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Abstract

Existing human action recognition systems for 3D se-
quences obtained from the depth camera are designed to
cope with only one action category, either single-person ac-
tion or two-person interaction, and are difficult to be ex-
tended to scenarios where both action categories co-exist.
In this paper, we propose the category-blind human recog-
nition method (CHARM) which can recognize a human ac-
tion without making assumptions of the action category. In
our CHARM approach, we represent a human action (ei-
ther a single-person action or a two-person interaction)
class using a co-occurrence of motion primitives. Subse-
quently, we classify an action instance based on matching
its motion primitive co-occurrence patterns to each class
representation. The matching task is formulated as max-
imum clique problems. We conduct extensive evaluations
of CHARM using three datasets for single-person actions,
two-person interactions, and their mixtures. Experimental
results show that CHARM performs favorably when com-
pared with several state-of-the-art single-person action and
two-person interaction based methods without making ex-
plicit assumptions of action category.

1. Introduction
Human action recognition is a major component of many

computer vision applications, e.g., video surveillance, pa-
tient monitoring, and smart homes, to name a few [3]. There
have been many approaches developed for recognizing hu-
man actions from monocular videos. However, monocular
videos are insufficient for the practical applicability of ac-
tion recognition algorithms in the real-world environment,
mainly due to two problems. First, 3D information is lost
in monocular videos. Second, a single camera view usually
cannot fully capture human action due to the occlusion.

The recent advent of cost-effective depth sensors enables
real-time estimation of 3D joint positions of a human skele-
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Figure 1. Examples of human actions depicting the complexities
in action recognition: (a) a multi-person action with each individ-
ual performing a single-person action; (b) a multi-person action
involving a single-person action and multi-person interaction; (c)
a multi-person action that cannot be reduced to the combination of
two single-person actions. See texts for more details.

ton [17]. The availability of 3D joint positions in real time
spawns approaches with higher practical applicability for
action recognition.

The majority of existing human action recognition meth-
ods using sequences of 3D joint positions are designed for
two general categories: single-person action [19, 22, 25]
and multi-person interaction [12, 13, 23]. However, human
actions in real-world scenarios are much more complex be-
cause multiple action instances belonging to both categories
usually co-exist in a sequence. For example1, Figure 1(a)
describes three actions all belonging to the single-person ac-
tion category: three children are skating without interacting
with each other; Figure 1(b) depicts two actions belonging
to two categories respectively: ”two children are fighting for
a toy” (a two-person interaction) while ”a woman lifts two
hands to hold her forehead” (a single-person action). Thus,
it is more desirable to have a method that can recognize hu-
man actions without involving any prior categorization.

However, existing algorithms designed to recognize
single-person actions from sequences of 3D joint positions
[10, 19, 25] cannot be used to recognize multi-person in-
teractions, and vice versa [4, 23]. This is because the two
categories of actions are exclusive by definition. A simple
approach fusing methods for different categories to recog-
nize an action in a competitive manner is unlikely to work as
shown by the example in Figure 1(c). From the perspective

1We show frames from videos to illustrate the idea, but the same sce-
nario holds for sequences of 3D joint positions.



of single-person action recognition, the image depicts one
person pushing his hand, but considering the other person,
the same action can be recognized as a two-person interac-
tion of ”patting on the shoulder”.

In this paper, we present a unified recognition model for
single-person actions and multi-person interactions. Our
method uses a sequence of estimated 3D joint positions as
input, and outputs actions that occur in such a sequence. As
such, we term our method as Category-blind Human Ac-
tion Recognition Method (CHARM). Given a sequence of
3D joint positions of each person in a video, we first gen-
erate possible combinations of mutually inclusive potential
actions2. We then model potential actions with a category-
blind visual representation, which models an action as a set
of weighted graphs (one for each action class) with the same
topology. In each weighted graph, nodes represent motion
primitives, and edges represent the co-occurrence of two
motion primitives in a particular action class. The weight on
an edge represents the co-occurring probability of two mo-
tion primitives. The likelihood of a potential action being
classified into a particular class is computed by identifying a
maximum clique of motion primitives from the correspond-
ing weighted graph. Then CHARM can classify a potential
action by identifying the class with the maximum likelihood
score. After all potential actions are classified into poten-
tial action classes with their associated likelihood scores,
CHARM computes the reliability score for each possible
combination by averaging the likelihood scores of all in-
volved potential actions. Finally, CHARM outputs the most
reliable action combination and identifies the person(s) per-
forming each action. The overall procedure that is more
systematic is presented in § 3.

This paper includes the following major contributions:
First, we design a category-blind visual representation
which allows an action instance to be modeled as a set of
weighted graphs which encode the co-occurring probabili-
ties of motion primitives (§ 4.1). Second, such a category-
blind visual representation allows the recognition of co-
existing actions of different categories (§ 3 and § 4). Third,
we design a novel action classification algorithm based
on finding maximum cliques of motion primitives on the
weighted graphs of the motion primitive co-occurrence pat-
terns (§ 4.2). Finally, we collect a new dataset to evaluate
the performance of CHARM in scenarios where actions of
different categories co-exist (§ 5).

2. Related Work
Our work is mainly related to two types of human action

recognition approaches, each of which is designed to cope
with only one action category, i.e., either single-person ac-
tion or multi-person interaction.

2We define that two potential actions without any common person in-
volved as mutually inclusive.

Single-person action recognition. Existing techniques
for single-person action recognition are extensively sur-
veyed in [2, 3, 8] with the majority of such methods using
monocular RGB videos [9, 20, 21, 26]. Since the advent
of cost-effective depth sensors which enable the real-time
estimation of 3D skeleton joint positions, many approaches
have been developed to extract reliable and discriminative
features from skeletal data for action recognition. Vemula-
palli et al. [18] propose to represent 3D joint positions as el-
ements in a Lie group, i.e., a curved manifold, and perform
action recognition after mapping the action curves from the
Lie group to its Lie algebra. For online action recognition,
Zhao et al. [25] extract structured streaming skeletons fea-
tures to represent single-person actions, and use sparse cod-
ing technique to do the classification. Wu et al. [19] model
transition dynamics of an action, and use a hierarchial dy-
namic framework that first extracts high-level skeletal joints
features and then use the learned representation for estimat-
ing emission probability to recognize actions.

Multi-person interaction recognition. Kong et al. [12,
13] focus on recognizing two-person interaction from 2D
videos and propose interactive phrases, high-level descrip-
tions, to express motion relationships between two inter-
acting persons. They propose a hierarchical model to en-
code interactive phrases based on the latent SVM frame-
work where interactive phrases are treated as latent vari-
ables. Yun et al. [23] create an interaction dataset contain-
ing sequences of 3D joint positions, and extract relevant
features, including joint distance and motion, velocity fea-
tures, etc. They use both SVM and MILBoost classifiers for
recognition. Also using the sequences of 3D joint positions
as input, Alazrai et al. [4] design a motion-pose geometric
descriptor (MPGD) as a two-person interaction representa-
tion. Such a MPGD representation includes a motion pro-
file and a pose profile for each person. These two profiles
can be concatenated to form an interaction descriptor for the
two interacting persons. The interaction descriptor is then
fed into the SVM classifiers for action recognition.

3. Overview

In this section, we describe the overall procedure of
CHARM. As shown in Figure 2, the input to CHARM is a
sequence of 3D joint positions of human skeletons3. Given
the input, the goal of CHARM is two-fold, that is, recog-
nizing all actions occurring in this video and identifying the
person performing each action. CHARM entails the follow-
ing steps: (a) CHARM enumerates potential actions for the
current sequence, e.g., determining the number of persons
and the number of pairs of persons. (b) CHARM generates
possible combinations of mutually inclusive potential ac-

3The human skeletons are tracked by the Microsoft Kinect SDK, so the
3D joint positions for different persons can be distinguished.



Figure 2. Main steps of CHARM. This example involves 3 persons
(i.e., Person A, B, and C) and 6 potential actions. The recognition
result indicates that A is performing a single-person action of Class
1, and B&C are performing a two-person interaction of Class 10.

tions, e.g., with three persons, there are four possible com-
binations as shown in Figure 2. (c) It extracts relevant body
motion data from these potential actions. (d) CHARM ex-
tracts category-blind patterns for the current potential action
based on the information available in the reference reposito-
ries. Such reference repositories are constructed in the train-
ing stage. (e) The extracted category-blind patterns are fed
to the classification module. (f) The classification module
classifies the current potential action and outputs an action
label with an associated likelihood score. (g) After all po-
tential actions are classified, CHARM computes a reliability
score for each possible combination by averaging the like-
lihood scores of all involved potential actions, and chooses
the most reliable combination as the recognition result.

Steps (c), (d), (e), and (f) are four core steps of the overall
procedure of CHARM, and we will describe these four steps
in § 4. In particular, in § 4.1.3, we will describe the con-
struction of the reference repositories in the training stage.

4. Methodology
In this section, we describe the four core steps in

CHARM, i.e., steps (c), (d), (e), and (f). These four steps
are divided into two phases: steps (c) and (d) model a po-
tential action using the category-blind visual representation,
and steps (e) and (f) classify a modeled potential action into
an action class by solving several maximum clique prob-
lems (MCP). These two phases are presented in § 4.1 and
§ 4.2 respectively.

4.1. Modeling a Potential Action Instance using the
Category­blind Visual Representation

In CHARM, we model a potential action instance using a
category-blind visual representation so that we can directly
compare the likelihood scores of any two potential actions
which belong to different categories.

We assume that a human action can be represented as a
combination of motion units (MUs). For a single-person ac-

Figure 3. The representation of body part configurations.

tion, an MU corresponds to the motion of a single body part
(e.g., the right upper arm), while for a two-person interac-
tion, an MU corresponds to the motions of a pair of body
parts from two interacting persons (e.g., a pair of right up-
per arms). Thus, an action instance of any action category
can be modeled using the category-blind visual representa-
tion in two steps: (a) First, we model all MUs of an action
instance (§ 4.1.1) and then (b) model the combinations of
MUs that can match potential action instances (§ 4.1.2).

4.1.1 MU Model

Let us first consider how to model MUs of a single-person
action. Given an input sequence of 3D joint positions, there
are many ways to represent body part configurations [3]. In
CHARM, we adopt the approach used in [15], which uses
eight bilateral symmetrical human body parts, i.e., upper
arms, lower arms, thighs, and legs. The reason for choos-
ing this body part configuration representation is that it is
invariant to the body position, orientation and size, because
the person-centric coordinate system is used, and the limbs
are normalized to the same length. As shown in Figure 3, all
the 3D joint coordinates are transformed from the world co-
ordinate system to a person-centric coordinate system. Up-
per arms and thighs are attached to the torso at the ball-
and-socket joints and move freely in 3D. These four body
parts are modeled as four 3D unit vectors v1, v2, v3, and
v4 as shown in Figure 3, and are computed from the coordi-
nates of their endpoints. Lower arms and legs can only bend
0◦−180◦ at the elbow and knee joints. Thus, we model their
relative positions with respect to the upper body parts, e.g.,
the upper arms and thighs using four angles α1, α2, α3, and
α4 as shown in Figure 3. These four angles are planar an-
gles because a upper body part and its corresponding lower
body part are represented as two intersecting line segments
in CHARM. Besides these angles, we also keep track of the
planes containing the upper and lower arms which are rep-
resented by the unit normals n1 and n2 to the planes. We
assume the normal direction of the plane formed by legs and
thighs remains unchanged with regards to the human cen-
tric coordinate system, since the lower leg does not move
flexibly with regards to its upper thigh. The four 3D unit
vectors {vi}, four planar angles {αi}, and two 3D normals
{ni} form a 22-element body pose vector. Thus, the MUs
of a single-person action can be collectively represented as



Figure 4. The upper row shows how an MP collection can be
formed based on the extracted body motion matrix using the mo-
tion template codebook. The lower half is about the extraction of
the MP co-occurrence patterns. Red arrows indicate the quantiza-
tion procedure. The light grey blocks are reference repositories.
In the block that shows the MP co-occurrence pattern, each action
class should have 22 disjoint groups (each group is illustrated as
an ellipse) with each corresponding to a dimension. However, we
merely show five disjoint groups to make the diagram clearer. The
notation used herein and the rest of the paper are defined in Table 1

a body motion matrix, with each row corresponding to a
dimension of the body pose vector, and each column cor-
responding to a particular video frame. In the rest of this
paper, each row of the body motion matrix is referred to as
a dimension.

A natural choice of modeling MUs of a two-person in-
teraction is to directly use two body motion matrices, one
for each person. However, doing so does not capture inter-
person temporal correlations, which are very important cues
in recognizing two-person interactions. Hence, we aug-
ment the MU model with additional inter-person tempo-
ral correlations for two-person interactions. We use four
types of inter-person temporal correlations, which we will
illustrate using the following example. For Persons A and
B, we can represent the world coordinates of the origin
and coordinate axes of their person-centric coordinates as
{oAw, xA

w, y
A
w , z

A
w} and {oBw , xB

w , y
B
w , zBw }. The Euclidean

distance between A and B can be represented as dAB =
∥oAw − oBw∥2, and the angles between corresponding coordi-
nate axes can be represented as αx, αy and αz . dAB , αx,
αy, and αz can form a 4-element inter-person correlation
vector. Thus, the inter-person temporal correlation of two
persons can be represented as an inter-person temporal cor-
relation matrix, with each row corresponding to a dimen-
sion of the inter-person correlation vector, and each column
corresponding to a video frame.

4.1.2 MU Combination Model

A natural choice for modeling the combination of MUs is
to concatenate the representations of all individual MUs.
However, due to the complexity of MUs, similar MUs need
not be numerically similar. The variations between similar

Bi The ith dimension of the body motion matrix.
T j
i The ith motion template on the jth dimension of the codebook.
C The number of motion templates on each dimension of the codebook.
K The number of nearest motion templates that are matched to each Bi.
N The number of dimensions for an action instance.
Pj

i The ith MP on the jth dimension.
Φi MP co-occurrence matrix for the ith action class.
Gi MP co-occurrence pattern of an action instance for class i.

Table 1. Notation.

MUs will complicate the training of classifiers with poten-
tial overfitting problems. Inspired by [14], we assume an
MU can be quantized into several motion primitives (MPs)
which are common patterns for each dimension shared by a
variety of human actions.

As such, the task of modeling the combination of MUs
for a potential action can be formulated as modeling the
combination of MPs of this potential action. We first discuss
how to quantize the MUs of a potential action to form a col-
lection of MPs. Using the MU model described in § 4.1.1,
the MUs of a single-person action is represented as a body
motion matrix, and the MUs of a two-person interaction is
represented as two body motion matrices. The formation of
MP collection relies on a reference repository, namely mo-
tion template codebook (see § 4.1.3) which stores a num-
ber of motion templates identified from the training action
instances. An MP for a single-person action is obtained
by finding its best match motion template in the codebook
while an MP for a two-person interaction is obtained by se-
lecting the best pair of motion templates in the codebook.
The formation of MP collection for both action categories
is described as follows:
(a) As shown in the upper half of Figure 4, given the body
motion matrix of a potential single-person action, each di-
mension of the body motion matrix is matched to K nearest
motion templates from the same dimension in the codebook.
Each matched motion template becomes an MP for the cor-
responding dimension. The intuition of generating multiple
MPs for each dimension is that the skeletal data collected
by the depth camera might be noisy due to some degrading
factors, e.g., illumination changes, and the noisy data will
impact the quantization from the MUs to MPs; thus, we
generate multiple MPs per dimension to increase the toler-
ance to the quantization error.
(b) The formation of an MP collection for a two-person in-
teraction is similar to the single-person action case. Given
two body motion matrices of two interacting persons, we
first respectively match each dimension of their body mo-
tion matrices to K nearest motion templates on the same
dimension. Then, a pair of matched motion templates (one
for each person) from the same dimension compose an MP
of a two-person interaction.

MP Co-occurrence Pattern Extraction. Based on the
MP collection, we model a potential action by extracting
its MP co-occurrence pattern (with each pattern represent-
ing a combination of MPs) for each class. To extract such



co-occurrence patterns, we rely on a reference repository,
namely the MP co-occurrence matrices (see § 4.1.3), with
each matrix representing the conditional probabilities for
any two MPs co-occurring in an action instance of a class.

We define the MP co-occurrence pattern of a potential
action for class c as a weighted graph Gc = {Vc,Ec,ωc},
where Vc, Ec, ωc represent the set of nodes, edges and
edge weights respectively. Each node represents an MP.
The nodes in Vc are divided into 22 disjoint groups (see
Figure 4) with each group R corresponding to a dimension.
Thus, Rj = {Pj

1 ,P
j
2 , . . . ,P

j
KH}, where Pj

i denotes the ith
MP of the j-th group. K is defined in Table 1, and H is the
number of persons involved in this action. Ec includes the
edges of Gc that connect nodes from different groups, but
not within the same group. The edge weights correspond
to the pairwise co-occurring probabilities of MPs, and such
co-occurring probability is determined by two factors: (a)
the conditional co-occurring probabilities of the two MPs
and (b) the confidence level of using a particular MP to rep-
resent a dimension of the potential action. Gc is an undi-
rected graph with the symmetrized edge weights calculated
by averaging the two weights for different directions:

ωc(Pj
i ,P

m
l ) =

1

2
·
(
Φ′

c(P
j
i ,P

m
l ) · φ(Pm

l )

+Φ′
c(Pm

l ,Pj
i ) · φ(P

j
i )
)
,

(1)

where Φ′
c(P

j
i ,Pm

l ) = Φc(Pj
i ,Pm

l ) · (Oc)
1
2 , and

Φc(Pj
i ,Pm

l ) is an entry of the MP co-occurrence matrix of
class c, indicating the conditional probability of Pj

i occur-
ring in an action instance of class c given that Pm

l occurs.
(Oc)

1
2 is a parameter used to normalize the effects of differ-

ent co-occurrence matrix sizes on the value of Φc(Pj
i ,Pm

l ),
and Oc is the order 4 of the MP co-occurrence matrix of
class c. φ(Pm

l ) reflects the confidence level of using Pm
l to

represent a dimension of the potential action:

φ(Pm
l ) = exp(−β · 1

H
·

H∑
h=1

∆(T m
l,h,Bm,h)), (2)

where β is a sensitivity controlling parameter, and H is the
number of persons involved in this potential action. We
have Pm

l = {T m
l,h}Hh=1 where T m

l,h is a matched motion
template of the hth person used to generate Pm

l . Bm,h is
the mth dimension of the body motion matrix of the hth
person. ∆(·, ·) is the dynamic time warping distance [7].

Inter-person Temporal Correlation Pattern Extrac-
tion. To augment the MP combination modeling of a poten-
tial two-person interaction, we extract its inter-person tem-
poral correlation pattern for each interaction class. Such a
temporal correlation pattern is represented as a confidence
score, which describes how well the inter-person temporal
correlations of this potential interaction instance is aligned

4It can be easily seen that if class c is a single-person action class,
Oc = N · C; if class c is a two-person interaction class, Oc = N · C2

with the correlation distribution of a specific interaction
class. The confidence score of class c, ℓc, is computed as:

ℓc =

4∏
i=1

δ(fi,c(Ii) > τi). (3)

Ii is the ith row of the inter-person temporal correlation
matrix (see § 4.1.1). fi,c is a Gaussian distribution which
models the distribution of a temporal correlation type for
class c. δ is a delta function that takes 1 when the condition
is true, and 0 otherwise. τi is a threshold. Relevant Gaussian
models associated with all interaction classes are stored in
a reference repository (see § 4.1.3). Since a single-person
action does not have inter-person temporal correlations, we
set the values of these confidence scores to 1 for a potential
single-person action to create a uniform representation.

4.1.3 Construction of Reference Repositories

Motion template codebook. We start with a training
dataset with sequences covering action classes of interest.
Each training sequence contains only one action instance,
and is associated with an action class label. Each person
in the training sequence is represented by twenty 3D joint
positions. To construct the motion template codebook, two
steps are performed: First, we use the MU model described
in § 4.1.1 to represent the MUs of each person in the train-
ing sequences as a body motion matrix. Second, we pull
all the body motion data from the same dimension together
and apply k-means clustering to obtain C clusters per di-
mension. Then, we store the centroid of each cluster as a
motion template in the codebook. We adopt dynamic time
warping distance [7] in the clustering process so that we can
cope with training sequences of different lengths.

MP co-occurrence matrices. Given the MUs of each
person in the training sequences modeled as a body motion
matrix with N dimensions, we can match each dimension
of the body motion matrix to the nearest motion template
on the same dimension of the codebook and hence repre-
sent an action instance as a collection of N MPs with each
MP corresponding to a dimension. Next, we construct an
MP co-occurrence matrix for each action class. We con-
struct the MP co-occurrence matrix for an action class c,
by computing the conditional probabilities of any two MPs
using the following equation:

Φc(Pj
i ,P

m
l ) = p(Pj

i |P
m
l , c) =

Θc(Pj
i ,Pm

l )

Θc(Pm
l )

, (4)

where Θc(Pj
i ) is the number of training action instances of

class c containing MP Pj
i and Θc(Pj

i ,Pm
l ) is the number

of action instances of class c where Pj
i and Pm

l co-occur. If
the denominator Θc(Pm

l ) equals zero, then Φc(Pj
i ,Pm

l ) is
directly set as zero. However, if Pj

i and Pm
l are MPs corre-

sponding to the same dimension, i.e., j = m, Φc(Pj
i ,Pm

l )
is set to zero, i.e., we do not allow them to co-occur since



we only allow one MP for each dimension for any action in-
stance. As shown in (4), the element Φc(Pj

i ,Pm
l ) is equiva-

lent to the conditional probability p(Pj
i |Pm

l , c) which is the
probability of Pj

i occurring in an action instance of class
c given that Pm

l occurs. The advantages of defining a co-
occurrence matrix using the conditional probability are: (a)
It enhances the robustness of CHARM such that it can tol-
erate action variations caused by personal-styles more be-
cause the conditional probability does not penalize those
co-occurrences of MPs that happen less frequently. (b) The
resulting co-occurrence matrix is asymmetric; such asym-
metry property is helpful for coping with intra-class varia-
tions because it ensures that the probability of Pj

i occurring
in an action instance given that Pm

l occurs is not necessarily
equivalent to that of the reverse situation.

Gaussian models with respect to each interaction
class. There are four Gaussian models for each interaction
class, with each modeling the distribution of an inter-person
temporal correlation type for this interaction class. The
mean and standard deviation of each Gaussian model are
computed using the relevant data for that correlation type
from all training instances for that interaction class.

4.2. Action Classification using MCP

The category-blind representation of a potential action
includes a set of class-specific patterns. We compute a
likelihood score for each class-specific pattern and then
choose the class label associated with the highest score as
the label for that potential action. Recall that each class-
specific pattern can be represented as a weighted graph,
e.g., Gc = {Vc,Ec,ωc} for class c. Since in the MP co-
occurrence pattern extraction process, we include multiple
MPs per dimension, for each class c, we thus first need to
identify a subgraph, Gs = {Vs, Es, ωs}, from Gc, which
includes only one MP per dimension. A feasible Gs has
to satisfy the following three constraints: (a) Given N dis-
joint groups (dimensions), one and only one node from each
group should be selected. (b) If one node is selected to be in
Gs, then exactly (N − 1) of its edges should be included in
Gs (this is because each selected node should be connected
to one node at each of the rest (N − 1) groups). (c) If an
edge is included in Gs, the nodes incident to it should be
also included and vice versa.

The metric that we use to identify a Gs from Gc is the
co-occurring likelihood of the clique of MPs in Gs. Such a
co-occurring likelihood is defined as follows:

λ(Gs) =

N∑
p=1

N∑
q=1,q ̸=p

ωc(Vs(p), Vs(q)). (5)

where Vs(p) denotes the node within the pth group of Gs.
Thus, we formulate the identification process of a subgraph
G∗

s which contains the MP clique that is most likely to oc-
cur, as the following optimization problem:

G∗
s = argmax

Vs

λ(Gs). (6)

Once we have such G∗
s for each action class, we compute a

likelihood score, Υc, which measures how likely we should
classify this potential action to a particular action class c:

Υc = ℓc · λ(G∗
s,c), (7)

where ℓc is defined in (3). Eventually, we classify this po-
tential action to the class which yields the highest likelihood
score. Such a classification task is formulated as follows:

c∗ = argmax
c

(Υc). (8)

The optimization problem in (6) is a maximum clique
problem (MCP) that is NP-hard. Several approximation al-
gorithms exist for solving MCP, e.g., [5, 6, 24]. In this work,
we adopt a mixed binary integer programming (MBIP)
based solver [6]. We set the objective function of the MBIP
as the optimization problem of (6), and set the constraints of
the MBIP as the formulation of three aforementioned feasi-
bility constraints. The MBIP is solved by the Cplex [1].

5. Experimental Evaluations
For evaluation, we use three test scenarios: (i) videos

with three persons and a mixture of single-person actions
and two-person interactions, (ii) videos with two interact-
ing persons, and (iii) videos with a single person. The test
scenario (i) is closer to real-world scenarios where the cat-
egory of a video sequence is not given, and multiple ac-
tion instances belonging to different categories co-exist in a
video sequence. This scenario is used to highlight the ad-
vantage of our CHARM approach where no prior category
information is given. In contrast, each video sequence in
test scenario (ii) and (iii) contains only one action instance
at one time and its action category (either single-person ac-
tion or two-person interaction) is predefined.

Since no prior existing datasets include test scenario (i),
we collect our own ”Hybrid Actions3D” dataset5. In addi-
tion, we adopt SBU Interaction dataset [23] for test scenario
(ii), and MSRC12-Gesture dataset [11] for (iii).

Baselines. Since no prior work is designed to handle
test scenario (i), we create a baseline scheme called ”Sim-
pleComb” which combines two dedicated approaches: one
is used to recognize single-person actions and the other one
is used to recognize two-person interactions. For the single-
person action recognition, we use the approach described in
[19]. Since there is no publicly available code for previ-
ous two-person interaction recognition approaches, we use
our CHARM by limiting it to only deal with two-person in-
teractions. Each dedicated approach will label a potential
action with a particular action class associated with a like-
lihood score. Before we decide which mutually inclusive
action combination (see § 3) to be the recognition result, we

5The dataset is available at: http://www.lehigh.edu/ wel514/main.html,
and www.cbsr.ia.ac.cn/users/lywen.



Figure 5. Sample frames from two test sequences of the Hybrid
Actions3D dataset: The first row presents a hybrid-category test
sequence involving two action instances, i.e., Person A perform-
ing the single-person action ”throw”, while Person B and C are
performing the two-person ”kick” interaction. The second row
presents a mono-category test sequence consisting of three single-
person action instances, i.e., Person A performing the ”throw”, B
performing ”goggles”, and C performing ”duck” action.

first scale the likelihood scores of both approaches so that
their values are comparable. Then, we choose the combina-
tion which yields the highest reliability score computed as
described in step (g) of CHARM (see § 3). For test scenario
(ii), we compare CHARM with two previous approaches
(based on Linear-SVM, and MILBoost respectively) de-
scribed in [23]. For test scenario (iii), we compare CHARM
with four state-of-the-art approaches [11, 25, 16, 19].

Parameter Settings. We use the same motion tem-
plate codebook for both single-person action recognition
and two-person interaction recognition. We set the default
values for the parameters of CHARM as follows: The num-
ber of motion dimension of this codebook is N = 22, and
the number of motion templates per dimension is C = 22.
In the recognition phase, when we quantize the body mo-
tion data into MPs, we match each body motion data with
K = 2 nearest motion templates. The sensitivity controlling
parameter in (2) is β = 0.1. The thresholds for four types of
temporal correlation in (3) are: τd = 2×10−5, τx = 10−12,
τy = 0.1, and τz = 10−12.

5.1. Action Recognition using Hybrid Actions3D

Datasets. Hybrid Actions3D is captured using the
Kinect camera [17], which tracks human skeletons and
estimates the 3D joint positions for each person at each
frame. This dataset includes 10 action classes, 5 of which
are single-person action classes (i.e., duck, goggles, shoot,
beat both, and throw), and the remaining ones are two-
person interaction classes (i.e., kick, push, punch, hug,
and exchange). The single-person action classes are from
the MSRC12-Gesture [11], and the two-person interaction
classes are from the SBU Interaction [23]. 10 volunteers
were recruited to create this dataset. We first ask each vol-
unteer to perform single-person actions. Next, we formed
14 pairs out of these 10 volunteers and ask them to per-
form two-person interactions. In total, this dataset contains
910 pre-segmented video sequences including 580 for train-
ing and 330 for testing. Specifically, there are 280 two-

Method Action-level Accur. Seq-level Accur.Single-person Act. Two-person Interact.
SimpleComb 0.909 0.746 0.739

CHARM 0.921 0.811 0.800

Table 2. Comparison on Hybrid Actions3D (test scenario (i)).
Method Accuracy

Joint Features + Linear SVM [23] 0.687
Joint Features + MILBoost [23] 0.873

CHARM 0.839

Table 3. Comparison on SBU Interaction (test scenario (ii)).

person interaction training sequences (56 sequences per ac-
tion class) and 300 single-person action training sequences
(60 sequences per action class). The 330 test sequences
consist of (a) 280 hybrid-category sequences (constructed
by fusing relevant sequences), each contains a two-person
interaction instance and a single-person action instance, and
(b) 50 mono-category sequences containing three single-
person action instances. The action instances in a test se-
quence are not required to have the same starting and end-
ing time points. Some sample frames of the test sequences
in the Hybrid Actions3D dataset are shown in Figure 5.

Evaluation metrics. Two metrics are used to evalu-
ate the recognition capability of CHARM, namely (a) the
sequence-level accuracy, and (b) the action-level accuracy.
Since each test sequence in our Hybrid Action3D dataset
contain more than one action instance, for sequence-level
accuracy, we consider a recognition result as accurate only
if all action instances are classified correctly. On the other
hand, every action instance that is correctly classified is
counted towards the action-level accuracy.

Table 2 shows the results for the test scenario (i). It
shows that CHARM yields better performance than Simple-
Comb in terms of both sequence-level accuracy and action-
level accuracy. We also observe that although SimpleComb
uses the CHARM as a dedicated approach to recognize two-
person interactions, its two-person interaction accuracy is
lower than that of our CHARM. We believe that such a per-
formance gap is caused by the difficulties in merging seam-
lessly the results from the two dedicated approaches such
that the benefits of each dedicated approach cannot be fully
utilized. We notice that the overall performance of CHARM
for single-person actions is better than the performance for
two-person interactions. In general, CHARM works well
for most actions but tends to have problem classifying sim-
ilar two-person interactions, e.g., ”push” and ”hug”. In
CHARM, we did some tradeoffs between the expressive-
ness capability of our visual representation model towards
any specific action category and its capability for a uniform
visual representation, e.g., compared to existing approaches
(e.g., [23]), we only use a very simple model in CHARM to
capture the inter-person temporal correlations.

5.2. Action Recognition using SBU Interaction

Datasets. SBU Interaction dataset consists of ap-
proximately 300 pre-segmented two-person interaction se-



quences in the form of 3D joint positions. This dataset in-
cludes eight classes: approach, depart, push, kick, punch,
exchange objects, hug, and shake hands. As in [23], we use
the sequence-level accuracy as our evaluation metric.

We compare our CHARM with the two interaction
recognition approaches in [23] using five-fold cross val-
idation. As shown in Table 3, the only approach that
slightly outperforms CHARM is the MILBoost based ap-
proach [23], which uses spatio-temporal distances between
all pairs of joints of two persons as feature. However, the
MILBoost based approach [23] focuses on recognizing two-
person interactions (test scenario (ii)), and cannot be used to
cope with the test scenario (i) and (iii).

5.3. Action Recognition using MSRC12­Gesture

Datasets. The MSRC12-Gesture dataset was collected
by having volunteers perform certain actions either based
on ”Video + Text” based instructions or based on ”Image
+ Text” instructions. We refer to these different procedures
as different modality. This dataset is chosen to validate the
effectiveness of CHARM to handle the streaming data se-
quences. It contains 594 sequences collected from 30 peo-
ple performing 12 different single-person actions, including
lift outstretched arms, duck, push right, goggles, wind it up,
shoot, bow, throw, had enough, change weapon, beat both,
and kick. Each sequence may contain multiple action in-
stances, thus there is a total of 6244 action instances in this
dataset. All sequences in this dataset are non-segmented,
i.e., there do not exist information about where the start-
ing and ending times of an action instance are within a se-
quence. We only know the ending points of all action in-
stances since they are manually labeled by the authors who
release this dataset. The authors indicate that any recogni-
tion system which can correctly identify the ending time of
an action instance within ±ξ = 10 video frames should be
considered as accurately identify this action instance.

To use CHARM on a non-segmented streaming data se-
quence, as in [11], we use a 35-frame sliding window to
continuously segment potential action instances from the
streaming data. In addition, inspired by [22], we intro-
duce a background class and use a threshold for each class
such that we can balance the precision and recall rates of
our CHARM-based recognition system. Specifically, we
redefine (8) as ϵ∗ = argmaxϵ(Υϵ), s.t. Υϵ > θϵ. As in
[11, 22, 25], the optimal θϵ is chosen such that it minimizes
the recognition error, e.g., we set the threshold θb for the
background class to be zero. We conduct our experiments
using the same test procedure described in [19] where train-
ing and test sequences can potentially come from different
modality. We did two groups of experiments, namely ”intra-
modality” and ”inter-modality”. ”Intra-modality” indicates
that training and test sequences are from the same modality,
e.g., both collected using ”Video+Text” instructions. ”Inter-

Method intra-modality inter-modality
Randomized Forest [11] 0.621 0.576

Structured Streaming Skeletons [25] 0.718 N\A
Multi-scale Action Detection [16] 0.685 N\A

DBN-ES-HMM [19] 0.724 0.710
CHARM 0.725 0.700

Table 4. Comparison on MSRC12-Gesture (test scenario (iii)).
”N\A” indicates that experimental results of the corresponding
approaches are not available mainly because the authors neither
provide the results in their paper nor publish their code.

modality” indicates that training and test sequences are col-
lected using different modality. It is clear from our results
that sequences using the ”Image+Text” instructions tend to
have more variations and hence lower recognition accuracy.

As in [19], we use the criteria, F-score which com-
bines the precision and recall to evaluate the performance
of different action recognition methods. Table 4 shows
that CHARM performs better than all baseline methods
for single-person action recognition for the intra-modality
scenario. For the inter-modality scenario, CHARM per-
forms better than [11] and yields comparable performance
to [19]. Methods in [25] and [16] are not compared because
the authors neither publish their performance for the inter-
modality scenario nor their code.

6. Conclusion
We presented a category-blind human action recogni-

tion method (CHARM) which is more suitable for real-
world scenarios. Compared to existing action recognition
approaches that are designed to cope with only one action
category, and are difficult to be extended to scenarios where
different action categories co-exist, CHARM achieves com-
parable or better performance without any prior action cate-
gorization. In CHARM, action instances of different action
categories are all modeled as a set of weighted graphs which
encode the co-occurring probabilities of motion primitives.
Such a category-blind representation makes it possible for
CHARM to simultaneously recognize actions of different
categories which co-exist in any video sequence. The action
classification is performed via finding maximum cliques of
motion primitives on the weighted graphs.

The future work will focus on (a) enhancing our tem-
poral inter-person correlation model, and (b) applying the
CHARM to more complex action recognition in real life.
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