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Abstract

Although numerous online learning strategies have been
proposed to handle the appearance variation in visual
tracking, the existing methods just perform well in certain
cases since they lack effective appearance learning mech-
anism. In this paper, a joint model tracker (JMT) is pre-
sented, which consists of a generative model based on Mul-
tiple Subspaces and a discriminative model based on im-
proved Multiple Instance Boosting (MIBoosting). The gen-
erative model utilizes a series of local constructed sub-
spaces to update the Multiple Subspaces model and con-
siders the energy dissipation of dimension reduction in up-
dating step. The discriminative model adopts the Gaussian
Mixture Model (GMM) to estimate the posterior probability
of the likelihood function. These two parts supervise each
other to update in multiple instance way which helps our
tracker recover from drift. Extensive experiments on var-
ious databases validate the effectiveness of our proposed
method over other state-of-the-art trackers.

1. Introduction
Visual tracking is one of the most fundamental and im-

portant problems in computer vision, and it has widely

practical applications, such as human-computer interaction,

video surveillance, robotics and etc. The tracker is required

to capture the position and size of the target, but unfortu-

nately, it is always influenced by many annoying factors, in-

cluding occlusion, illumination variation and pose changes.

Generative model [10, 16, 1, 11] and discriminative

model [2, 3, 6, 18] are two major methods to address the

above challenges. The generative model formulates the

tracking task as a regression problem which searches the

point with maximum likelihood. The discriminative model

formulates the tracking task as a classification problem

which focuses on the difference between the target and the

background. Lim et al. proposed a generative model [10] to

∗Stan Z. Li is the corresponding author

acquire the features of the target by means of incremental

PCA, which performs well in rigid or limited deformable

motion because it constructs an adaptive appearance model

of the target online. H. Grabner et al. proposed a dis-

criminative model based on the online boosting [6], which

has good performance in tracking because of its strong dis-

criminative ability to recognize the target from the back-

ground. However, once drift problem happens, these gen-

erative and discriminative models cannot recover since they

directly view their outputs as the positive sample for updat-

ing and the accumulated errors will finally result in their

failure. To handle the drift problem, B.Babenko et al. pro-

posed a robust discriminative tracker based on multiple in-

stance learning [3]. The multiple instance mechanism en-

sures the tracker to extract the ’true’ samples for updating

to alleviate drifting problem even when occlusion occurs.

Although the above methods perform well in some sce-

narios, it is relatively easy to lose the target because of the

lack of mutual supervision system. Some researchers real-

ized this problem and have developed several trackers with

combined models. The trackers proposed in [21, 12, 13]

combine several models with different views for tracking

and adopt the co-training framework for updating. They

achieve more stable performances than the single genera-

tive or discriminative tracker as the result of mutual supervi-

sion. In [17, 8], three models are incorporated in the tracker,

which makes the tracker robust to certain situation. How-

ever, these trackers with combined models also suffer from

drift problem and their updating samples are collected at the

maximum posterior probability point with hard label (i.e.
y = {−1,+1}), even when the confidences are low [7].
To deal with the problems existing in current trackers, we

develop a novel joint model to accomplish the tracking task

which is constituted by the Incremental Multiple Instance

Multiple Subspaces Learning (IMIMSL) and the improved
Multiple Instance Boosting (MIBoosting). The two parts

supervise each other and they are updated in the multiple

instance way. As discussed above, the mutual supervision

system will provide our tracker more stability and the multi-

ple instance updating strategy will help our tracker recover
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from drift. Meanwhile, we assign the unlabeled data for

updating with weights qualifying the probabilities of sam-

ples instead of the hard label, which will successfully avoid

the manual threshold selection in hard label assignment and

resist the noise more effectively.

For the generative model that focuses on the target fea-

ture space, our proposed IMIMSL utilizes the subspace for
updating, and the subspace is constructed by the representa-

tive weighted samples. To better acquire the target features,

the energy dissipation of dimension reduction is taken into

account in the updating step, which is always ignored in the

previous proposed methods [10, 21]. For the discrimina-

tive model that concentrates on the difference between tar-

get and background, the improved MIBoosting is proposed.

Different from the method in [3], we apply GMM to esti-

mate the likelihood function p(f(x)|y = ±1), which can
represent the practical probability of the likelihood function

more precisely than the single Gaussian model.

2. Sequential Inference with Multiple Instance
Supervision
The tracking task is formulated as a state estimation

problem and the motion process is assumed to be a Marko-

vian state transition process. Let Zi = {z1, · · · , zi} repre-
sent the observation data up to time i. xi is the state vector

at time i, which contains the position and size of the target.
In our tracker, the state vector is composed by X-axis, Y-
axis, target width, target height. The posterior probability is

estimated as the recursive equation:

p(xt|Zt) ∝ p(zt|xt)
∫

p(xt|xt−1)p(xt−1|Zt−1)dxt−1 (1)

where p(zt|xt) is the likelihood of the candidate sam-
ples. p(xt|xt−1) is the state transition probability and
p(xt−1|Zt−1) is the state estimation probability given all
observations. Similar as [3], we adopt the simplest greedy

Maximum a Posteriori Probability (MAP) strategy to solve
the above equation, where the motion model is specified as

p(xt|xt−1) = 1, if ‖lt − lt−1‖ < r, otherwise p(xt|xt−1) =
0, where lt is the position of the target at time t, r is the
search radius and the distance is the Euclidean distance.

The appearance probability of the state xt is constituted

by two parts, that is p(zt|xt) = p(z g
t |xt)p(zd

t |xt). The term
p(z g

t |xt) is the probability produced by IMIMSL model and
p(zd

t |xt) is given out by improved MIBoosting model. The
two parts of the joint model select multiple updating sam-

ples for each other and the selected samples are packaged

into bags for updating. Meanwhile, the noise is controlled

efficiently by introducing the weights of updating samples

instead of the hard positive or negative label, which are gen-

erated by the view’s counterpart. In our work, IMIMSL
model utilizes the gray value of images as the feature and

the improved MIBoosting model extracts haar-like features

[4]. In the following sections, the two parts of the joint

model will be poured out in details.

3. Generative Model with Multiple Subspaces

In the proposed multiple subspaces learning method, the

packaged positive bags collected from the neighborhood

of the tracker output are utilized for updating. The maxi-

mum probability instance within the bag is utilized to rep-

resent the bag for updating. The positive bag B is con-
sisted by the instance set {I1, · · · , In} and p(Ii) is the
probability of the ith instance within the bag to be posi-
tive, which is produced by the discriminative model. The

weight of the maximum probability instance is calculated

as: wI∗ = p(B)p(I ∗), where I ∗ is the maximum likelihood
instance and the Noisy-OR model is utilized to estimate the

probability of the bag, that is p(B) = 1−∏n
i=1(1−p(Ii)).

Finally, the updating instance is selected in this way with

the corresponding assigned weight.

3.1. Multiple Linear Subspaces Model

The appearance manifold of the target is highly non-

linear and it is hard for us to estimate it directly. How-

ever, multiple low dimension subspaces can be applied to

approximate the manifold of the target. In this section, we

propose a novel incremental learning strategy of the mul-

tiple local subspaces which utilizes the combined samples

in adjacent frames rather than individual ones for updating.

This learning strategy learns the features of the target more

efficiently and reduces the homogeneous noise contained in

the samples. LetM = {Ω1, · · · , ΩL} represent the multi-
ple subspaces of the target and Ωi, i ∈ {1, · · · , L} indicate
the local subspace, where L is the total number of multiple
subspaces. An observed instance z is a d-dimension im-
age vector. Let Ωi = (μi, Vi, Λi, Wi, ni), where μi, Vi,

Λi,Wi and ni represent the mean vector, the eigenvectors,

the eigenvalues, the set of sample weights and the number

of samples respectively. The multiple subspaces learning

strategy is detailed in Algorithm 1.

Approximate D representative instances are compressed
into a local subspace. The subspace construction process

can be completed by matrix SVD or the efficient EM algo-
rithm proposed in [19]. A η-truncation is utilized to decide
the reduction dimension of the subspace to maintain the en-

ergy, that is q = argmini

(∑
i λi

tr(Λ) ≥ η

)
. To evaluate the

probability of the sample, we utilize the maximum prob-

ability of the Lc nearest subspaces (Lc is set as 3 in the
experiments). Set the observation variable of the IMIMSL
model to be z g

t and yt = (yt
1, · · · , yt

q) = V T
t (z

g
t − μt),

where t is the time index, Vt and μt are the eigenvectors

and the eigenvalues of the subspace. The probability of the
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Algorithm 1 Online Multiple Subspaces Learning Algorithm
Input: ,M,D,ג) L)
ג = {I1, · · · , Ii, · · · }: a sequence of updating samples;M = ∅: the multiple
subspaces; D : the number of samples for the updating subspace; L: the total
number of subspaces. SetU to be the valid updating pool, symbol |U | represents
the number of samples in the pool and k is the index of the updating sample.
Output: M = (Ω1, · · · ,ΩL): multi-local subspaces.
while k ≤ |ג| do

if |U | < D then
Add Ik to the updating poolU .

else
if There exists an empty subspace ofM then
Construct the subspaceΩn with the samples in poolU , AddΩn toM
and clear the updating poolU .

else
Construct the subspace Ωn by the samples in pool U ,
and calculate the similarity between subspaces, that is
{p, q}∗ = argmaxSim(Ωp,Ωq), where Ωp,Ωq∈
{Ω1, · · · ,ΩL}

⋃{Ωn}, p �= q. Ωm = Ωp
⋃
Ωq , which

means the subspace merging process, and replace the subspaces Ωp

andΩq withΩm. Clear the updating poolU .
end if

end if
k = k + 1.

end while

candidate sample to be positive is expressed [14] as:

p(z g
t |xt) =

[
exp (− ε2(xi)

2σ2 )
(2πσ2)(d−q)/2

][
exp (−∑q

i=1
yti

2

2λi
)

(2π)q/2Πq
i=1

√
λi

]
(2)

The symbol ε(xi) in the first item is the residual of the
samples projected to the subspace, which is calculated as:

ε(xi) = ‖xi − VV T xi‖.
Subspace Similarity The similarity of the two sub-

spaces is estimated as the weighted combination of the

angle measure Simα(Ω1, Ω2) and the compactness mea-
sure Simc(Ω1, Ω2), which is defined as: Sim(Ω1, Ω2) =
Simα(Ω1, Ω2) + ωSimc(Ω1, Ω2), while ω is the trade-off
between the two similarity measures and we set ω = 0.18
in our experiments. Please refer to [21] for more details.

Subspace Updating The core problem in subspace in-
cremental learning is the updating strategy. Our proposed

strategy utilizes the subspaces for updating, namely merg-

ing the two most similar subspaces into one subspace. De-

rived from the basic equation of the maximum likelihood

solution of traditional probability principal component anal-

ysis and taking the weights of the samples into account,

the mean value μ(k) and covariance matrix S (k) of the sub-

space are represented as: μ(k) = 1∑
ωi∈Wk

ωi

∑
ωi∈Wk

ωizi

and S (k) = 1∑
ωi∈Wk

ω2
i

∑
ωi∈Wk

ω2
i (zi−μ(k))(zi−μ(k))T ,

where zi is the observations. We can get the covariance ma-
trix of the merged subspace:

S (k+l) ≈
∑

ωi∈Wk
ω2

i∑
ωi∈Wk+l

ω2
i

S (k) +

∑
ωi∈Wl

ω2
i∑

ωi∈Wk+l
ω2

i

S (l) + yyT

(3)

where we set the relations: y = (
∑

ωi∈Wk
ω2
i∑

ωi∈Wk+l
ω2
i
(1 − γ)2 +

∑
ωi∈Wl

ω2
i∑

ωi∈Wk+l
ω2
i
γ2)

1
2 (μ(k) − μ(l)) and γ =

∑
ωi∈Wk

ωi∑
ωi∈Wk+l

ωi
.

Algorithm 2 The Subspace Updating Algorithm
1: Update the mean value of the subspaces, μ(k+l) = γμ(k) + (1 − γ)μ(l),

where γ =

∑
ωi∈Wk

ωi∑
ωi∈Wk+l

ωi
.

2: Set ρ =

∑
ωi∈Wk

ω2i∑
ωi∈Wk+l

ω2
i

. Get the observation covariance matrix S(k+l) ≈

(ρσ2k + (1− ρ)σ2l )I + LLT . For simplicity, decompose the matrix LTL

instead of matrix LLT .

3: Set Q = LTL =

(
Σ β

βT α

)
, the size of matrix Q is (q + 1) × (q + 1),

where Σ =

(
Σ1 A

AT Σ2

)
. Decompose Q as: Q = UΓUT , where Γ =

diag{ξ1, ξ2, · · · , ξq+1}, UTU = I . Then Vqk+ql+1 = LUΓ− 1
2 ,

where matrix Vqk+ql+1 = [v1,k+l, · · · , vqk+ql+1,k+l] is composed by

the first qk + ql + 1 eigenvectors of the covariance matrix S(k+l).

4: The observation covariance matrix is represented as: S(k+l) = (ρσ2k + (1 −
ρ)σ2l ) +

∑ qk+ql+1
i=1 ξivi,k+lv

T
i,k+l. The first qk + ql + 1 eigenvalues

of the covariance matrix can be updated as λi,k+l = σ(k+l)2 + ξi, and the

sigma value is updated as σ2k+l = 1
d−qk+l

(
∑ qk+ql+1

i=qk+l+1 λi,k+l + (d −
qk − ql − 1)σ(k+l)2 ), where σ(k+l)2 = ρσ2k + (1− ρ)σ2l , and qk+l =

argmini(
∑

i λi,k+l∑qk+ql+1
j=1 ξj

≥ η).

Furthermore, the covariance matrix can be decomposed

as the following Sk = σ2
kI +

∑qk
i=1(λi,k − σ2

k)vi,kvT
i,k and

we have the equation: σ2
k =

1
dk−qk

∑dk

qk+1 λi,k. We refor-

mulate the equation above to get:

S (k+l) ≈ (ρσ2
k + (1− ρ)σ2

l )I + LLT (4)

where L = [
√

ρ(λ1,k − σ2
k)v1,k, · · · ,

√
ρ(λqk,k − σ2

k)vqk,k√
ρ̄(λ1,l − σ2

l )v1,l, · · · ,
√

ρ̄(λql,l − σ2
l )vql,l, y ] and vi,k,

λi,k, σk and vi,l λi,l, σl are the ith eigenvector, ith

eigenvalue, energy dissipation in dimension reduction

of the covariance matrix Sk and Sl respectively, and

ρ =
∑

ωi∈Wk
ω2
i∑

ωi∈Wk+l
ω2
i
, ρ̄ = 1− ρ.

Considering the computation complexity, we decompose

LTL instead of matrix LLT . LetQ = LTL. The size of ma-
trix Q is q × q, where q = qk + ql + 1. Then the subspace
updating process can be done efficiently by decomposing

the matrix Q and the process is detailed in Algorithm 2.
Specifically, when the updating subspace is constructed by

only one individual sample, the proposed updating process

is also applicable. In that condition, the covariance matrix

S = 0, the mean value is equal to the feature value of the
sample, and the reduction dimension equals 1. Please re-
fer the supplementary material for more details about the

deducing process of the subspace updating.

3.2. Performance Evaluation

To verify the effectiveness of the model, we conduct a

experiment in the sequences Sylvester and Minghsuan [10]

with severe pose changes and challenging lighting respec-

tively. Totally 4 subspaces are adopted in our model and
we use the smallest projection error of 3 center nearest sub-
spaces to be the measure. Every 3 frames are combined
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Figure 1. The projection error curve of the our IMIMSL model and three
other methods in two sequences.
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Figure 2. The projection error curve of our proposed method with dif-
ferent parameters of the test sequences. The symbol a-b-c represents the
model has totally a subspaces and calculates the maximum probability of
b-nearest subspaces, and every constructed subspace contains c combined
samples.

to construct a new subspace for updating. The compari-

son is conducted with three other state-of-the-art learning

strategies: IVT [10], the Multiple Linear Subspaces (MLS)

model [21] and IPPCA [15]. The parameters of our model

are fixed in these two sequences. The parameters of IVT,

MLS and IPPCA are set as the default ones in their papers or

codes. The comparison of projection error is shown in Fig-

ure 1. In both sequence, IVT and IPPCA have the worst per-

formances, because they only construct a subspace which is

updated with single sample. With the introduction of the

multiple linear subspaces which are updated with combined

samples, MLS outperforms IVT and IPPCA. However, its

results are not as accurate as ours since our IMIMSL con-
siders the energy dissipation of dimension reduction during

the updating step.

Furthermore, another experiment on the same sequences

is conducted to find out the reason why our IMIMSL is ef-
fective. As seen in Figure 2, the model with the parameters

4-3-3 (blue line) obviously outperforms the other two mod-
els, while the model with parameters 4-3-1 (green line) has
slightly better results than the one with the parameters 1-1-1
(red line). The minor difference between the green line and

the red line indicates that the use of multiple subspaces will

enhance the learning ability of IMIMSL, but it is not the
main reason why IMIMSL has better performance than other
learning methods. The significant improvement of blue line

makes it clear that the multiple samples combination strat-

egy greatly increases the performance of subspace learning

methods, which is not pointed out in previous literatures.

4. Discriminative Model with Improved Multi-
ple Instance Boosting
Multiple Instance Boosting is a learning method in

which the training samples are not individually treated. The

probability of a sample to be positive is

p(zd
t |xt) ∝ exp{

∑
i

hi} (5)

where zd
t represents the observation of the improved MI-

Boosting model, and hi is the selected weak classifier. The

training samples are packed into bags and the optimiza-

tion objective is the bag rather than the individual samples.

Compared with the conventional online boosting learning

methods, the multiple instance boosting method is more ro-

bust to occlusion. Please refer to [3, 20] for more details.

The key point in online boosting based methods is the

way to update and estimate the weak classifier continu-

ously after being given the samples. In the method pro-

posed in [6, 3], the likelihood probability density func-

tion p(xj |y = 1) and p(xj |y = −1) are assumed to be
the normal distribution which is not always true in prac-

tical, where xj is the jth dimension of the sample x . A
more feasible way is to utilize the GMM instead of the

single gaussian model to estimate the sample distribution

p(xj |y = +1). According to the Bayesian rule, it is easy
to get the continuous Bayesian weak regression function,

that is fj(x ) = log p(xj |y=+1)
p(xj |y=−1) with the assumption that

the positive and negative samples have the equal probabil-

ity in task, namely P (y = +1) = P (y = −1). When
the weak classifier receives a positive bag with the samples

{x (1), x (2), · · · , x (n)}, we calculate the mean value of the
kth dimension, namely x̄k. Then the mean value is utilized

to compute the probability of each Gaussian model in GMM

and the Gaussian model which gives out the largest proba-

bility is the most matched one. Then the matched Gaussian

model is updated with the received samples according to the

method mentioned in [3], while the unmatched ones will not

be updated. The corresponding weights of Gaussian model

are updated as ω = (1− λ)ω + λM , whereM = 1 for the
matched Gaussian model, M = 0 for the unmatched ones,
and λ is the learning rate parameter which is set to be 0.2
in this paper. At the same time, the updating rules for the

negative sample are similarly defined. Note that the form of

weak classifier in our model remains the same as [3].

5. Experiments
We conduct some experiments to evaluate the perfor-

mance of our joint model tracker. Our tracker is imple-

mented in C++ code and runs at about 2 to 3 frames per
second on the standard PC platform with 3.0GHz dual core

CPU and 2GB memory without any optimization.
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Experimental Setup The tracker is evaluated on 10
publicly available sequences which contains different chal-

lenging conditions. The sequences are issued in previ-

ous works: the sequences 1-3 from MIL[3], sequences 4-6

from VTD[9], sequences 7-8 from TLD[8] and sequences

9-10 from PROST[17]. Our tracker is initialized with the

first frame and it outputs the trajectory of the target. The

quantitative comparison results of IVT[10], FragTrack[1],

SemiBoost[7], CoGD[21], MIL[3], PROST[17], VTD[9],

TLD[8] and our tracker are shown in Figure 3, Table 1 and

Table 2. More results can be found in the supplementary

materials.

Parameters The search radius of the tracker is set to
[20, 50]. For the generative model, we set 4 subspaces to
represent the target, and select 3 nearest of them to esti-
mate the probability of the candidate samples. The updating

samples are collected in the circle region with radius 4 and
every 4 representative samples are combined together to up-
date the multiple subspaces. For the discriminative model,

3 Gaussian models are utilized for the positive and nega-
tive sample, the number of candidate haar-like features is

set as 300 and about 50 of them are chosen to construct
the classifier. For the positive bags, the samples are col-

lected from the circle with the radius 8 and about 35 of the
collected samples are packaged in a bag according to the

weight assigned to them. For the negative bags, 65 samples
are collected from the ring with the radius interval [12, 40].
Moreover, we utilize the default parameters of other track-

ers which are public available and choose the best one of 5
runs, or take the results directly from the published papers.

Specifically, we reproduce the CoGD tracker in C++ code

and adopt the parameters as described in [21].

MIL Sequences The sequences tiger1 and occlude2
present frequent occlusions for several times. MIL and

VTD have relatively better performance, because MIL

adopts multiple instance updating strategy which is very ro-

bust to occlusion, and VTD efficiently combines some spe-

cific appearances of the target. Meanwhile, since the su-

pervision strategy increases the possibility of our tracker to

precisely find the target, our tracker also has the good per-

formance, as supported by Table 1 and Table 2. The heavy

360◦ appearance variation and the occlusion by other simi-
lar object always challenge the stability of the trackers, just

like what happens in sequence girl. While small drift exists,
VTD and our tracker have the best performance.

VTD Sequences There are numerous objects similar to
the target in the background of the sequences animal, foot-
ball and basketball. As seen in Figure 3, these similar ob-
jects always distract the detection based trackers away such

as TLD and SemiBoost, because the appearances of the sim-

ilar objects and the target are visually undistinguishable.

Thanks to the supervision of the two different models in the

multiple instance way, our tracker produces a little better

Seq. JMT IVT CoGD Semi MIL Frag PROST VTD TLD

girl 10.9 40.4 14.1 22.8 31.6 25.4 19.0 12.8 35.7
occlude2 10.8 19.7 13.3 25.2 14.2 21.5 17.2 9.4 14.9
tiger1 8.01 80.7 29.7 14.4 8.35 29.3 - 22.3 12.6
animal 6.71 226 7.38 12.3 80.3 71.4 - 9.68 50.7
basketball 7.46 95.4 13.8 153 93.3 12.7 - 11 158
football 7.33 17.2 9.16 102 12.7 9.92 - 6.25 13.0
jumping 4.71 62.1 3.75 59.7 10.2 5.45 - 40.9 5.04
panda 5.68 58.2 64.5 41.7 9.42 6.85 - 6.32 17.7
lemming 12.5 128 39.8 99.8 40.5 82.8 25.1 98 167
board 25.3 169 74.5 389 69.2 90.1 39.0 70.1 134

Table 1. Comparison results of average error center location in pixel.

Seq. Frame JMT IVT CoGD Semi MIL Frag PROST VTD TLD

girl 502 492 353 482 388 378 378 447 502 219
occlude2 812 812 583 767 548 807 618 665 792 712
tiger1 354 265 35 170 224 279 155 - 189 150
animal 71 65 3 62 56 5 13 - 66 43
basketball 725 715 75 335 90 175 630 - 601 15
football 362 357 246 292 65 272 302 - 357 272
jumping 313 313 65 308 35 109 258 - 79 209
panda 1000 645 120 175 375 195 465 - 510 315
lemming 1336 1117 284 907 733 882 733 942 471 234
board 698 618 30 279 105 354 474 524 274 95

Table 2. Tracking results. The total frame number of the sequences are
presented in the second column. The number in other columns indicate

the count of successful tracking frames based on the evaluation metric of

PASCAL VOC object detection[5].

performance than VTD which is very good at dealing with

this kind of challenges.

TLD Sequences The sequence jumping contains abrupt
motion because of handhold camera, and motion blur re-

sulting from quick motion. These problems can be handled

with an efficient appearance model or a detection module,

such as FragTrack and TLD. Through combining a gen-

erative model and a discriminative model, CoGD and our

tracker have more satisfactory results than other trackers.

The frequent non-grid appearance variations in sequence

panda result in less accuracy in tracking results, for exam-
ple, IVT, CoGD and SemiBoost almost lose the target dur-

ing tracking procedure. Since VTD incorporates several ba-

sic observation models and motion models into a compound

tracker, it performs well in this sequence, but its tracking

performance is still not as satisfactory as ours, as seen in

Table 1 and Table 2.

PROST Sequences The cluttered background in se-
quences lemming and board actually confuses the trackers
a lot. Even the very stable tracker VTD easily loses the

target, and TLD and SemiBoost based on detectors cannot

successfully track the target for a long time, because the too

much background information in bounding box leads to the

failure of the detectors. Relatively, the trackers including

CoGD, MIL and PROST which take the surroundings into

account outperform other trackers including IVT and Frag-

Track which just consider appearance features. As illus-

trated in Figure 3, Table 1 and Table 2 experimentally, our

tracker has the best performance because the joint model

can effectively alleviate the influence of noise introduced

by the complex background.
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basketball �023 basketball �397 basketball �678 lemming �232 lemming �1110 lemming �1234

animal �012 animal �024 animal �059 football �113 football �285 football �307

board �071 board �574 board �671 tiger1 �118 tiger1 �223 tiger1 �341

Figure 3. Tracking results. The results of our tracker, FragTrack[1], SemiBoost[7], CoGD[21], MIL[3], PROST[17], TLD[8] and VTD[9] are depicted as
yellow, dark green, magenta, blue, black, light green, cyan and red rectangles respectively. Only the trackers with relatively better performances of each

sequences are displayed.

6. Conclusion

In this paper, a multiple instance joint model based ro-

bust tracker is proposed. The target appearance is con-

structed using the IMIMSLmodel that learns the appearance
variations of the target and the improved MIBoosting model

that differentiates the target from the background. The two

parts of the model provide updating samples for each other

and they are updated in the multiple instance way. Experi-

mental comparison with the state-of-the-art tracking strate-

gies demonstrates the superiority of our joint tracker. Our

future work includes the introduction of the adaptive weight

between the IMIMSL model and the improved MIBoosting
model, which will provide our tracker more robustness.
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