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Abstract Incorporating multiple cameras is an effec-
tive solution to improve the performance and robust-

ness of multi-target tracking to occlusion and appear-
ance ambiguities. In this paper, we propose a new multi-
camera multi-target tracking method based on a space-

time-view hyper-graph that encodes higher-order con-
straints (i.e., beyond pairwise relations) on 3D geome-
try, appearance, motion continuity, and trajectory smooth-
ness among 2D tracklets within and across different

camera views. We solve tracking in each single view
and reconstruction of tracked trajectories in 3D en-
vironment simultaneously by formulating the problem

as an efficient search of dense sub-hypergraphs on the
space-time-view hyper-graph using a sampling based
approach. Experimental results on the PETS 2009 dataset

and MOTChallenge 2015 3D benchmark demonstrate
that our method performs favorably against the state-
of-the-art methods in both single-camera and multi-
camera multi-target tracking, while achieving close to

real-time running efficiency. We also provide experi-
mental analysis of the influence of various aspects of
our method to the final tracking performance.

Longyin Wen and Siwei Lyu
Computer Science Department, University at Albany, State
University of New York. E-mail: {lwen,slyu}@albany.edu

Zhen Lei
National Laboratory of Pattern Recognition, Institute
of Automation, Chinese Academy of Sciences. E-mail:
zlei@nlpr.ia.ac.cn

Ming-Ching Chang
Computer Engineering Department, University at Albany,
State University of New York. E-mail: mchang2@albany.edu

Honggang Qi
School of Computer and Control Engineering, University of
the Chinese Academy of Sciences. E-mail: hgqi@jdl.ac.cn

Keywords multi-camera multi-target tracking,
single-camera multi-target tracking, space-time-view

hyper-graph, dense sub-hypergraph search

1 Introduction

As an important problem in computer vision, multi-

target tracking finds wide applications in video surveil-
lance, traffic monitoring and crowd analysis. With the
maturity of detection algorithms [9], the current state-

of-the-art performance in multi-target tracking is at-
tained with the tracking-by-detection methodology, in
which reliable detection of short sequence of moving
objects or tracklets are linked based on their affinities

in appearance and motion to form long tracks. Albeit
these successes, the majority of existing multi-target
tracking algorithms use a single camera view. As such,
their performance succumbs to false/miss detections
due to target occlusions and ambiguous appearances.
Using detections gleaned from different but overlapping
camera views, these problems can be effectively solved
and the accuracy of multi-target tracking can be signif-
icantly improved.

Many previous methods on multi-camera multi-target
tracking [12,46,4,47,32,3] entail two consecutive steps:
(i) repeated single view tracking that finds tracklets
in each individual camera view, and (ii) cross-view re-
construction of 2D tracklets using 3D geometric con-
straints 1. These simple approaches do not take advan-
tage of the fact that single view tracking and cross-view

reconstruction provide mutually bootstrapping infor-

1 Many methods do not form tracklets but perform associ-
ation directly on detections in each frame. In this work, we
unify these methods by treating individual frame detections
as tracklets of length one.
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mation: 3D geometric constraints can rule out false de-
tection and improve tracklet linking in each view, while
reliable linking of tracklets in individual views can com-
pensate the effect of noise and outliers that often plague
the reconstruction step.

An alternative strategy of multi-camera tracking is
to jointly solve the tracking and reconstruction prob-
lems in a single optimization framework. However, as
will be detailed in § 2, two existing methods [28,13]
using this strategy rely on pairwise association of 3D
tracklets (Fig. 2(a) and 2(b)), and do not take full ad-
vantage of the strong higher-order correlations among
the tracklets across time and space. For instance, as
shown in Fig. 1, if there are three 3D tracklets T1, T2,
and T3 of the same trajectory, but due to ambiguity in
appearance of each camera view, tracklet T2 is not the
strongest association with either T1 or T3. On contrary,
both tracklets T1 and T3 are similar to T4 in appear-
ance. In this case, considering the motion consistency

of three tracklets in joint is crucial to associate them
into correct trajectory (T6), but pairwise association
will lead to wrong linkings (associate tracklets T1, T3,
and T4 to generate wrong trajectory T5). Specifically,

the hypothetical trajectory T6 is more smooth than T5
with facile motion direction changes, which indicates
the more consistency of tracklets T1, T2, and T3 than

T1, T3, and T4 in motion. Here, the distinction between
higher order dependencies and pairwise dependencies
among non-consecutive frames should be made clear,

i.e., the higher order dependency corresponding to the
trajectory smoothness of tracklets T1, T2 and T3 can
not be simply represented as the pairwise constraints
between T1 and T2, T2 and T3, and T1 and T3. Such

higher order correlations are particularly useful to han-
dle multi-camera tracking scenarios with severe occlu-
sions.

In this work, we describe a new multi-camera multi-
target tracking method based on a weighted hyper-
graph that represents higher-order affinities of 2D track-
lets, which characterize their consistencies in 3D ge-
ometry, appearance, motion continuity and trajectory
smoothness. We term this hyper-graph as Space-Time-

View hyper-graph (STV hyper-graph). The nodes of
STV hyper-graph correspond to potential 3D couplings
of 2D tracklets, which are reconstructed 3D tracklets
from 2D tracklets across different views that are poten-
tially associated with the trajectory of the same tracked
target (see Fig. 2(c) for an illustrative example). Ge-
ometric consistency of these 2D tracklets in forming
a coupling is encoded with the weight of each node.
Hyper-edges of STV hyper-graph with their associated
weights reflect affinities among the couplings. In order

to correctly associate tracklets across multiple views

Fig. 1 Example of the advantages of using higher-order de-
pendencies among multiple tracklets instead of the pairwise
dependencies. Notably, the more similar of the colors of cou-
plings indicates the more similar of the couplings in appear-
ance over all camera views.

and eventually reconstruct the 3D trajectory, we fur-
ther perform a search of dense sub-hypergraphs on STV
hyper-graph, which correspond to sub-hypergraphs with

higher weights over including nodes and hyper-edges,
and then accumulatively link couplings in such sub-
hypergraphs.

Contributions. The contributions of our work are sum-

marized as follows.

– We introduce STV hyper-graph constructed from
input videos of multiple views as a flexible and com-
pact representation for the inference of higher-order

correlations among tracklets across space, time, and
camera views, which is a generalization of the hyper-
graph based single view multi-target tracking method

presented in [45].
– We formulate the multi-camera multi-target track-

ing problem as searching for dense sub-hypergraphs
on STV hyper-graph, which is solved efficiently by

the proposed sampling based approximation method.
In comparison with the optimization strategy for
single-camera tracking in [45], our method can scale
up to the much larger number of correlations in the
hyper-graph, which are prerequisite in multi-camera
tracking scenario.

– In comparison with previous works on multi-camera
multi-target tracking [28,13], our method enables
the incorporation of higher-order dependencies among
the tracklets across both time and space, and is
more robust to occlusions and appearance ambigu-
ities.

– Extensive experiments are performed on the PETS

2009 dataset and MOTChallenge 2015 3D bench-
mark to compare with the state-of-the-art meth-
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(a) work of [28] (b) work of [13] (c) this work legends

Fig. 2 Models of two previous methods and this work on multi-camera multi-target tracking. For clarity, we illustrate only
a partial set of edges and hyper-edges. This figure is better viewed in color.

ods, and show improved effectiveness and running
efficiency of our method in both single-camera and

multi-camera multi-object tracking tasks.

The rest of the paper is organized as follows. In § 2
we review relevant works. In § 3 we describe our method

in detail. Experimental results are presented in § 4 and
§ 5 concludes the paper with discussion of future works.

2 Related Works

2.1 Single-Camera Multi-Target Tracking

A traditional approach to multi-target tracking is to
predict the states (i.e., location and size) of tracked tar-
gets using Bayesian filtering methods, e.g., Kalman or
particle filters [16,33,20,43,29,50]. These methods can
track targets state effectively in short durations and run
in real-time, but are not effective in handling occlusion
and appearance changes that often occur in complex
tracking scenarios.

Many recent effective single-camera multi-target track-
ing methods are based on the tracking-by-detection ap-
proach, and formulate tracking as a data association
problem. The Joint Probabilistic Data Association Fil-
ter (JPDAF) [14] and Multiple Hypotheses Tracking (MHT)
[40] have been proposed to handle the data association
problem efficiently. The JPDAF algorithm focuses on
estimating the best assignments between the tracked
targets and the detections in a probabilistic framework.
Different from frame-by-frame association in JPDAF,

MHT computes the likelihoods of all candidate assign-
ments over several time steps. However, the number

of candidate assignments grows exponentially with the
number of frames, which makes MHT not efficient when

handling the long-term association. Yu et al. [51] present
a data driven Markov Chain Monte Carlo method to ac-
complish the data association task in multiple frames.

The sampling-based inference algorithm may have long
“burn-in” time, i.e., the time to run the Markov chain
before we can collect samples from the equilibrium, and
difficult to evaluate due to the lack of practical check

for convergence.

To handle the long-term association problem, sev-

eral algorithms have been proposed, which differs in the
specific optimization methods used, including network
flow [52,17,39,7], K-Shortest Path (KSP) [4], maximum
weight independent set [6], linear programming [19],

multi-frame matching [42], hierarchical Hungarian al-
gorithm [15,48,49], tensor power iteration [41], hyper-
graph based optimization [45]. Most of these works merely
focus on using the pairwise similarities of 2D detec-
tions/tracklets to complete the tracking task, except
the method [45]. In particular, the method of [45] is
the most related work, because it also uses a weighted
hyper-graph to represent higher order affinities between
2D tracklets, and directly searches the dense subgraphs
on the hyper-graph to solve the tracking problem. How-
ever, this method is not suitable for the multi-camera
multi-target tracking problem. In particular, STV hyper-
graph models relations among 3D tracklets reconstructed

from 2D tracklets of multiple views, and nodes in STV
hyper-graph have weights reflecting unreliabilities of 3D
reconstruction. Such node weights are crucial in our
method, which are not addressed in [45]. Furthermore,
the number of nodes in STV hyper-graph is several or-
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ders of magnitude larger than that used in single view
tracking [45], which renders the simple optimization al-
gorithm of [45] impractical due to high computation
and memory requirements.

2.2 Multi-Camera Multi-Target Tracking

Using multiple camera views can potentially improve
the performance of multi-target tracking, but it also
brings up some challenging issues. In particular, the
tracking algorithm must link 2D tracklets and at the
same time reconstruct their 3D trajectories. Early multi-
camera multi-target tracking methods [12,46,4,47,32]
usually solve the tracking and reconstruction problems
in separate stages, which do not take advantage of the
mutually bootstrapping relation between these two tasks.

Recently, two existing works attempt to solve these
two problems, i.e., tracking and reconstruction, within
a single optimization framework. In [28] (model illus-
trated in Fig. 2(a)), multiple graphs are constructed
for detections in each view to capture their affinities,

and the associations of these detections are encoded
with another type of graph that are constructed for
each pair of camera views. The overall tracking problem
is solved using the Dantzig-Wolfe decomposition and

branching algorithm. This method is further improved
in [13] (model illustrated in Fig. 2(b)), where the cou-
plings between 2D detections across two or more camera

views are formed, and longer tracks are obtained from
a directed graph capturing pairwise dependencies of re-
constructed 3D couplings cross the frames. However, in

both works, only pairwise correlations between candi-
date associations of 2D detections across camera views
are modeled. Accordingly, dependencies among a set of
more than two candidate associations of 2D detections
across camera views cannot be effectively modeled. If
a target fails to appear in any camera view due to oc-
clusion or miss detection, using only pairwise correla-

tions will lead to fragmentations and identity switches,
which can significantly deteriorate the overall perfor-
mance and robustness of the tracking method. Our pro-
posed method is different from these two methods. (1)
Unlike [28], our algorithm uses only one global hyper-
graph for both reconstruction and tracking, which con-
siders the high-order dependencies among multiple cou-

plings rather than the pairwise dependencies in multi-
ple graphs. (2) Different from [13], the proposed method
explores higher-order dependencies among couplings in-
stead of the pairwise dependencies by constructing a
hyper-graph. The tracking problem is naturally formu-
lated as the dense subgraph exploiting problem on the
hyper-graph, which is solved by the proposed sampling
based approximate optimization method.

3 Methodology

Our multi-camera multi-target tracking method is based
on the Space-Time-View hyper-graph (STV hyper-graph),
representing the cross-view and temporal associations
of detected 2D tracklets in individual camera views.
The process starts with the generation of couplings
from tracklets in each single camera view (§ 3.1) and
computation of affinity measures (§ 3.2). In § 3.3, we
introduce the STV hyper-graph, which is the major
data structure to incorporate higher-order dependen-
cies among tracklets. From the STV hyper-graph, tra-
jectories of moving targets are extracted from the dense
sub hypergraphs. The details of extracting such dense
sub-hypergraphs and forming longer trajectories are pro-
vided in § 3.4. The notations used in this paper are
listed in Table 1.

3.1 Generating Couplings

We postulate that there are V static camera views,
where videos from each view are synchronized with the
same frame rate. Furthermore, from each video, tenta-

tive short sequences of detected targets (tracklets) are
assumed to have been obtained from frame detections
(e.g., using [10]) or using single-view tracklet linking
methods (e.g., [41,45]). Throughout this paper, we use

v to index camera views, i to index the tracklets, and
j to index the detections of a tracklet.

We denote the collection of detected 2D tracklets
from the v-th camera view as Tv = {T v1 , · · · , T vnv}.
A single 2D tracklet, T vi = {Dv,i

1 , · · · , Dv,i
mc,i}, corre-

sponds to a series of frame detections, mc,i is the num-
ber of detections in the tracklet, and Dv,i

j = (tv,ij , qv,ij ),

where tv,ij is the frame number of the detection, and

qv,ij = (xv,ij , yv,ij , wv,ij , hv,ij ) specifies the bounding box of

the detection with center pixel location (xv,ij , yv,ij ) and

dimension (wv,ij , hv,ij ). We also use tvi = {tv,i1 , · · · , tv,imc,i}
to denote the set of all frame indices of the correspond-
ing 2D tracklet T vi . Our definition of 2D tracklets gener-
alizes cases of single detection (i.e., |tvi | = 1), or contin-
uous sequence of detections (i.e., tvi = {a, a+1, · · · , b−
1, b} where a < b are two integers). We also consider cal-
ibrated cameras with known parameters, where targets
are moving on a common ground-plane, such that any
2D pixel location (x, y) in the video frame can be back
projected to the 3D world coordinates (X,Y, Z) using
a mapping function, φv(x, y) = (X,Y, Z).

A 3D coupling collects 2D tracklets from different
camera views that potentially correspond to the same
trajectory of a target in the 3D world. Formally, we

define a coupling T as a non-empty subset of
⋃V
v=1 Tv,
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Table 1 Notations

Symbol Meaning

V Number of used camera views.
Tv = {Tv1 , · · · , Tvnv} The collection of detected 2D tracklets from the v-th camera view.

Tvi = {Dv,i1 , · · · , Dv,imc,i
} The i-th tracklet of camera view v, mc,i is the number of detections in the tracklet.

Dv,ij = (tv,ij , qv,ij )
The j-th detection in the i-th tracklet of camera view v, and tv,ij is the frame index of

the detection.

qv,ij = (xv,ij , yv,ij , wv,ij , hv,ij )
The bounding box of the j-th detection in the i-th tracklet of camera view v, (xv,ij , yv,ij )

is the center pixel location and (wv,ij , hv,ij ) is the dimension.

T A coupling in the 3D world.
k The degree of the STV hyper-graph.
νi The i-th node (tracklet) in the STV hyper-graph.

G = (V, E)
The STV hyper-graph, where V is the node set and E is the hyper-edge set,

i.e., E ⊂

k︷ ︸︸ ︷
V × · · · × V.

e The k-tuple nodes involved in a hyper-edge, i.e., e = (ν1, · · · , νk).
πi The i-th connection samples involving k − 1 nodes.
β∗ The minimal size of the searched dense subgraph.

G∗ = (V∗, E∗)
The approximate STV graph, where V∗ is the same weighted node set as the
corresponding STV hyper-graph G, and E∗ = V∗ × V∗ is edge set describing the supports
between the nodes.

i.e., ∅ 6= T ⊂
⋃V
v=1 Tv such that no more than one

tracklet from any camera view will be included, i.e.,(
T vi ∈ T

)
∧
(
T v
′

i′ ∈ T
)
⇒ v 6= v′. (1)

As such, the maximum total number of unique cou-

plings is given by
∏V
v=1(nv + 1) − 1. This number is

obtained as the following: from each camera view, at
most one tracklet can be included into the coupling,

leaving the total choices for one view as nv + 1. The
total is given by

∏V
v=1(nv+1)−1, where the minus one

corresponds to the case that no tracklets are chosen

from any views.
We add another constraint for a coupling constructed

by two or more 2D tracklets, i.e., for each 2D track-
let included in the coupling, it must have overlapping

frame indices with at least one other 2D tracklets that
are also in the coupling, as:

T vi ∈ T ⇒ ∃T v
′

i′ ∈ T ∧ tvi ∩ tv
′

i′ 6= ∅. (2)

Note that (2) is weaker than requiring all 2D tracklets
to have overlapping time, which is justified by the na-

ture of multi-camera tracking scenario that the target
may not be observed in all camera views due to occlu-
sion.

We define the frame indices of a coupling as the
union of frame indices of its composing 2D tracklets, as
tT =

⋃
Tvi ∈T

tvi . For each frame of the coupling t ∈ tT ,
we also maintain a data structure that backtracks its

composing 2D frame detections at t, as

DTt = {(v, i, j) : T vi ∈ T ∧ t ∈ tT ∧ t = tv,ij }, (3)

where (1), (2), and (3) together ensures three condi-
tions: (i) 2D tracklet T vi must be included in coupling

T , (ii) frame index t is in the frame indices of T , and

(iii) T vi has a detection at frame t. Using DTt , we com-
pute the predicted 3D position of the coupling at t as
the average 3D positions obtained from the correspond-
ing 2D tracklets,

PTt =
1

|DTt |
∑

(v,i,j)∈DTt

φv
(
xv,ij , yv,ij

)
, (4)

and the scattering (uncertainty) of the predicted 3D
position,

εTt =
1

|DTt |
∑

(v,i,j)∈DTt

∥∥∥PTt − φv (xv,ij , yv,ij

)∥∥∥2 , (5)

where (5) is used as a measure of coherence of the set
of 2D tracklets in forming the 3D trajectory.

3.2 Affinity Among Couplings

The obtained 3D couplings may correspond to segments
of a longer 3D trajectory belonging to a moving target
being tracked in multiple camera views. To evaluate
the likelihood of a set of couplings in forming a longer
trajectory, similar to [45], we introduce three affinity
measures for appearances, motion continuity, and tra-

jectory smoothness. As couplings overlapping in time
cannot be associated with one target, we set all affinity
measures to zero in that case. Subsequently, we consider
only couplings with no overlapping frame indices in the
appearance (6), motion continuity (7), and trajectory
smoothness (8) affinities calculation.
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Appearance affinity. The appearance affinity between
a pair of non-overlapping couplings T and T ′, with T
preceding T ′, is computed from three image features
of detections from the last frames in T and the first
frames in T ′ 2. The features we used are histograms of
color, gradient and local binary patterns as in [37].

Color affinity ψc(T , T ′) = 0, if there is no common
camera view between frame detections of the last frame
of T and those of the first frame of T ′. Otherwise, for
each common camera view of the two sets of frames,
we extract color histograms of the corresponding two
detections and evaluate their Bhattacharyya distance.
ψc(T , T ′) is computed as the average of such Bhat-
tacharyya distances over all common views. The sim-
ilarity based on histograms of gradient ψs(T , T ′) and
local binary patterns ψb(T , T ′) are computed similarly.
We denote the correspondence between a hyper-graph
node and a coupling as ν ∼ T . The appearance affinity
of node set ν = (ν1, · · · , νk) with νi ∼ Ti in ascending
order of time is computed as

Ψapp(ν) =
∑
i,j

eλ1ψc(Ti,Tj)+λ2ψs(Ti,Tj)+λ3ψb(Ti,Tj), (6)

where λ1, λ2 and λ3 are parameters controlling the sen-
sitivity of the affinity score with regards to each type

of appearance features, and λ1 + λ2 + λ3 = 1.

Motion continuation affinity. The motion continu-
ation affinity between a pair of non-overlapping cou-
plings T and T ′, with T preceding T ′, is based on the

forward-backward predictions between the last frame
detections of T and the first frame detections of T ′.

We first estimate the “ending” velocity of T by di-

viding the difference of 3D positions (computed with (4))
of its last two frame detections with their correspond-
ing time lapse. The predicted position for the start of
T ′ is obtained by projecting the 3D position of the last

frame detection of T with the estimated ending veloc-
ity, multiplied by the time lapse between the last frame
detection of T and that of the first frame detection of
T ′, Fig. 3(a). We then compute the `2 distance between
the actual 3D position of the first frame of T ′ and its
forward prediction from T , as dfp(T , T ′).

Similarly, the backward prediction of the 3D position
of the last frame detection of T is obtained with the 3D
position of the first frame detection of T ′ and the esti-
mated beginning velocity from its first two frame detec-
tions, Fig. 3 (a). We compute the `2 distance between
the 3D position of the last frame of T and its back-
ward prediction from T ′, as dbp(T , T ′). Then the mo-
tion continuation affinity of node set ν = (ν1, · · · , νk)

2 The last frame index of T and the first frame index of T ′
may correspond to multiple detections from different camera
views.

Fig. 3 (a) Motion continuation affinity calculation of a pair
of couplings. (b) Trajectory smoothness affinity calculation
of a set of couplings. See text for more details.

with νi ∼ Ti in ascending order of time is computed as

Ψmot(ν) =
k−1∑
i=1

e−λ4

(
dfp(Ti,Ti+1)+dbp(Ti,Ti+1)

)
, (7)

where λ4 is the parameter controlling the sensitivity of
the affinity score to the prediction errors.

Trajectory smoothness affinity. A common assump-
tion for visual tracking task is that tracked targets should
move continuously and smoothly for most of the time.

The trajectory smoothness affinity evaluates the spatial-
temporal coherence of a long trajectory formed from
a set of non-overlapping couplings T1, · · · , Tk. Specifi-

cally, we first compute the 3D positions of these cou-
plings with (4). We then fit a piecewise second order
smooth parametric trajectory with cubic spline inter-

polation to a subset of these 3D positions, which are
sampled with equal time interval, Fig. 3(b). The `2 dis-
tance, dint(T1, · · · , Tk), of the remaining 3D positions
with their predictions based on the interpolated smooth

curve is computed, which evaluates the smoothness of
the fitted trajectory (where small values indicate co-
herent fit). The trajectory smoothness affinity score of
node set ν = (ν1, · · · , νk) with νi ∼ Ti in ascending
order of time is computed from dint(T1, · · · , Tk) as

Ψsmo(ν) = e−λ5dint(T1,··· ,Tk), (8)

where parameter λ5 controls the sensitivity of the affin-
ity score to the deviation of smooth trajectories.

3.3 The Space-Time-View Hyper-graph

The STV hyper-graph G = (V, E) encodes both the
reconstruction and linking of detected 2D tracklets in
different camera views, and is the central data structure
of our multi-camera multi-target tracking method. See
Fig. 4 for an illustrated example.

A node ν in the STV hyper-graph corresponds to
a coupling T (as described in § 3.1) and is associated
with a weight reflecting its reliability:

A(ν) = e−λ6 maxt∈tT {ε
T
t −λ7|DTt |}, (9)



Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph 7

Fig. 4 An example of the constructed STV hyper-graph en-
coding both the reconstruction and linking of detected 2D
tracklets in different camera views.

where εTt (from (5)) is the scattering of coupling T at

frame t, and |DTt | (see (3)) is the number of 2D track-
lets associated with the coupling at frame t. λ6 con-
trols the sensitivity of the weight to the reliability score,
and λ7 represents the trade-off between lower scattering

and larger number of associated 2D views. Higher node
weights suggest increasing likelihood of the composing
2D tracklets corresponding to a single 3D tracklet. To

avoid the case where couplings corresponding to a sin-
gle 2D view dominate the weight (where the scattering
is always zero), we also penalize couplings with smaller
number of associated 2D views through parameter λ7.

A hyper-edge in the STV hyper-graph connects mul-
tiple nodes with a weight, whose corresponding cou-
plings potentially form a longer trajectory as shown in

Fig. 2(c). We only consider hyper-edge of degree k, i.e.,
each hyper-edge in STV hyper-graph is associated with
k nodes 3.

We enforce two constraints that are important to
reduce the number of hyper-edges. First, for all nodes
connected by one hyper-edge, their couplings should not

overlap in time. Second, we evaluate the distance be-
tween the last and first detections of either pair of cou-
plings in a hyper-edge. If the distance is significantly
larger than the maximum possible velocity (e.g., < 5
m/s for a pedestrian), then the two nodes should not
be grouped together by a hyper-edge. The weight of
a hyper-edge in STV hyper-graph, e = (ν1, · · · , νk) is

3 Note that this is different from the degree of the nodes,
which specifies how many hyper-edges can associate with one
node.

computed using the appearance, motion continuity and
trajectory smoothness affinities defined in § 3.2,

W (e) = λ8Ψapp(e) + λ9Ψmot(e) + λ10Ψsmo(e), (10)

where parameters λ8, λ9, and λ10 balance the three
types of affinity scores, and λ8 + λ9 + λ10 = 1.

3.4 Dense Sub-hypergraph Search

We formulate the problem of recovering longer trajecto-
ries of the targets as searching for “dense” sub-hypergraphs
on the STV hyper-graph. Here a dense sub-hypergraph
corresponds to a group of reliable nodes (couplings)
that are inter-connected with a set of hyper-edges with
high weights. We extend a local search algorithm for
dense subgraphs in graphs [31] to search the dense sub-
hypergraphs on the STV hyper-graph. The basic idea
is to find a dense neighborhood for each node in STV
hyper-graph and then remove the conflicts between such

neighborhoods to obtain the longer target trajectories.
To accommodate the large number of nodes in STV
hyper-graph, we further employ a sampling based algo-

rithm to accelerate such search.

3.4.1 Problem Formulation

For a node ν, we denote its neighborhood asN (ν), which
is the set of nodes containing direct neighbors of ν (i.e.,
connected with one hyper-edge to ν) on the STV hyper-

graph. We then aim to find a subset of N (ν) with β
nodes such that they jointly form an β-subhypergraph 4

that has the maximum weights combining both the

hyper-edges and nodes. To this end, we introduce an
indicator variable zν′ for each ν′ ∈ N (ν), which is 1/β
if ν′ is in a dense sub-hypergraph and 0 otherwise. The
search of dense sub-hypergraph can then be formulated

as the following discrete optimization problem

z∗ν = argmax
ν′∈N (ν)

∑
e∈Uν

W (e)
∏
ν′∈e

zν′ +
∑

ν′∈N (ν)

A(ν′)zkν′

s.t.
∑

ν′∈N (ν)

zν′ = 1,

∀ν′ ∈ N (ν), zν′ ∈ {0, 1/β}, (11)

in which z∗ν is the optimal indicator variable vector,
consisted of nonzero zν′ , corresponding to the searched
dense sub-hypergraph, Uν is the hyper-edge set corre-
sponding to the node set ν ∪ N (ν), A(ν) and W (e)
are the weights of nodes in (9) and hyper-edges in (10),

4 The β-subhypergraph indicates the sub-hypergraph of
STV hyper-graph, which includes β nodes.
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respectively. The first term in the objective function en-
courages the inclusion of hyper-edges in ν’s sub-hypergraph
with larger weights, while the second term penalizes
the inclusion of nodes correspond to less reliable cou-
plings indicated by a lower A(ν). The first constraint
in (11) requires that the sub-hypergraph should include
β nodes, and the second constraint enforces that the la-
bel can only take two values.

The optimization problem in (11) is different from
the one formulated for single-camera multi-target track-
ing as in [45]. The hyper-graph in [45] does not have
node weights reflecting uncertainty in forming 3D track-
lets. Furthermore, the optimization algorithm in [45]
will run inefficiently if it is directly applied to solve (11),
due to the large size of our optimization problem. For
instance, for 3 camera views with each containing 10
tracklets, a 3-degree STV hyper-graph has 103 = 1000

nodes and
(
103

3

)
≈ 1.67× 108 hyper-edges.

3.4.2 Constructing STV Graph

Motivated by [30], we propose an approximate approach
to search dense sub-hypergraph for efficient optimiza-
tion of (11), the basic idea is to perform a more effi-

cient search on a graph approximation to the hyper-
graph. This method thus strikes a balance between the
expressiveness of the hyper-graph representation and
computational efficiency of the graph approximation.

To be specific, we construct a Space-Time-View graph
(STV graph) to approximate the STV hyper-graph.
Then, we search for dense subgraphs on STV graph,

from which dense sub-hypergraphs of STV hyper-graph
can be recovered. Unlike in previous works [28,13], we
construct STV graph from STV hyper-graph to explic-
itly capture higher-order temporal correlations while
maintaining efficacy. We essentially combine the ad-
vantages of using a hyper-graph to capture higher-order
correlations and the computational efficiency of a graph.
We analyze the effectiveness of our approach in § 4.

We construct STV graph by keeping all the nodes in
STV hyper-graph and sampling the hyper-edges through
a set of Connection Samples (CSs), {π1, · · · ,πi, · · · }.
Each CS πi is a set of k − 1 nodes from STV hyper-
graph, constructed by traversing each node ν for ξ times,
and for each time randomly select other k−2 nodes from
N (ν)−{ν}. Obviously, the number of sampled CS pairs
is much smaller than the total number of hyper-edges.
Thus, it is more efficient to search the dense subgraph
using sampling strategy than traverse all the hyper-
edges in [45]. In total, we can obtain n · ξ sampled CSs,
where n is the number of nodes in STV hyper-graph.
For each node in the STV hyper-graph, we form a new

hypothetical hyper-edge with each CS by pooling all

Algorithm 1 Constructing the STV Graph.

Input: The node set V = {ν1, · · · , νn} in the STV hyper-
graph G = (V, E).

1: Set the CS set to be empty set.
2: for i = 1 to n do
3: j = 0.
4: while j < ξ do
5: Randomly sample k−2 nodes to obtain node set Λi

from N (νi)− {νi}.
6: πi = {νi} ∪ Λi.
7: Add πi to the CS set.
8: j = j + 1.
9: end while

10: end for
11: for i = 1 to n · ξ do
12: for j = 1 to n do
13: if The j-th node νj belongs to πi then
14: The confidence score of the j-th node νj to the

i-th CS πi, Sj(πi) = µ.
15: else
16: The confidence score of the j-th node νj to the

i-th CS πi, Sj(πi) is calculated as (12).
17: end if
18: end for
19: end for
20: Set the node set of the STV graph V∗ = V.
21: Set all elements in the weight matrix W∗ corresponding

to all candidate edges in STV graph G∗ to zeros.
22: for i = 1 to n · ξ do
23: Obtain the reliable node set Ωi = {νj |Sj(πi) ≥ µ, j =

1, · · · , n}.
24: Calculate ρi =

(|Ωi|−3
k−3

)
.

25: for Each node pair {ν, ν′}, ν, ν′, νj ∈ Ωi, ν 6= ν′,
ν 6= νj , and ν′ 6= νj do

26: W∗(ν, ν′) = W∗(ν, ν′) + ρi · Sj(πi).
27: W∗(ν′, ν) = W∗(ν′, ν) + ρi · Sj(πi).
28: end for
29: end for
30: Set the edge set in STV graph G∗ to be empty set, i.e.,
E∗ = ∅.

31: for i = 1 to n− 1 do
32: for j = i+ 1 to n do
33: The edge E∗(ν, ν′) is added with the weight

W∗(ν, ν′), iff W∗(ν, ν′) > 0.
34: end for
35: end for
Output: The STV Graph G∗ = (V∗, E∗).

nodes together. The scores of all nodes to a CS πi are
calculated, S(πi) = {S1(πi), · · · ,Sn(πi)}. If the j-th
node belongs to πi, we set Sj(πi) to a predefined con-
fidence score threshold µ. Otherwise, we use

Sj(πi) = λ8 · Ψapp(πi ∪ {νj}) + λ9 · Ψmot(πi ∪ {νj})
+ λ10 · Ψsmo(πi ∪ {νj}). (12)

For each hyper-edge e, we define its approximate
weight after sampling πi as:

W [i](e) = max{W [i−1](e), min
j={1,··· ,k}

Sνj (πi)}. (13)

The approximate weight of each hyper-edge satisfies
0 ≤ W [1](e) ≤ · · ·W [i](e) ≤ W (e), where i is the
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number of sampled CSs. As i increases, W [i](e) ap-
proximates W (e) gradually. We do not need to store
W [i](e) of each hyper-edge in the sampling procedure.
Instead, the scores {S(π1), · · · ,S(πi), · · · } are stored.
They contain hyper-edge weight of the included node
and CS pairs, which represent crucial information of
our method.

We construct the STV graph G∗ = (V∗, E∗) us-
ing the scores from the nodes and hyper-edges of STV
hyper-graph. Specifically, V∗ is the same weighted node
set as the corresponding STV hyper-graph G, and E∗ =
V∗×V∗ is edge set describing the supports between the
nodes. Intuitively, if two nodes belong to the same dense
sub-hypergraph on G, they are expected to simultane-
ously appear in several hyper-edges with large weights.
Specifically, for node ν and ν′, we set the weight of
the edge connecting them in STV graph to reflect the
number of hyper-edges including both ν and ν′ with
large weights in the STV hyper-graph, based on the
scores {S(π1), · · · ,S(πi), · · · }. To exclude the informa-
tion contained in the unreliable hyper-edges, We define

Ωi = {νj |Sj(πi) ≥ µ, j = 1, · · · , n} to be the reliable
node set with the score larger than µ, where n is the
number of nodes in the STV hyper-graph. Then the

weight of the edge connecting them in STV graph is
calculated as

W ∗(ν, ν′) =

n·ξ∑
i=1

∑
ν,ν′,νj∈Ωi

ρi · Sj(πi), (14)

where ρi =
(|Ωi|−3
k−3

)
is the total number of hyper-edges

containing nodes ν and ν′ in the original STV hyper-

graph 5. Algorithm 1 shows the main steps to construct
the STV graph.

3.4.3 Dense Subgraph Search on STV Graph

After constructing the STV graph G∗, we search the
dense subgraphs on it to complete the tracking task.
Similar to (11), the problem is formulated as

z∗ν = argmax
ν′∈Ñ (ν)

∑
e∗∈U∗ν

W ∗(e∗)zνzν′ +
∑

ν′∈Ñ (ν)

A(ν′)z2ν′

s.t.
∑

ν′∈Ñ (ν)

zν′ = 1,

∀ν′ ∈ Ñ (ν), zν′ ∈ {0, 1/β}, (15)

where z∗ν is the optimal indicator variable vector, con-
sisted of nonzero zν′ , corresponding to the searched

5 The calculation of the number of hyper-edges, including
nodes ν, ν′ and νj is a combinational problem, that is to
choose k−3 nodes from the reliable node set Ωi−{ν, ν′, νj}.
Specifically, we set ρi = 0 for |Ωi| < 3, since there does not
exist enough nodes to construct a hyper-edge in that case.

dense sub-hypergraph, e∗ = (ν, ν′) is the edge in the
STV graph, Ñ (ν) is the neighborhood of node ν, U∗ν is
the edge set corresponding to the node set ν∪Ñ (ν). We
denote the node set of the searched dense subgraph cor-
responds to node ν as γ̂ν , and set γ̂ν = ∅ at first. Then,
we can obtain the searched dense subgraph correspond-
ing to the node indicator variable z∗ν , i.e., if zν′ > 0, we
add node ν′ to γ̂ν . Meanwhile, we can also calculate the
corresponding confidence score $̂ν of each search dense
subgraph, which is the function value of the objective
in (15) corresponding to the optimal solution z∗ν .

Optimization problem in (15) is an NP-hard discrete
optimization problem [31]. To reduce its complexity, we
relax the discrete constraint zν′ ∈ {0, 1/β} to its contin-
uous counterpart zν′ ∈ [0, 1/β], and thus convert (15)
into a continuous optimization problem. Meanwhile, to
avoid degeneracy, we require the minimal size of the
subgraph to be a fixed number β∗ ≤ minν∈V |Ñ (ν)| ≤
β, where Ñ (ν) is a set containing the direct neighbors

of ν on the graph G∗. Thus, the constraint is further
converted as zν′ ∈ [0, 1/β∗]. An efficient method based
on pairwise coordinate update given in [31] is used to

solve (15) for each node in G∗ to obtain the dense sub-
graphs Γ̂ = {γ̂i}ni=1 and the corresponding confidence
scores $̂ = {$̂i}ni=1, which will be described as follows.

3.4.4 Optimization Using Pairwise Updates

We adopt the pairwise update algorithm to optimize (15)
as in [31]. The formulation in (15) is a constrained op-

timization problem, we introduce Lagrangian multipli-
ers a, b1, · · · , bu, and c1, · · · , cu for each variable zi,
i 6= ν and i ∈ Ñ (ν), i.e., where a ≥ 0 and bi ≥ 0 and
ci ≥ 0 for all i = 1, · · · , u, u is the number of nodes in

the neighborhood Ñ (ν). The Lagrangian of the original
problem (15) is

M(z, a, b, c) = f (z)− a · (
u∑
i=1

zi − 1) +
∑
i,i6=ν

bi · zi

+
∑
i,i6=ν

ci · (
1

β
− zi), (16)

where f (z) =
∑
e∗ij∈U∗

W ∗ij ·zizj+
∑
j∈Ñ (i)A(j)z2j , e∗ij is

the edge connecting node i and j in G∗, z = (z1, · · · , zu)
is the indicator vector (zi = 1

β means the node i is
involved in the dense subgraph and zi = 0 means the
node i is excluded from the dense subgraph), and β

is the number of nodes included in the searched dense
subgraph. Similar to [31], we introduce a reward score
ri(z) =

∑
lW
∗
il · zl + 1

2A(i) at node i reflecting the
total weights of node i to other nodes described by the
indicator z. Then, we have ∂f

∂zi
(z∗) = 2 · ri(z∗), i.e., the
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reward score is proportional to the gradient of f (z) at
z.

Any local maxima z∗ must satisfy the Karush-Kuhn-
Tucker (KKT) conditions [24],

2 · ri(z∗)− a+ bi − ci = 0, i 6= ν;∑
i,i6=ν

z∗i · bi = 0;

∑
i,i6=ν

ci · (1/β − z∗i ) = 0.

(17)

Since z∗i , bi, and ci are all nonnegative, and
∑
i,i6=ν z

∗
i ·

bi = 0, we have two rewritten constraints: (1) ∀i 6= ν,
if z∗i > 0, then bi = 0; (2) ∀i 6= ν, if z∗i < 1/β, then
ci = 0. Thus, for node i 6= ν, the KKT conditions can
be further reformulated as:

ri(z
∗) =


≤ a/2, z∗i = 0;

= a/2, 0 < z∗i < 1/β;

≥ a/2, z∗i = 1/β.

(18)

Similar to [31], the node set in G∗ can be divided into
three disjoint subsets, Ξ1(z) = {i|zi = 0}, Ξ2(z) =

{i|zi ∈ (0, 1/β)} and Ξ3 = {i|zi = 1/β}.
Using Theorem 1 in [31], we increase a component

zi and decrease zj to increase f(z), as

ẑl =


zl, l 6= i, l 6= j;

zl + α, l = i;

zl − α, l = j,

(19)

and define rij = −2W ∗ij . Then, we have

∆f(z) = f(ẑ)− f(z) = −2W ∗ij · α2

+ 2
(∑

l

W ∗il · zl −
∑
l

W ∗jl · zl +
1

2

(
A(i)−A(j)

))
α

= rij · α2 + 2
(
ri(z)− rj(z)

)
α. (20)

where ẑ = (ẑ1, · · · , ẑu), u is the number of nodes in the
neighborhood Ñ (ν). Note that we can assume ri(z) ≥
rj(z), when ri(z) < rj(z), we can exchange i and j to
maximize ∆f(z). α can be calculated based on (20) and
the constraints over α and z, that is α = min(zj , 1/β−
zi), if ri(z) > rj(z) and rij ≥ 0; α = min(zj , 1/β −
zi,

rj(z)−ri(z)
rij

), if ri(z) > rj(z) and rij < 0; and α =

min(zj , 1/β − zi), if ri(z) = rj(z) and rij > 0. After

that, we can compute the local maximizer z∗ of (15) by
iteratively using the update strategy (19) and calculat-
ing α based on the discussions above from any starting
points. We adopt the kNN(o) strategy given in [31] to
complete the initialization. A complete analysis of this
algorithm can be found in [31].

Algorithm 2 Conflict removal of the searched dense
subgraphs.

Input: The node sets of the searched dense subgraphs Γ̂ =
{γ̂i}ni=1 and the corresponding confidence scores $̂ =
{$̂i}ni=1.

1: Sort the dense subgraphs in Γ̂ in descending order ac-
cording the confidence scores $̂ to get Γ̃ = {γ̃i}ni=1.

2: Initial the dense subgraphs without conflicts Γ∗ = ∅.
3: for i = 1 to n do
4: if γ̃i ∩ γ∗j = ∅, ∀j, γ∗j ∈ Γ∗ then
5: Γ∗ ← Γ∗

⋃
{γ̃i}.

6: else
7: γ∗j ← γ∗j

⋃
γ̃i.

8: end if
9: end for
Output: The dense subgraphs without conflicts Γ∗.

3.4.5 Conflict Removal and Formation of Long
Trajectory

After identifying the node sets of the dense subgraphs Γ̂
and the corresponding confidence scores $̂ of all nodes,

we use some post-processing strategies to filter out the
conflicts involved in Γ̂ , e.g., one node may appear in
multiple clusters. We use a similar post-processing strat-

egy as in [45]. We first produce an ordered cluster set
Γ̃ = {γ̃i}ni=1 according to the corresponding confidence
score $̂i in descending order from the searched dense
subgraphs Γ̂ . Let Γ ∗ be the dense subgraphs without

conflicts. We initialize Γ ∗ = ∅. For the i-th searched
dense subgraph in Γ̃ , i.e., γ̃i ∈ Γ̃ , if γ̃i ∩ γ∗j = ∅, ∀j,
γ∗j ∈ Γ ∗, we add γ̃i directly to Γ ∗, i.e., Γ ∗ ← Γ ∗

⋃
{γ̃i}.

Otherwise, a greedy approach is designed by directly
adding γ̃i to the existing clusters γ∗j , i.e., γ∗j ← γ∗j

⋃
γ̃i.

Algorithm 2 shows the main steps to remove the con-
flicts of searched dense subgraphs.

3.4.6 Handle Long Videos

For long videos (e.g., with more than 500 frames), con-
structing the STV hyper-graph on all couplings and
performing search require large memory and compu-
tation. To improve running efficiency, we divide long

videos into non-overlapping segments of fixed length.
For each segment, the STV hyper-graph is constructed
and the dense sub-hypergraph search is performed. We
then treat the recovered 3D trajectories as a new cou-
pling, and construct a new STV hyper-graph as § 3.3,
from which another round of dense sub-hypergraph search
and trajectory linking are performed. This procedure
continues until the whole video sequence is merged into
a single hyper-graph, where the sub-hypergraph search
yields final trajectories. In addition, to avoid exclu-

sion of correct trajectories generated in previous lay-
ers, we append the nodes that are not included in the
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Algorithm 3 Main steps of the STV hyper-graph
based multi-camera multi-target tracking.
Input: Video sequences captured from multi-camera views

synchronously with the same frame rate, and the corre-
sponding 2D detection results of each frame in each cam-
era view.

1: Divide long videos into J non-overlapping segments of
fixed length.

2: while J > 1 do
3: for j = 1 to J do
4: Generate the candidate couplings based on the de-

tected tracklets in each camera view in the j-th seg-
ment (§ 3.1) to obtain the node set V of STV hyper-
graph G, i.e., each candidate coupling corresponds a
node in G.

5: Calculate the weights of nodes based on (9) in G.
6: Construct STV graph according to Algorithm 1

(§ 3.4.2).
7: Search dense subgraphs on STV graph (§ 3.4.3).
8: Remove conflicts in searched dense subgraphs and

generate long tracklets according to Algorithm 2
(§ 3.4.5).

9: end for
10: Merge the neighboring segments and update segment

number J .
11: end while
Output: Target long trajectories in the video sequences.

searched dense subgraphs while satisfying the length re-
quirement after the conflict removal step in each layer.

That is, we first consider the set of nodes that are
excluded from the detected dense subgraph set Θ =
{ν1, · · · , νn} −

⋃τ
i=1 γ

∗
i , where Γ ∗ = {γ∗i }τi=1 is the set

of detected dense subgraphs. For θi ∈ Θ, if L(θi) ≥ `,

we add θi to Γ ∗, i.e., Γ ∗ ← Γ ∗
⋃
{θi}, where L(θi)

indicates the trajectory length corresponding to node
θi, and ` is the preset minimal length of the target

trajectory. In this way, the multi-camera multi-target
tracking task can be completed efficiently. Algorithm 3
shows the main steps of our approach to complete the
multi-camera multi-target tracking task.

4 Experiments

4.1 Dataset

Multi-camera multi-object tracking. We evaluate
the performance of our approach and compare with sev-
eral state-of-the-art methods on the PETS 2009 multi-
camera multi-object tracking dataset [11], which in-
cludes three video sequences obtained from multiple
synchronized cameras:

– S2.L1: low target density, 19 moving pedestrians in
795 frames;

– S2.L2: medium target density, 43 pedestrians spread-
ing in 436 frames;

– S2.L3: high target density, 44 pedestrians moving
together in 240 frames.

These videos represent practical challenges in multi-
target tracking, including frequent target occlusions,
close targets with similar appearance, and low frame
rate (∼7 frame-per-second). In our experiments, we com-
pare tracking results using multiple camera views for
each of the three PETS 2009 sequences. To make fair
comparison, we use frame detections obtained with the
Deformable Part Model (DPM) algorithm [10] as the
input for all evaluated methods. In the performance
evaluation, We use ground truth annotation provided
in [34].

Single-camera multi-object tracking. To demon-
strate the generality of the proposed approach, we also
evaluate our approach on the PETS 2009 single-camera
multi-object tracking dataset [11] and MOTChallenge
2015 single-camera 3D benchmark [26]. For the PETS
2009 dataset, following the previous single-camera multi-

object tracking methods [1,2,45], we use videos cap-
tured by camera #1 of sequences S2L1, S2.L2 and S2.L3
to complete the tracking task. The MOTChallenge 3D
benchmark consists of four sequences captured using

a static camera, i.e., AVG-TownCentre, PETS 2009-
S2.L1, PETS 2009-S2.L2 and TUD-Stadtmitte, with
the calibration files used to compute a 2D homography

between the image plane and the ground plane. The
PETS 2009-S2.L1 and TUD-Stadtmitte sequences are
used for training, while the remaining two sequences,

i.e., PETS 2009-S2.L2 and AVG-TownCentre, are used
for testing. The DPM algorithm [10] is used to gener-
ate the input detections for all trackers in the PETS
2009 dataset evaluation. While for the MOTChallenge
3D benchmark, the publicly provided input detection
results [26] are adopted to complete the tracking task.

4.2 Evaluation Metrics

To quantitatively evaluate the performance of both multi-
camera and single-camera multi-target tracking scenar-
ios, we adopt two CLEAR MOT metrics for multi-
target tracking [44]: (i) Multi-Object Tracking Accu-
racy (MOTA), a consolidated score of false/miss de-
tection rates of ground truth and identity switches of
tracked trajectories; and (ii) Multi-Object Tracking Pre-
cision (MOTP), the average distance between the track-
ing results and the ground truth normalized to the

hit/miss threshold. The MOTA score is perhaps the
widely used figure to evaluate the performance of the
tracker, since it combines three errors (i.e., False Nega-
tives (FN), False Positives (FP), and Identity Switches
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Fig. 5 (a) Influence of balance parameters between color histogram, gradient histogram, and local binary pattern features, on
tracking performance. (b) Influence of balance parameters between appearance, motion, and trajectory smoothness affinities
on tracking performance.

(IDS)) into a single number [26]. To measure the perfor-
mance of the tracker, similar to [2], we use the greedy
strategy to match the locations of tracked targets and
the ground truth within a hit/miss distance thresh-

old. To describe the performance of the tracker com-
pletely, we plot the MOTA score at the hit/miss dis-
tance thresholds varied from 0 to 2 meter. We use the

MOTA score at the hit/miss distance threshold 1 me-
ter as the representative score to rank each tracking
algorithm in the MOTA vs distance curves.

In addition, we also report the the number of the

ground truth trajectories (GT), the ratio of ground
truth trajectories that are tracked for more than 80%
of total length (MT), the ratio of ground truth tra-

jectories that are tracked for less than 20% of total
length (ML), the number of times that a ground truth
trajectory is detected with several separate trajectories
(FM), and the number of times that a tracked trajec-
tory changes its matched identity (IDS) at the hit/miss
distance threshold 1 meter. To demonstrate the overall
performance of the trackers, we follow the evaluation
protocol in [26], which introduces the AvgRank score
indicating the rank of each tracker averaged over all
present evaluation measures with the perfect value 1.
The lower value of AvgRank indicates the better per-
formance.

In previous works, tracking performance on the PETS
2009 dataset has been evaluated in either the whole

camera view [28,25,48] or a predefined area in the in-
tersection of all views [36,45]. In this work, we use the

whole camera view for both single-camera and multi-

camera evaluations, as it is more relevant to practical
tracking scenarios.

4.3 Parameters

We carry out several experiments on PETS 2009 dataset
to study the influence of some important parameters

in our algorithm. Firstly, we evaluate the influence of
the trade-off parameters between color histogram, gra-
dient histogram, and local binary pattern features in
appearance affinity calculation in (6), i.e., λ1, λ2, and
λ3, on tracking performance. In our empirical study,
we find that the color histogram is more discriminative
than other two features. Thus, we keep λ1 ≥ λ2 > 0

and λ1 ≥ λ3 > 0. Since λ1 + λ2 + λ3 = 1, we vary
λ1 ∈ [0.4, 0.8] and λ2 ∈ [0.1, 0.4] with interval 0.1, and
λ3 = 1−λ1−λ2, while keep all other parameters fixed,
and report the changes in the average MOTA score over
three sequences, i.e., S2.L1, S2.L2, and S2.L3, in PETS
2009 dataset with two camera views in Fig. 5(a). As pre-
sented in Fig. 5(a), we find that our algorithm performs
relative stable with these parameters, i.e., the standard
deviation of the average MOTA score is 1.91%. Based
on the maximal value in Fig. 5(a), we set λ1 = 0.8,

λ2 = 0.1, and λ3 = 0.1.

Secondly, we evaluate the influence of the balance
parameters between three types of affinity scores, i.e.,
appearance affinity, motion affinity, and trajectory smooth-



Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph 13

Fig. 6 Effect of the degree of hyper-graph k (number of
nodes associated with each hyper-edge) on the tracking per-
formance. The MOTA score is used to indicate the overall
performance of the tracker. Note that the hyper-graph de-
generates to a graph when k = 2.

ness affinity in (10), λ8, λ9, and λ10, on tracking perfor-
mance, which is shown in Fig. 5(b). To handle the track-

ing task in crowded scenes, we take the motion affinity
as a more important factor. Thus, we keep λ9 ≥ λ8 > 0
and λ9 ≥ λ10 > 0. Since λ8 + λ9 + λ10 = 1, we vary
λ8 ∈ [0.1, 0.4] and λ9 ∈ [0.4, 0.8] with interval 0.1, and

λ10 = 1 − λ8 − λ9, while keep all other parameters
fixed. The average MOTA scores over three sequences
in PETS 2009 dataset with two camera views are pre-

sented in Fig. 5(b). Our algorithm is relative stable to
these parameters with 1.63% standard deviation of the
average MOTA score. Based on the maximal value in

Fig. 5(b), we set λ8 = 0.3, λ9 = 0.6, and λ10 = 0.1.

Finally, we conduct experiments to validate the in-
fluence of the degree of hyper-edge k on tracking per-
formance. We construct STV hyper-graph with k =

2, · · · , 8 while keeping all other parameters fixed, and
report the changes in the average MOTA score over
three sequences in PETS 2009 dataset in Fig. 6. As

these results show, tracking performance decreases as k
increases when k ≥ 6, because STV hyper-graph with
hyper-edge degree that is too high fails to describe the
motion pattern well enough, for the case of targets mov-
ing in drastically different speed and directions. Thus,
we choose the degree of the hyper-edge k = 3 in our
experiments.

For other parameters, we use the following default
values for the parameters in our algorithm. The sensi-
tivity controlling parameters of the affinity score to the
prediction errors and the deviation of smooth trajec-

tories in the motion and trajectory smoothness affinity
calculations in (7) and (8) are set as λ4 = 0.01 and
λ5 = 0.05, respectively. Meanwhile, the sensitivity con-
trolling parameter of the weight to the reliability score
in (9) is set as λ6 = 1.0, and the trade-off parameter

between the scattering and number of associated 2D
views is set as λ7 = 0.01. The minimal size of subgraph
is set as β∗ = 2. We set the score threshold as µ = 0.2
and the ξ = 5 in CS generation. The minimal length
of the target trajectory ` = 5, i.e., each tracked trajec-
tory must contain 5 detections. These parameters are
chosen empirically, i.e., make grid search of one param-
eter over a range of values while keep other parameters
fixed, and we find that the performance of our algo-
rithm are relatively insensitive to small perturbations
of the parameters.

4.4 Performance Evaluation and Comparison

We evaluate our method on both single-camera and
multi-camera multi-target tracking tasks and discuss
the results in the following sections. We use the same in-
put frame detections obtained by the DPM algorithm [10]

and the ground truth annotation provided in [34] for
all the evaluated methods on the PETS 2009 dataset.
For the MOTChallenge 2015 3D benchmark, the pub-
licly provided input detection results [26] are adopted to

complete the tracking task. Our main purpose here is to
discount the difference in the detection methods, so as
to perform a comprehensive evaluation of our method

on the data association part, and provide fair compari-
son with other methods. On the other hand, because of
this setting, performances of many evaluated methods

may differ from their published results.

4.4.1 Multi-Camera Tracking Evaluation

In Table 2 and Fig. 7, we compare quantitative per-
formance of our method with several state-of-the-art
multi-camera multi-target tracking methods on the PETS
2009 dataset. The quantitative results of the trackers

shown in Table 2 are calculated with the hit/miss dis-
tance threshold 1 meter. We include performances from
two existing multi-camera multi-target tracking meth-
ods [28,13] for comparison. For a fair comparison, we
use the same frame detections obtained with the DPM
algorithm [10] as the input to all methods. However,
we cannot obtain the source code or binary executable

that can reproduce the performances reported in [13].
As such, results in Table 2 are based on our own im-
plementation of this work, with our best effort to fol-
low the steps given in the original paper, for compar-
ison 6. In addition, for clarification and completeness,
we also report the tracking results presented in [13] in

6 We will make our method and our implementation of [13]
along with the tracking results available after the paper de-
cision.
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Table 2 Multi-camera multi-target tracking results in the PETS 2009 dataset. The tracking results of the methods are
obtained by running the publicly available codes with the same detection results and ground truth used in our tracker. The
number in the bracket of average performance indicates the number of cameras used in each tracking scenario. The symbol ↑
means higher scores indicate better performance while ↓ means lower scores indicate better performance.

Sequence Method Camera IDs AvgRank ↓MOTA[%] ↑MOTP[%] ↑ GT MT[%] ↑ML[%] ↓ FM ↓ IDS ↓

PETS S2.L1

Berclaz et al. [18]† 1+3+5+6+8 - 82.00 56.00 19 - - - -
Hofmann et al. [13]† 1+5 - 99.40 82.90 - 100.00 0.00 1 1
Hofmann et al. [13]† 1+5+7 - 99.40 83.00 - 100.00 0.00 1 2

Leal-Taixé et al. [28] 1+5 - 85.74 67.87 19 89.47 0.00 115 150
Leal-Taixé et al. [28] 1+5+7 - 82.06 66.23 19 89.47 0.00 125 270
Hofmann et al. [13]∗ 1+5 - 91.89 79.50 19 94.74 0.00 29 41
Hofmann et al. [13]∗ 1+5+7 - 91.66 79.40 19 94.74 0.00 31 45

Ours 1+5 - 95.51 80.60 19 100.00 0.00 12 14
Ours 1+5+7 - 95.08 79.80 19 100.00 0.00 13 13

PETS S2.L2

Hofmann et al. [13]† 1+2 - 87.60 73.50 - 86.00 0.00 128 111
Hofmann et al. [13]† 1+2+3 - 79.70 74.20 - 69.80 2.30 129 132

Leal-Taixé et al. [28] 1+2 - 40.14 54.13 43 4.65 9.30 581 621
Leal-Taixé et al. [28] 1+2+3 - 36.38 53.83 43 2.33 9.30 678 865
Hofmann et al. [13]∗ 1+2 - 58.97 65.80 43 25.56 2.33 288 385
Hofmann et al. [13]∗ 1+2+3 - 58.85 66.00 43 30.23 2.33 293 388

Ours 1+2 - 67.00 61.50 43 51.16 0.00 239 239
Ours 1+2+3 - 65.24 61.80 43 44.19 0.00 246 249

PETS S2.L3

Hofmann et al. [13]† 1+2 - 68.50 72.30 - 54.50 20.50 149 156
Hofmann et al. [13]† 1+2+4 - 65.40 73.90 - 40.90 25.00 88 116

Leal-Taixé et al. [28] 1+2 - 48.49 51.74 44 22.73 9.09 250 279
Leal-Taixé et al. [28] 1+2+4 - 40.22 49.46 44 9.09 15.91 234 300
Hofmann et al. [13]∗ 1+2 - 54.39 60.20 44 25.00 25.00 67 106
Hofmann et al. [13]∗ 1+2+4 - 49.79 63.00 44 29.55 25.00 80 123

Ours 1+2 - 57.06 59.30 44 38.64 15.91 120 129
Ours 1+2+4 - 54.39 54.90 44 29.55 20.45 99 92

Average

Hofmann et al. [13](2)† - - 85.17 76.23 - 80.17 6.83 92.67 89.33
Hofmann et al. [13](3)† - - 81.50 77.03 - 70.23 9.10 72.67 83.33

Leal-Taixé et al. [28](2) - 4.50 58.12 57.91 - 38.95 6.13 315.33 350.00
Leal-Taixé et al. [28](3) - 5.67 52.89 56.51 - 33.63 8.40 345.67 478.33
Hofmann et al. [13](2)∗ - 3.33 68.42 68.50 - 48.43 9.11 128.00 177.33
Hofmann et al. [13](3)∗ - 3.50 66.77 69.47 - 51.51 9.11 134.67 185.33

Ours(2) - 1.67 73.19 67.13 - 63.27 5.30 123.67 127.33
Ours(3) - 2.17 71.57 65.50 - 57.91 6.82 119.33 118.00

† The tracking results of the methods are copied directly from the published papers. Since different input detections and
ground truth are used, it is unfair to directly compare the tracking results of the proposed method with these results
directly copied from the published papers. For clarification and completeness, we also report them in the table.
∗ The tracking results are based on our own implementation of [13], with our best effort to follow the steps given in the

original paper, and using the same input detections and ground truth as our tracker.

Table 2 7. Some qualitative tracking results of our STV
hyper-graph are presented in Fig. 9.

We highlight several points regarding the quanti-
tative results in Table 2. Tracking performance is im-
proved by using multi-cameras for all three datasets,
where the performance gains for videos with higher tar-
get densities (S2.L2 and S2.L3) are particularly signif-
icant. This is due to the complementary information
provided from multiple camera views, which helps to
resolve appearance ambiguity and occlusions. However,

performance gain with multi-cameras decreases in the
cases of low target density (S2.L1), where single-camera

7 Since different input detections and ground truth are
used, it is unfair to directly compare the tracking results of
the proposed method with the results presented in [13].

tracking already saturates the performance metric. Yet,
further increasing the number of camera views does not
usually lead to a monotonic increase in performances,
e.g., Leal-Taixé et al. [28](2) produces 5.23% larger av-
erage MOTA score than Leal-Taixé et al. [28](3), and
Ours(2) produces 1.62% larger average MOTA score
than Ours(3). This is due to errors in camera calibra-
tion that lead to inaccuracies in the mapping function
φv. These errors result in incorrect associations that ac-
cumulate with increasing frame detections in multiple
views, and lead to incorrect couplings (false positives),
which greatly influence the performance of the trackers.

Although our method is relative more robust to camera
calibration errors than [28] (the average MOTA score
gap between two camera views and three camera views
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Fig. 7 Plots of the MOTA score with different hit/miss distance thresholds, i.e., varying from 0 millimeter to 2000 millimeter,
of our approach and two state-of-the-art methods, i.e., Leal-Taixé et al. [28] and Hofmann et al. [13], for multi-camera multi-
target tracking in PETS 2009 S2.L1, S2.L2 and S2.L3 sequences. The performance score for each tracker is presented in the
legend.

Fig. 8 Plots of the MOTA score with different hit/miss distance thresholds, i.e., varying from 0 millimeter to 2000 millimeter,
of our method and several state-of-the-art methods, i.e., H2T [45], DCT [2], CEM [1], GOG [39], KSP [4], Leal-Taixé et
al. [28], and Hofmann et al. [13], for single-camera multi-target tracking in PETS 2009 S2.L1, S2.L2 and S2.L3 sequences. The
performance score for each tracker is presented in the legend.

is reduced to 1.62% from 5.23%), by integrating the

higher-order dependencies among couplings, it is not
entirely satisfactory. Thus, the way to restrain the er-
rors in camera calibration while exploring effective in-
formation in multi-camera to help tracking is still worth
study.

In comparison with the state-of-the-art multi-camera
multi-target tracking algorithms [28,13] based on asso-
ciating pairs of 3D couplings, our method achieves bet-
ter performance as reflected by lowest AvgRank score,
which is determined by higher MOTA and MT scores
and lower IDS and FM scores. This shows the effective-
ness of using higher-order temporal correlations among
couplings encoded by STV hyper-graph, which greatly
reduces the association ambiguities, indicated by the
lower IDS and FM scores.

4.4.2 Single-Camera Tracking Evaluation

PETS 2009 dataset. We first evaluate our method in
handling the single-camera multi-target tracking task
on the first view of each sequence in PETS 2009 dataset
(i.e., S2.L1, S2.L2, and S2.L3 sequences). We compare

our approach with several state-of-the-art single-camera

multi-target tracking algorithms [5,25,48,41,8,4,28,13,
1,2,39,45], with the results presented in Table 3 and
Fig. 8. The quantitative tracking results shown in Ta-
ble 3 are calculated with the hit/miss distance threshold
1 meter. As previously mentioned, for a fair compari-
son, we use the same frame detections obtained with
the DPM algorithm [10] as the input to all methods.

As shown in Table 3 and Fig. 8, our method per-
forms the best in two sequences, i.e.S2.L2 and S2.L3,
while performs competitively in the sequence S2.L1,
and achieves the best performance with the lowest Av-
gRank score comparing with the state-of-the-art track-
ers. Comparing with the previous methods [4,28,1,2,
39,13] merely using the pairwise similarities between
tracklets, our method exploits the higher-order similar-

ities among multiple tracklets in a hyper-graph such
that full motion information can be used to improve
the performance, especially in the crowded scenes, e.g.,
S2.L2 and S2.L3 sequences.

In addition, compared to [45], the other hyper-graph
based single-camera tracking method, our method also
achieves better performance for single-camera tracking
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Table 3 Single-camera multi-target tracking results in the PETS 2009 dataset. All methods use the video sequence capture by
camera #1 to complete the tracking task. The tracking results of the methods are obtained by running the publicly available
codes with the same detection results and ground truth used in our tracker. The symbol ↑ means higher scores indicate better
performance while ↓ means lower scores indicate better performance.

Sequence Method AvgRank ↓ MOTA[%] ↑ MOTP[%] ↑ GT MT[%] ↑ ML[%] ↓ FM ↓ IDS ↓

PETS S2.L1

Breitenstein et al. [5]† - 75.00 60.00 19 - - - -
Kuo et al. [25]† - - - 19 78.90 0.00 23 1
Yang et al. [48]† - - - 19 89.50 0.00 9 0
Shi et al. [41]† - 96.10 81.80 19 94.70 0.00 6 4

Dehghan et al. [8]† - 90.40 63.12 19 95.00 0.00 - 3
Hofmann et al. [13]† - 98.00 82.80 - 100.00 0.00 11 10

Berclaz et al. [4] - 75.05 77.00 19 63.16 0.00 63 38
Andriyenko et al. [1] - 73.44 78.20 19 52.63 15.79 15 34
Andriyenko et al. [2] - 89.05 78.10 19 84.21 0.00 21 26
Pirsiavash et al. [39] - 81.59 71.80 19 68.42 0.00 71 63

Wen et al. [45] - 94.43 74.50 19 94.74 0.00 16 13
Leal-Taixé et al. [28] - 84.90 67.95 19 84.21 0.00 107 101
Hofmann et al. [13]∗ - 91.57 80.30 19 94.74 0.00 38 52

Ours - 95.44 80.80 19 100.00 0.00 10 10

PETS S2.L2

Hofmann et al. [13]† - 75.80 72.10 - 65.10 0.00 252 234
Berclaz et al. [4] - 41.60 63.00 43 2.33 13.95 416 244

Andriyenko et al. [1] - 35.21 69.50 43 9.30 25.58 91 118
Andriyenko et al. [2] - 49.99 64.30 43 9.30 2.33 261 292
Pirsiavash et al. [39] - 34.50 69.90 43 9.30 4.65 793 2509

Wen et al. [45] - 55.32 58.40 43 11.63 2.33 205 141
Leal-Taixé et al. [28] - 36.03 53.56 43 4.65 11.63 514 508
Hofmann et al. [13]∗ - 55.11 70.30 43 9.30 6.98 303 350

Ours - 59.15 65.70 43 34.88 0.00 259 239

PETS S2.L3

Hofmann et al. [13]† - 62.80 70.50 - 54.50 11.40 217 225
Berclaz et al. [4] - 39.85 60.60 44 15.91 18.18 159 196

Andriyenko et al. [1] - 51.65 57.20 44 29.55 18.18 99 153
Andriyenko et al. [2] - 46.12 58.90 44 20.45 20.45 126 168
Pirsiavash et al. [39] - 49.79 65.40 44 27.27 25.00 149 172

Wen et al. [45] - 50.30 55.10 44 22.73 22.73 47 38
Leal-Taixé et al. [28] - 48.90 51.67 44 22.73 11.36 241 224
Hofmann et al. [13]∗ - 46.60 65.20 44 20.45 34.09 64 88

Ours - 53.36 59.20 44 25.00 18.18 115 100

Average

Berclaz et al. [4] 6.33 52.17 66.87 - 27.13 10.71 212.67 159.33
Andriyenko et al. [1] 4.83 53.43 68.30 - 30.49 19.85 68.33 101.67
Andriyenko et al. [2] 4.17 61.72 67.10 - 37.99 7.59 136.00 162.00
Pirsiavash et al. [39] 5.83 55.29 69.03 - 35.00 9.88 337.67 914.67

Wen et al. [45] 3.00 66.68 62.67 - 43.03 8.35 89.33 64.00
Hofmann et al. [13]† - 78.87 75.13 - 73.20 3.80 160.00 156.33

Leal-Taixé et al. [28] 5.83 56.61 57.73 - 37.20 7.66 287.33 277.67
Hofmann et al. [13]∗ 4.00 64.43 71.93 - 41.50 13.69 135.00 163.33

Ours 2.00 69.32 68.57 - 53.29 6.06 128.00 116.33
† The tracking results of the methods are copied directly from the published papers. Since different input detections and

ground truth are used, it is unfair to directly compare the tracking results of the proposed method with these results
directly copied from the published papers. For clarification and completeness, we also report them in the table.
∗ The tracking results are based on our own implementation of [13], with our best effort to follow the steps given in the

original paper, and using the same input detections and ground truth as our tracker.

with 2.64% and 10.26% gain of MOTA and MT scores

on average. This is due to the use of calibrated cameras
in 3D space, as depth information from the ground-
plane assumption improves the motion and trajectory
smoothness affinity estimations, which improves overall
tracking performance.

MOTChallenge 2015 3D benchmark. We also re-

port the experiment results on the MOTChallenge 3D
benchmark [26] in Table 4. As presented in Table 4, our

approach achieves competitive performance with the
state-of-the-art single-camera 3D multi-target tracking
methods [27,35,38,22] according to the AvgRank score.
The algorithm [22] integrates some prior knowledge of
the scenes and learns the object appearance online us-
ing the online random forest classifier, which makes the
tracker achieve the best performance. However, using
the complex object appearance model will bring the
huge computational load, which affects the runtime of
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Table 4 Quantitative results on the single-camera MOTChallenge 3D benchmark [26].

Method AvgRank MOTA[%] ↑ MOTP[%] ↑ FAF ↓ MT[%] ↑ ML[%] ↓ FP ↓ FN ↓ IDS ↓ FM ↓
DBN [22] 1.3 51.1 61.0 2.3 28.7 17.9 2077 5746 380 418

LPSFM [27] 2.7 35.9 54.0 2.3 13.8 21.6 2031 8206 520 601
LP3D [35] 3.6 35.9 53.3 4.0 20.9 16.4 3588 6593 580 659

KalmanSFM [38] 4.1 25.0 53.6 3.6 6.7 14.6 3161 7599 1838 1686
Ours 3.3 34.2 55.8 3.5 11.2 25.4 3057 7454 532 611

Table 5 Effect of different components in the proposed tracker. The symbol ↑ means higher scores indicate better performance
while ↓ means lower scores indicate better performance.

Sequence Method Camera IDs MOTA[%] ↑ MOTP[%] ↑ GT MT[%] ↑ ML[%] ↓ FM ↓ IDS ↓

PETS S2.L1
Hofmann et al. [13]∗ 1+5 91.89 79.50 19 94.74 0.00 29 41

Ours-P 1+5 96.40 80.80 19 100.00 0.00 10 6
Ours 1+5 95.51 80.60 19 100.00 0.00 12 14

PETS S2.L2
Hofmann et al. [13]∗ 1+2 58.97 65.80 43 25.56 2.32 288 385

Ours-P 1+2 63.50 61.70 43 51.16 0.00 252 249
Ours 1+2 67.00 61.50 43 51.16 0.00 239 239

PETS S2.L3
Hofmann et al. [13]∗ 1+2 54.39 60.20 44 25.00 25.00 67 106

Ours-P 1+2 57.60 59.40 44 31.82 13.63 122 120
Ours 1+2 57.06 59.30 44 38.64 15.91 120 129

Average
Hofmann et al. [13]∗ - 68.42 68.50 - 48.43 9.11 128.00 177.33

Ours-P - 72.50 67.30 - 60.99 4.54 128.00 125.00
Ours - 73.19 67.13 - 63.27 5.30 123.67 127.33

∗ The tracking results are based on our own implementation of [13], with our best effort to follow the steps given in the
original paper, and using the same input detections and ground truth as our tracker.

the algorithm [22], i.e., it runs 0.1 Frame-Per-Second

(fps). Incorporating higher-order connections among track-
lets (i.e., motion constraints can be fully exploited)
makes our approach achieves relative lower IDS and

FM scores, which promotes its performance on single-
camera multi-target tracking scenarios.

4.5 Discussion

Effectiveness of dense subgraphs. To have a de-
tailed understanding of the contribution of each com-
ponent of our method, we construct a baseline tracker
that uses pairwise correlation of 3D couplings (track-

lets) as the method [13], and apply the dense subgraph
search [31] as the tracking solution. We compare this
baseline algorithm (marked as Ours-P) in Table 5 with
our own implementation of the network flow based op-
timization method [13], for tracking with two camera
views. This baseline algorithm improves 4.17% MOTA
and 12.55% MT scores, and reduces 4.57% ML and
29.5% IDS scores on average performance compared to
the network flow optimization based method [13], show-
ing that our formulation of tracking as searching sub-
graphs or sub-hypergraphs is important in improving
the overall performance.

Effectiveness of hyper-graph representation. In
addition, to exploit the effectiveness of hyper-graph rep-
resentation, we compare our approach with the base-

line tracker, i.e., Ours-P. Our full method improves

0.7% MOTA and 2.28% MT score, and reduces 3.38%
FM score on average performance in comparison with
the baseline algorithm, which demonstrates that using
hyper-graph as a representation can reduce the FM

score and improve MT score to promote the multi-
target tracking performance.

Running time. In addition to its performance, our

method also affords efficient running time. Table 6 re-
ports the running time measured in fps on the PETS2009
dataset over 1-3 camera views after given the detection
results. These running time is based on an implemen-
tation with unoptimized C++ code, single thread exe-
cution on a workstation with Intel 2.67GHz CPU and
128 GB memory. Note that, as shown in Table 6, our
method runs faster in S2.L3 than S2.L2 over all cam-
era views. Although S2.L3 has higher target density
than S2.L2, the highly complex pedestrian interactions
in S2.L2 result in more hyper-edges are included in STV
hyper-graph. Thus, the dense sub-hypergraph search is
slower in S2.L2 than that in S2.L3.

5 Conclusion

Incorporating multiple cameras is an effective solution
to improve the performance and robustness of multi-
target tracking to occlusion and appearance ambigu-
ities. In this paper, we propose a new multi-camera
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Table 6 The running speed of our method in different se-
quences with different camera views. Frame-Per-Second (fps)
is used to measure the speed of the tracker. In comparison,
we also show the frame rate of the original PETS 2009 videos.

Sequence 1-View 2-Views 3-Views PETS Frame Rate
S2.L1 30.6 16.8 10.9 7.0
S2.L2 7.1 1.8 0.9 7.0
S2.L3 9.0 3.2 2.5 7.0

multi-target tracking method based on a space-time-
view hyper-graph that encodes higher-order constraints
(i.e., beyond pairwise relations) on 3D geometry, ap-
pearance, motion continuity, and trajectory smoothness
among 2D tracklets within and across different camera
views. We solve tracking in each single view and recon-
struction of tracked trajectories in 3D environment si-
multaneously by formulating the problem as an efficient
search of dense sub-hypergraphs on the space-time-view
hyper-graph using a sampling based approach. Exper-
imental results on the PETS 2009 benchmark dataset
and MOTChallenge 2015 3D benchmark demonstrate

that our method performs favorably against the state-
of-the-art methods in both single-camera and multi-
camera multi-target tracking, while achieving close to
real-time running efficiency. We also provide experi-

mental analysis of the influence of various aspects of
our method to the final tracking performance.

There are several directions we would like to further
improve the current work. First, the current method re-

lies on the knowledge of camera parameters, it is useful
to be able to recover camera parameters along with
multi-target tracking and 3D reconstruction. This is
possible with recent advances that recover camera pa-

rameters from multiple image sequences [21,23]. Sec-
ond, the current method also assumes a static camera,
and a more challenging scenario that we will explore
is when some views are from cameras with ego motion
(e.g., PTZ cameras). Also, there exist alternative for-
mulations of the sub-hypergraph search algorithm such
as those based on hyper-graph Laplacians [53]. Subse-

quently we would like to investigate and compare dif-
ferent optimization strategies to solve the dense sub-
hypergraph search problem. Last, we would like to push
the limit test of multi-camera tracking methods, and ex-
tend similar methods to scenarios where camera views
have less overlapping.
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Fig. 9 STV hyper-graph tracking results on PETS 2009 videos. We show results using three camera views and two different
frames, as well as the top down view of the overall tracking results. This figure is better viewed in color.
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