline method has better performance
in terms of ACER compared to other protocols because the
training set contains data for all ethnicities. However, dis-
crimination still exists on the three ethnicities, with biases
of 0.6, 0.3, 0.5 for APCER, BPCER, and ACER, respective-
ly.

5.5. Ablation Analysis

To verify the performance of our proposed baseline in al-
leviating ethnic bias, we perform a series of ablation exper-
iments on Protocol 1 (cross-ethnicity) of the CeFA dataset.

Multiple Modalities. In order to show the effect of
analysing a different number of modalities, we evaluate
one modality (RGB), two modalities (RGB and Depth), and
three modalities (RGB, Depth and IR) on PSMM-Net. As
shown in Fig. 2, the PSMM-Net contains three modality-
specific branches and one shared branch. When only RGB
modality is considered, we just use one Resnet for evalu-
ation. When two or three modalities are considered, we
use two or three Resnets and one shared branch to train the
PSMM-Net model, respectively. Results are shown in Ta-
ble 7. The best results are obtained when using all three
modalities, which 2.4% of APCER, 4.6% of BPCER and
3.5% of ACER. The comparison results show that the multi-
modal information has a significant effect in alleviating the
issue of ethnic bias, which is mainly due to the smaller
differences in skin color of different ethnicities in the IR
modality.
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Table 5: Ethnic bias in SOTA PAD methods. The ACER(%) on three ethnicities of proposed CeFA are given.

Method Trained Dataset Modality Ethnicity(ACER%)
Africa Central Asia East Asia

MS-SEF [31] CASIA-SURF [31] RGB&Depth&IR 13.9 19.6 11.4
FAS-BAS [19] OULU-NPU [6] RGB 14.2 26.1 15.4

Table 7: Effect of multiple modalities.

Prot.1 PSMM-Net
APCER(%) BPCER(%) ACER(%)

RGB 15.7±5.3 12.4±2.2 14.1±3.8
RGB&Depth 5.2±2.3 13.6±5.2 9.4±3.1

RGB&Depth&IR 2.4±0.6 4.6±2.3 3.5±1.3

Table 8: Comparison of fusion strategies.

Method APCER(%) BPCER(%) ACER(%)
NHF 25.3±12.2 4.4±3.1 14.8±6.8

PSMM-WoBF 12.7±0.4 3.2±2.3 7.9±1.3
PSMM-Net 2.4±0.6 4.6±2.3 3.5±1.3

Figure 3: Comparison of network units for multi-modal
fusion strategies. From left to right: NHF, PSMM-NET-
WoBF and PSMM-Net. The fusion process for the tth fea-
ture level of each strategy is shown at the bottom.

Fusion Strategy. In order to evaluate the performance
of PSMM-Net, we compare it with other two variants:
Naive halfway fusion (NHF) and PSMM-Net without back-
ward feeding mechanism (PSMM-Net-WoBF). As shown
in Fig. 3, NHF combines the modules of different modali-
ties at a later stage (i.e., afterM1

κ module) and PSMM-Net-
WoBF strategy removes the backward feeding from PSMM-
Net. The fusion comparison results are shown in Table 8,
showing higher performance of the proposed PSMM-Net
with information exchange and interaction mechanism a-
mong modality-specific branches and the shared branch.

5.6. Using CeFA for Pre-Training

In this section, the PSMM-Net and Resnet are adopted
as the baseline to evaluate the generalization of the pro-
posed dataset on multi-modal dataset, i.e., CASIA-SURF
and single-modal datasets, i.e., OULU-NPU and SiW, re-
spectively. Similar to [30], we first pre-train the model on
CeFA and then fine-tune with the concerned datasets, which
is termed as PSMM-Net (CeFA) or Resnet (CeFA).

CASIA-SURF. It is a large publicly available dataset for
face anti-spoofing in terms of both subjects and modalities.
Based on the official protocol [31], we compare with three
methods to demonstrate the superiority of our PSMM-Net
and the generalization capability of proposed CeFA dataset.
From the results which are show in Table 9, we can see the
performance of the PSMM-Net is superior to the ones of the
competing multi-modal fusion methods, including Halfway
fusion [31], single-scale SE fusion [31], and multi-scale
SE fusion [29]. When compared with [31, 29], PSMM-
Net improves the performance by at least 0.4% for AC-
ER. When the PSMM-Net is pretrained on CeFA, it further
improves the performance. Concretely, the performance of
TPR@FPR = 10−4 is increased by 2.4% when pretrain-
ing with the proposed CeFA dataset. The comparison re-
sults not only illustrate the superiority of our algorithm for
multi-modal data fusion, but also show that our CeFA alle-
viates the bias of attack pattern to a certain extent.

OULU-NPU. See from the Table 1, it is a high-resolution
dataset, consisting of 5, 940 videos corresponding to 55
subjects recorded in three different illumination conditions.
There are 4 evaluation protocols to validate the generaliza-
tion of methods: Protocol 1 evaluates on the illumination
variation; Protocol 2 examines the influence of different at-
tack medium, such as unseen printers or displays; Protocol
3 studies the effect of the input camera variation; Protocol 4
considers all the factors above, which is the most challeng-
ing. We compare the Resnet with other SOTA methods, i.e.,
BAS [19], Ds [16], STASN [27]. From the results in Ta-
ble 10, our method which is pre-trained by proposed dataset
achieves the best results (The lower ACER value indicates
the better performance) on protocol 2, 3 and 4 of the OULU-
NPU. Especially in the most difficult Protocol 4, using the
proposed dataset to pre-train our baseline method signifi-
cantly improves its ACER performance, i.e., from 12.0% to
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Table 9: Comparison of the proposed method with three fusion strategies. All models are trained and tested on the CASIA-
SURF. ’()’ means the method is pre-trained with a specific dataset. Best results are bolded.

Method TPR (%) APCER (%) BPCER (%) ACER (%)@FPR=10−2 @FPR=10−3 @FPR=10−4

NHF [31] 89.1 33.6 17.8 5.6 3.8 4.7
Single-scale SEF [31] 96.7 81.8 56.8 3.8 1.0 2.4
Multi-scale SEF [29] 99.8 98.4 95.2 1.6 0.08 0.8

PSMM-Net 99.9 99.3 96.2 0.7 0.06 0.4
PSMM-Net(CeFA) 99.9 99.7 97.6 0.5 0.02 0.2

Table 10: Comparisons on OULU-NPU.

Pro. Method APCER(%) BPCER(%) ACER(%)

1

BAS [19] 1.6 1.6 1.6
Ds [16] 1.2 1.7 1.5

STASN [27] 1.2 2.5 1.9
Resnet 0.8 4.2 2.5

Resnet(CeFA) 1.7 1.7 1.7

2

BAS 2.7 2.7 2.7
STASN 4.2 0.3 2.2
Resnet 4.0 1.9 3.0

Resnet(CeFA) 1.4 2.5 2.0

3

BAS 2.7±1.3 3.1±1.7 2.9±1.5
STASN 4.7±3.9 0.9±1.2 2.8±1.6
Resnet 3.5±2.4 4.7±2.1 4.1±2.3

Resnet(CeFA) 2.3±1.5 3.2±1.7 2.8±1.4

4

BAS 9.3±5.6 10.4±6.0 9.5±6.0
STASN 6.7±10.6 8.3±8.4 7.5±4.7
Resnet 12.3±4.7 11.7±5.2 12.0±5.5

Resnet(CeFA) 6.4±3.6 7.2±4.1 6.8±4.3

6.8%. It reveals that our CeFA can alleviate the bias issue of
the acquisition device and attack type of the PAD algorithm
to a certain extent.

SiW. It provides live and spoof videos from 165 subjects.
In addition, they provide three protocols for future study on
SiW. Table 11 shows the comparison between our method
with three SOTA methods, i.e., BAS [19], TD-SF [25] and
STASN [27]. Similar conclusions in the OULU-NPU ex-
periment, our pre-trained Resnet on CeFA can achieve the
best results on all protocols. Compared with the method
of Resnet, the performance of ACER is reduced by 3.06%,
0.59% and 2.75% in Protocol 1, 2, and 3 respectively when
using the proposed CeFA dataset as pre-training.

In summary, we believe that other SOTA methods can
be further improved by using our CeFA as the pre-training
dataset. Those experimental results clearly demonstrate the
effectiveness and generalization capability of the collected
CeFA dataset.

Table 11: Comparisons on SiW. ’Pro.’ denotes the protocol.

Pro. Method APCER(%) BPCER(%) ACER(%)

1

BAS [19] 3.58 3.58 3.58
TD-SF [25] 1.27 0.83 1.05
STASN [27] - - 1.00

Resnet 1.79 6.18 3.99
Resnet(CeFA) 1.03 0.83 0.93

2

BAS 0.57±0.69 0.57±0.69 0.57±0.69
TD-SF 0.33±0.27 0.29±0.39 0.31±0.28
STASN - - 0.28±0.05
Resnet 0.75±0.22 0.89±0.32 0.82±0.23

Resnet(CeFA) 0.20±0.11 0.25±0.22 0.23±0.15

3

BAS 8.31±3.81 8.31±3.81 8.31±3.81
TD-SF 7.70±3.88 7.76±4.09 7.73±3.99
STASN - - 12.10±1.50
Resnet 9.46±4.21 9.12±4.55 9.29±4.27

Resnet(CeFA) 6.35±3.67 6.72±3.75 6.54±3.46

6. Conclusion

In this paper, we release the largest face anti-spoofing
dataset up to date in terms of modalities, number of sub-
jects and attack types. More importantly, CeFA is the only
public face anti-spoofing dataset with ethnic label. In addi-
tion, we provide a baseline, namely PSMM-Net, by learn-
ing complementary information from multi-modal data to
alleviate the ethnic bias. Extensive experiments validate the
utility of our algorithm and the generalization capability of
models trained on the proposed dataset.
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