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Online Deformable Object Tracking Based
on Structure-Aware Hyper-Graph

Dawei Du, Honggang Qi, Wenbo Li, Longyin Wen, Qingming Huang, and Siwei Lyu

Abstract—Recent advances in online visual tracking focus
on designing part-based model to handle the deformation and
occlusion challenges. However, previous methods usually consider
only the pairwise structural dependences of target parts in two
consecutive frames rather than the higher order constraints in
multiple frames, making them less effective in handling large
deformation and occlusion challenges. This paper describes a
new and efficient method for online deformable object tracking.
Different from most existing methods, this paper exploits higher
order structural dependences of different parts of the tracking
target in multiple consecutive frames. We construct a structure-
aware hyper-graph to capture such higher order dependences,
and solve the tracking problem by searching dense subgraphs
on it. Furthermore, we also describe a new evaluating data
set for online deformable object tracking (the Deform-SOT
data set), which includes 50 challenging sequences with full
annotations that represent realistic tracking challenges, such
as large deformations and severe occlusions. The experimental
result of the proposed method shows considerable improvement
in performance over the state-of-the-art tracking methods.

Index Terms—Online tracking, deformable object tracking,
part-based model, structure-aware hyper-graph, dense subgraph
searching.

I. INTRODUCTION

NLINE visual tracking is an important step toward fully
automatic understanding of videos, which finds wide
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applications in video surveillance, behavior analysis, human
computer interaction, to name a few. In spite of significant
progress in the recent years, online tracking a deformable
object accurately remains a difficult problem. Challenges in
online visual tracking originate from large variations of the
tracking target in appearance, shape, and motion, as well as
the occlusions caused by other objects or background.

Currently, the predominant approaches in online visual
tracking aim to obtain a bounding box of the tracking
target. Many methods are built on models which focus on
capturing appearance variation of the tracking target in the
bounding box, e.g., correlation filters [11], [32], subspace
learning [26], [42], online boosting [4], [22] and sparse
representation [29], [50]. Furthermore, the contextual infor-
mation has been considered in detection and tracking
tasks [3], [6], [28]. Recent methods [16], [41], [46] of online
visual tracking also focus on exploiting contextual informa-
tion beyond individual target appearance to improve tracking
performance. However, due to the use of bounding boxes
that encompass pixels of both the target and the background,
it is difficult to construct accurate target appearance model.
As such, these methods may be sensitive to background noise,
and are easily “drift” away from the tracking target when large
deformation occurs.

In addition to tracking methods based on bounding
boxes, there have been some developments in part-based
trackers [2], [8], [23], [39], [47], which incorporate structural
relations among target parts to improve the robustness in
handling object deformation and occlusion. Some recent meth-
ods take one step further to apply foreground segmentation
to delineate the boundary of the target [8], [15], a problem
also known as video object segmentation methods [10], [43].
To date, existing part-based tracking methods only consider
pairwise correlations in appearance from consecutive frames.
However, to effectively handle occlusion for tracking, one
needs to consider higher-order dependencies in object motion,
i.e., modeling the relations among multiple parts of the target
in more than two frames.

In this paper, we propose a new online deformable object
tracking method based on a structure-aware hyper-graph,
which, as illustrated in Fig. 1(b), can effectively incorporate
higher-order dependencies among more than two consecutive
frames. As such, we refer to our method as structure aware
tracker (SAT) subsequently. In our method, the tracking target
is represented by multiple parts, which are ensembles of
super-pixels that are similar in appearance and motion.
To find such parts, we first apply the SLIC over-segmentation
algorithm [1] to generate super-pixels in each video frame, and
then apply the graph cut algorithm [5] to optimize an energy
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Fig. 1. Importance of higher-order dependencies in tracking. We compare
DGT [8] that uses pairwise dependencies and our SAT that uses higher-order
dependencies among target parts. To improve the clarity, we illustrate only par-
tial set of parts in both methods. (a) DGT fails when multiple parts with similar
appearance or geometric structure appear in close proximity, e.g., Node 2
and Node 4. (b) Our SAT focuses on capturing higher-order dependencies of
multiple parts of the frames in a frame buffer (described in Section III-A),
which is effective to handle more difficult deformation and occlusion
challenges compared to DGT. Best viewed in color.
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objective function to produce candidate parts. Then, we con-
struct a hyper-graph to capture the higher-order dependencies
among candidate parts across multiple frames. Specifically, the
nodes of the hyper-graph correspond to the candidate parts,
and the hyper-edges encode the higher-order dependencies
(as consistencies in both appearance and motion) of the
candidate parts across multiple frames. Motivated by [44],
we adopt a pairwise updating algorithm [27] to extract parts
belonging to the target. Finally, the target state (i.e., the center
and scale of the target) is determined by comprehensively
analyzing the searched part states.

Our method is related with two previous methods [8], [44].
While these methods share some similarities, we would like
to highlight some important differences.

o Although both of our method and DGT [8] are
super-pixel based tracking methods, DGT [8] considers
matching of super-pixels in two consecutive frames,
while our method focuses on exploiting temporal higher-
order dependencies among them in multiple consecu-
tive frames. This difference is made clear graphically
in Fig. 1.

o A previous multi-target tracking method [44] also con-
structs a hyper-graph model hierarchically in an offline
manner, where every node that corresponds to a detected
bounding box is required to be classified to its belong-
ing trajectory correctly. In contrast, in our method, the
extracted dense subgraphs can be used to determine the
optimal target state online, rather than classify every
super-pixel (each super-pixel corresponds to a node in
the constructed hyper-graph) into the extracted dense
subgraphs precisely.

In comparison with the preliminary version [25], this work
is substantially enhanced on the aspects of description of
the model and experimental evaluation. First and foremost,
different from the preliminary version that extracts candidate
parts by a simple online Support Vector Machine (SVM)
model, we employ a Markov Random Field (MRF) based
segmentation method that incorporates both generative HSV
histogram and discriminative SVM model, similar to [8].
We also significantly strengthen the experiment part. Specifi-
cally, we use two metrics, precision plot and success plot, to
compare our method with 19 state-of-the-art tracking methods
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on a new collected dataset for online deformable tracking,
making the comparison more thorough and comprehensive.
Furthermore, we provide a detailed experimental analysis on
the influence of some important parameters in our method.

A. Contributions

To the best of our knowledge, our work is the first online
tracking method to fully exploit the higher-order temporal
correlations among target parts. We show that the structure-
aware hyper-graph can effectively capture such dependencies
and lead to the improved performance and robustness of the
tracker. To summarize, the main novelties of our method
include

« a new formulation of the online deformable object track-
ing problem as the dense subgraph searching on the
structure-aware hyper-graph, which is efficiently solved
by the pairwise updating algorithm [27];

« a new deformable object tracking dataset, Deform-SOT
dataset, which consists of 50 challenging sequences with
full annotations to facilitate the evaluation of deformable
object tracking algorithms;

« extensive experiments to demonstrate the effectiveness
and robustness of our method over the state-of-the-art
online deformable object trackers.

The rest of the paper is organized as follows. In Section II,
we review relevant previous works. Section III describes our
tracking method in detail, and Section IV presents experimen-
tal results. Section V concludes the paper with discussions on
future works.

II. RELATED WORKS

In this section, we review the most relevant works regarding
online tracking methods and available datasets for evaluating
tracking methods.

A. Online Object Tracking Review

1) Bounding Box Based Tracker: The majority of existing
online tracking methods are based on locating the bounding
box of the target (e.g., [18], [22], [26], [42]), and rely on
models of appearance variations of the target in the bounding
box (e.g., [11], [29], [32], [50]). More recently, several algo-
rithms [12], [16], [41], [46], [48] also exploit contextual infor-
mation in order to increase tracking robustness. For instance,
Yang et al. [46] integrate multiple automatically discovered
auxiliary objects, which are the items that are frequently
co-occurrent with the target, into tracking process by frequent
item mining to improve the tracking performance. The method
presented in [16] uses the general Hough Transform to learn
the supporting model, i.e., several informative features used
to help predict the position of the target. Dinh et al. [12]
extract local regions and key points consistently co-occur
with the target to verify the genuine one. Wen et al. [41]
present a spatio-temporal context model to exploit local rela-
tions between the target and nearest background objects to
improve the tracking performance. Zhang et al. [48] formulate
the spatio-temporal relations between a target and its local
context based on Bayesian framework, to capture the statistical
correlation among pixel intensities and positions from the
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target and its surrounding background. Although bounding
boxes provide accurate locations of the target in some cases,
they are insufficient for accurate tracking non-rigid objects that
undergo drastic deformation and severe occlusion.

2) Part Based Tracker: To alleviate the difficulties posed
by object deformation and occlusion, in recent years
there have also been many works on part-based trackers,!
e.g., [2], [8], [9], [39], [47]. Adam et al. [2] segment the
target into horizontal and vertical patches to describe the
appearance of the target and show this strategy can improve
the performance in handling partial occlusion challenge.
Yao et al. [47] train an online latent structured SVM to predict
the location of parts, which employ both a global object
box and a small number of part boxes to approximate the
deformable target for robustness. Similarly, a discriminative
learning method is presented in [39] to infer the position,
shape and size of each part, using the Metropolis-Hastings
algorithm integrated with an online SVM. A dynamic structure
graph based tracker is used in [8] to formulate the tracking
problem as graph matching between the geometric structure
graph of the target and that of the candidate target proposals
graph. Cehovin et al. [9] propose a novel coupled-layer visual
model that combines the target’s global and local appearance
to handle tracking objects which undergo rapid and significant
appearance change. However, existing part based models give
less consideration to motion coherence of target parts in
multiple consecutive frames, which is demonstrated as an
important cue to help tracking.

3) Segmentation Based Tracker: Many recent tracking
algorithms directly segment out the foreground tracking target,
which are more precise than only the location and size infor-
mation provided by the bounding boxes. Given the initial fore-
ground segmentation, Godec et al. [15] present a patch-based
Hough forest algorithm to complete the tracking task. In [13],
a pixel-based tracking method is presented for non-rigid object
tracking problem, which consists of two components: a gen-
eralized Hough Transform using a detector with pixel based
descriptors and a probabilistic segmentation method based on
a global model for foreground and background. Moreover
in [10], a level set algorithm is employed to precisely segment
the target from the background to complete the non-rigid
object tracking task. Hong et al. [19] propose a hierarchical
appearance representation model for tracking, which exploits
shared information across multi-level quantization of an image
space, i.e., pixels, super-pixels and bounding boxes, by a
probabilistic graphical model. Wen et al. [43] propose a joint
online tracking and segmentation algorithm, which integrates
the multi-part tracking and segmentation into a unified energy
optimization framework.

B. Object Tracking Dataset Review

To date, there exists only a handful of datasets used for
the evaluation of online deformable object tracking methods.
Wu et al. [45] present a tracking benchmark for online object
tracking task, and part of sequences include human or face

IThe “part” means the local region of the target with similar attributes
such as appearance, motion, etc. Usually we extract parts by grid rectangles,
super-pixels, and even pixels.
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targets with moderate deformation. Kristan er al. [37] host a
competition and present a novel tracking evaluation strategy to
rank the performance of the tracker in 25 sequences. In [36],
a RGB-D tracking dataset is presented, where reliable depth
information of objects is obtained by depth sensors.
Felsberg et al. [14] propose a thermal object tracking bench-
mark, where the sequences are collected from seven different
sources using eight different types of sensors. Li et al. [24]
describe a large dataset, but most of their sequences focus on
person and face tracking. The existing datasets contain a large
portion of rigid objects or moderately deformable objects such
as person and face. In contrast, we collect a dataset including
50 challenging sequences with full manual annotations, which
focuses on online deformable object tracking in unconstrained
environments.

III. METHODOLOGY

In this section we describe in detail our tracking method, the
overall procedure of which is presented in Fig. 2. As described
in Section I, our method processes multiple consecutive frames
(defined as frame buffer, see Fig. 2(a)) at a time to incorporate
the higher-order structural dependencies of the target. This is
the major difference between our method and most existing
methods, e.g., [8], [16], [18], [30], [41], [46]-[48], that con-
sider only two consecutive frames.

We first segment each frame into super-pixels, and collect
candidate parts in each frame of a frame buffer by the
MRF based segmentation method, shown in Fig. 2(b). After
that, we construct a structure-aware hyper-graph, whose nodes
correspond to the candidate parts in a frame buffer and hyper-
edges correspond to the higher-order dependencies among the
parts (see Fig. 2(c)). We then group super-pixels into sub-
graphs with appearance and motion-consistent target parts cor-
responding to the object across multiple frames (see Fig. 2(d)).
Assembling all parts belonging to the target, we find the
precise location and boundary of the target (see Fig. 2(e)) and
output the location of the target (see Fig. 2(f)). These steps
are also summarized in Algorithm 1.

A. Extracting Candidate Parts

To accommodate the online nature of the tracking algorithm,
we use a frame buffer to predict the location, appearance and
boundary of the target.” Similar to [8], we first apply the SLIC
algorithm [1] to segment each frame in the frame buffer into
super-pixels.> We then form the energy function to generate
candidate parts as

E@Q =YDyt + D Vpglp.ly),
peP (p,g9)eN

with regards to the labeling £ of the super-pixel set P, in the
current frame. D, ({,) is the unary energy corresponding to
likelihood of super-pixel p belonging to foreground (£, = 1)

ey

2Let the frame buffer include 7 frames to be processed at a time. When
the latest frame index ¢ such that + < v, we make v — ¢ 4+ 1 copies of the
earliest frame of the frame buffer. For example, when we track the target in
Frame #3, and v = 5, we collect the frame buffer by copying 3 times of
Frame #1 firstly and concatenating Frame #2 and Frame #3 subsequently.

3The SLIC super-pixel representation is calculated by the vlfeat toolbox in
http://www.vlfeat.org/.
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Fig. 2.

The overall tracking procedure of the proposed method. (a) Frame buffer consists of several consecutive frames in the video. The green rectangle

represents the searching window. (b) Candidate parts are extracted by the MRF based segmentation method to construct the structure-aware hyper-graph.
(c) Based on the pairwise updating algorithm [27], the dense subgraphs involving appearance and motion-consistent parts are exploited. The nodes in the

subgraph are assigned with the same color. (d) The nodes in the hyper-graph are connected to form dense subgraphs (e.g., y1, - -

, 74), described by curved

surfaces marked with similar color. To improve the clarity, we illustrate only partial dense subgraphs. (e) From the confidence map determined by exploited
dense subgraphs, the optimal target state is estimated by the coarse-to-fine strategy strategy (explained in Section III-D). The green and red rectangle represent
sampled and optimal target state, respectively. (f) The output from the algorithm is the target location. Best viewed in color.

Algorithm 1 Structure-Aware Tracker

Input: A tracking video sequence and the manually labeled bound-
ing box in the first frame
Output: The target state in each frame {o*,s*}

1: while Load the current frame buffer. do

2:  Over-segment the images in the current frame buffer into a
super-pixel set P.

3:  Extract candidate parts {p|¢, = 1} by the appearance model
with (1).

4:  Construct a structure-aware hyper-graph G =
with (6).

5. Calculate the corresponding appearance and motion weights
W(e) with (7) (8) (9).

6:  Search dense subgraphs I' from the structure-aware hyper-
graph G with (11).

7:  Determine the set of appearance and motion-consistent target
parts from dense subgraphs I'* without conflicts in Sec-
tion III-C.

8:  Determine the optimal target state {o*, s} via coarse-to-fine
strategy with (13) (14).

9:  Update the structure-aware hyper-graph and appearance model
(i.e., discriminative SVM classifier and generative HSV his-
togram) in Section III-E.

10: end while

v, E,W)

or background (£, = 0). V, ,(£p, ;) is the binary energy
encoding the consistency between pairs of spatially neighbor-
ing super-pixels, which encourages the target to be a collection
of connected parts with similar appearance. N is the spatial
neighborhoods of super-pixels: two super-pixels p and ¢ are in
N if the Euclidean distance between their centers in the image
plane satisfies, i.e., ||[d(p) — d(g)ll2 < 24/k. kK = W - H/p
is the number of pixels in each super-pixel, where p is the
number of super-pixels in the searching window with width W
and height H. The energy function (1) is minimized with the
graph cut algorithm [5], leading to a coarse labeling of each
super-pixel as belonging to the target and the background.
1) Unary Energy: We define the unary energy D,({,) as

Dy(€p) =21-0,(,) +¥,(Lp), (2)

where 11 controls the influence of generative term © ,(€,) and
discriminative term ¥,(¢,). The two terms are employed to
support each other and model appearance for more robustness,
which are further defined as follows.

« Generative term:

1
—— XL log(Hy(e) +¢) =1,
©p(lp) = it n
—— 2 il log(Hp(ci) +¢) €, =0,
p

3)

where ¢; corresponds to the HSV bin value of pixel i,
and n, the number of pixels in super-pixel p. H(c;)
and Hp(c;) are the probability of ¢; from the normalized
foreground and background histograms, respectively.
¢ = 0.0001 is added to avoid taking logarithm of zeros.
We use 16 bins for HSV histograms for each channel.

« Discriminative term:

w(C,) = lr-S(p)  S(p)=0,¢,=0, @
s s <06, =1
S(p) S(p) <0,¢, =0,

S(p) = a - ¢(p) + n is the SVM classification score
of super-pixel p belonging to the target, where d is the
normal vector to the hyperplane and # controls the offset
of the hyperplane from the origin along the normal vector.
@ (p) is the HSV color feature extracted from super-pixel
p with 6 bins for each channel. 1, controls the sensitivity
of the classification score.

The generative HSV histogram and discriminative
SVM classifier [35] are initialized based on the manually
annotated ground-truth provided in the first frame. Specifically,
the positive samples are selected in the target bounding box,
while the samples outside the box are considered as negative
ones. The only difference of two terms in initialization is
that HSV histogram accumulates pixels while SVM classifier
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collects super-pixels. They are incrementally updated every
fixed number of frames, which is explained in Section III-E.

2) Binary Energy: We define the binary energy V,, (£, {4)
by calculating the similarities of super-pixels in appearance
and motion, as

Vog(p, g) =1, #£4)

where I(-) = 1 if its argument is true, and O otherwise, and
A3 balances the influence of appearance and motion cues.
Ac(p. @) = llep—cqlla and Ay(p, q) = llup—ug|2 correspond
to the Euclidean distance between the average values of pixels
of two spatial neighboring parts p and g in the RGB color
space ¢ and optical flow field u,* respectively.

B. Structure-Aware Hyper-Graph

Given the collected candidate parts, we construct the
structure-aware hyper-graph G = (V, &, W) encoding the
dependencies among candidate parts. Specifically, each node
in the node set V corresponds to a candidate part, and each
hyper-edge in £ represents the relations among the nodes, i.e.,

V={vi}={plVpeP,l{, =1}
& ={elVvj,vj e, t; #1j,|dv;) —d@))]2 < &}

where v; and v; are the i-th and j-th nodes, #; and ¢; are the
frame index of the i-th and j-th nodes. e = (v1, -+ ,vy) is a
hyper-edge enclosing a subset of nodes, and m is the order of
the hyper-edge and fixed for all hyper-edges, e.g., m = 3 in
this work. ||d(v;) —d(v;)ll2 is the Euclidean distance between
the center of »; and v; in the image plane, and the spatial
distance threshold is set as ¢ = 25 pixels in the subsequent
experiment.

Each hyper-edge e in G is associated with the weight WW(e),

Le.,

Vi,V €, <I;

Wie) = % : A4 Waw (i, Dj) + A5 ymw(e), (7)
where v, (v, ;) is the appearance weight between v; and v,
and w,,, (e) is the motion weight of parts coupled in e, and
A4 and As are the balance factors reflecting the contributions
of the two weight terms.

1) Appearance Weight: The appearance weight is computed

from HSV color features of v; and v, as

®)

where X2(-,-) is the chi-square distance of features of two
nodes, and o, controls the sensitivity of the appearance term.

2) Motion Weight: The motion weight among nodes cou-
pled in the hyper-edge provides an important cue for grouping
nodes into subgraphs. Based on the assumption that target parts
move smoothly in a short time interval, we compute motion
weight based on fitting their motions using a simple linear
model. Specifically, for each hyper-edge e, the parameters of
the linear model {A, é} are determined based on every node
in e by least squares fitting, i.e., C = A-t + é where ¢ is the
frame index of the node. The motion affinity is then computed

Waw(vi» vj) = exp(_Xz(vl9 vj)/o-azw)9

4The optical flow is calculated by the method in [7].
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as the Euclidean distance of the center of each node in e to
their predictions based on the fitted linear model, as

vmw(e) = exp(— > IC(t) — dw)l13/02,).

vice

©)

where d(v;) is center of node v;, C(f;) is the position of the
projection of node v; in frame #; on the linear model, and oy,
controls the sensitivity of the deviation to the fitted model.

C. Searching Dense Subgraphs

After constructing the hyper-graph, we search the dense
subgraphs on it to determine the state of each target part.
We call a subgraph of G “dense” if its nodes are inter-
connected by a large set of hyper-edges with high weights.
First of all, we calculate the summation of the weights of
hyper-edges in a subgraph as

Z Wiy, -

0], ,0mEV

w(y) = (10)

m
s Om) H Yo

i=1
where y = {y,,, - s Yoy} 18 an [V] x 1 indicator vector of
subgraph y, ie., if v; € y, y,; = 1; otherwise, y,, = 0.
In other words, the weight of hyper-edge e contributes to
o(¥) only if nodes v1,---,v, composing it belong to y,
ie., [172) yo; = 1. |V| is the cardinality. k-subgraph includes
k nodes, i.e., Zl.zll Yo; = k, which can be inferred auto-
matically. Since w(y) reflects the strength of overall internal
relations in subgraph y, we use it as a criterion to detect a
dense subgraph.

To extract such dense subgraphs fully, we set each
node v in the hyper-graph as the starting node to search its
neighborhood A (v). That is to say, we aim to find a subset
of M(v) with k — 1 nodes such that they jointly lead to
a k-subgraph that has large weight of all hyper-edges.
To describe different cardinality of subgraphs, it is more
appropriate to use the average weights to reflect the confidence
of the subgraph than the sum weights. Since there are k™
summands in (10), w(X) = kimcu(i) is the average of these
entries. Combined with (10), the dense subgraph searching
problem for the starting node v is formulated as

m
argmax Z We(e) H Xo;s

Xo; :v;evUN(u)eEu(D) i=1

X* = argmax w(X) =
X
VI 1
s.t. Zl:xw =1, Vo v UN():x, € {0, E}’
=

k>m,

(1)

where U (v) is the hyper-edge set corresponding to the node
set v U N (v). The indicator vector X = % is constrained by
> xv; = 1 because of >, y,, = k. Moreover, each coordinate
of X is either 0 or % To avoid the degeneracy problem, the
number of nodes in the subgraph is larger than or equal to the
order of the hyper-graph, i.e., k > m.

The discrete optimization problem in (11) is a known
NP-hard problem. To obtain a solution, we relax the dis-
crete constraint x,, € {0, %} to its continuous counterpart
xy; € [0, %], and thus convert the problem into a continuous

one. A practical and efficient solution based on pairwise
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updating is given in [27]. After solving the optimization
problem, we can determine subgraph y and corresponding
confidence w w.r.t. x* for the starting node v as

y (%) = {vilv; € V, x5 > 0},
o(x*) = ZUiEV (x*),eeld (v) Wi(e) H;n:1 X:i s

Since we conduct subgraph searching based on each node
in the hyper-graph, one node may appear in multiple sub-
graphs. Similar to [44], we filter out the conflicts involved
in subgraphs. We first produce an ordered subgraphs set
I' = {y1,---, v} according to the confidence values in
descending order. Let the set of subgraphs without conflicts
be I'*. We set I'* = ¢ at first and add the sorted dense
subgraphs sequentially. Then, for each non-empty subgraph
yi € I',yi # (), we check whether it intersects with all
members in T'*. If y; N y;‘ = 0, V), yj’.k e I'*, we add it
directly to IT'*, ie., I'* < I'* U {y;}; otherwise, we remove
the overlapping part from y; and then add it to T'*, ie.,
Pi <~ vi/7;>¥i,y; € I and ' « T" U {7:}. Thus target
parts can be extracted from such dense subgraphs in T'*.

12)

D. Estimating Target State

Given target parts from I'*, we can infer the optimal target
state, including center p* and scale s* of the target in two
phases similar to the coarse-to-fine strategy used in [8].

In the first phase, we estimate an initial target state {9;, §;} in
each frame ¢ of the frame buffer. The initial scale in the current
frame is given by the optimal scale in the previous frame,
ie., S = s;_,. For more clarity, we omit the frame index ¢
in the following equations. The initial center is obtained by
calculating the weighted mean of the part center d(v;) in
y*eTl™ ie.,

~ Wy;
0= di)  =———,
Z l ZU;ey*lei

where w,, is the confidence value of subgraph y* including
target part v;, i.e., if v; € y*, w0, = w(y ™).

In the second phase, we adjust the target center and scale
with the perturbation term J for a better location such that
the tracking bounding box covers more foreground regions.
Specifically, we form the optimization problem as

{o*,s*} = argmax {/16 : ﬁtp(Q» s)+ ﬁcp(Q» s) — ﬁbp(Q» s)},
0.5
s=58+9, 0e[-¢ ], (14)

13)

viEY*

st.o=0+9,

where f;,(0, s) and Bcp(p, s) are the number of pixels in the
target parts and other candidate parts within the bounding box
centered at o with scale s, respectively. By, (0, 5) is the number
of pixels located outside the box that a target part covers. g is
a balance factor to boost the influence of the pixels in the
target parts. ¢ is set as the mean diameter of super-pixels to
determine the range of the perturbation term.

As shown in Fig. 2(e), the optimal target state {p*,s*}
is obtained by optimizing (14) using a sampling strategy.
In practice, we generate 1000 candidate states around the
initial target state {p,S§}. The center is sampled uniformly
in the range [0 — ¢, 0 + ¢] and the scale (including width
and height) is sampled uniformly in the range [§ — ¢, § + ¢].
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Then we select the state with the maximal score in (14) as the
optimal one.

E. Online Updating

Online updating is an important step to prevent drifting
problem for online tracking. For better efficiency, the frame
buffer is implemented as a queue. As illustrated in Fig. 2(a),
we add the head frame (EnQueue) and drop the tail frame
(DeQueue) to collect a new frame buffer. Then the structure-
aware hyper-graph is updated by extracting candidate parts in
the new frame buffer.

Moreover, because of possible significant change of target
appearance, we update the appearance model (i.e., SVM
classifier and HSV histogram) in (2) after a fixed number of
incoming frames. The target parts (i.e., nodes from dense sub-
graphs) in the target bounding box are used as positive training
samples, and other parts outside the target bounding box are
considered as negative ones. To reduce tracking drift caused
by outliers, data is collected from both the current frame buffer
and the first frame. Thus the foreground/background histogram
7:{’* (*x € {f, b}) at frame ¢ is updated incrementally from the
corresponding training samples, i.e.,

H =H + 5L B ifr >t
H = B4+ Bl ifl<r<zt (15)
HIT = 2], ift =1

where E! is the count of HSV bin values of training samples
at frame 7. Then the normalized version H! can be inferred
from H/, easily.

IV. EXPERIMENTS
A. Dataset

We collect 50 challenging video sequences that focus on
tracking totally deformable targets in unconstrained envi-
ronments, termed as the Deform-SOT dataset, to evaluate
online deformable object tracking methods. Of the 50 videos,
20 sequences have been used in previous works, e.g.,
avatar [8], carscale [45], and waterski [17], while the remain-
ing 30 sequences are collected by us from the Internet, such
as bike, lola and uneven-bars. The range of video frames
is approximately from 100 frames to 1300 frames and all
frames are annotated with bounding boxes. In Fig. 3, we show
annotations in the first frame of the dataset. The collected
sequences are diverse with respect to object categories, camera
viewpoints, sequence lengths and challenging levels. Different
from 11 attributes for general object tracking in [45], our
dataset includes videos reflecting typical challenges in track-
ing, as described below:

« large deformation. The non-rigid target occurs with local

structural or significant deformation in shape.

« severe occlusion. The target is partially or fully occluded
by other objects or background.

« abnormal movement. The target moves abnormally,
including fast motion, in-plane and out-of-plane rotation
and other complex motions, etc.

o illumination variation. The illumination in the target
region is moderately to significantly changed.
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Fig. 3. The annotated target location in the first frame from the Deform-SOT dataset. The first two rows correspond to videos that have been used in previous
works and the last three rows are new videos we collected from the Internet. Best viewed in color.

TABLE 1

THE Deform-SOT DATASET. THE NEWLY COLLECTED SEQUENCES ARE NAMED WITH BOLD FONT,
AND THE OTHER ONES ARE USED IN PREVIOUS WORKS

| Main Challenges |

Tracking Sequences |

Large Deformation
(22 sequences)

avatar[8], backkom, boarding, bolt[38], dancer[30], diving[23], eagle, gymnastics[23], fighters football[33], horse, jump[45],
kwan([33], lipinski[17], neymar[8], pole-dance, trampoline, transformer(23], uneven-bars, up[8], waterski [17], yunakim[17]

Severe Occlusion
(20 sequences)

aquaplane, avatar[8), bluecar(8], boarding, carscale[45], driftl, drift2, flying, football[33], horse, larva, lemming[34], lola,
neymar[8], roboonel, roboone2, robotGoogle, run, trampoline, transformer[23]

Abnormal Movement

(26 sequences) waterski[17], yunakim[17]

airbattle, avatar[8], backkom, bike, bluecar|[8], boarding, circle, cliff-dive[13], diving[23], driftl, drift2, fighters, game,
helicopter, horsemanship, larva, lipinski[17], mario, RCPlanel, RCPlane2, suneo, torus(9], trampoline, uneven-bars,

Illumination Variation

(17 sequences) robotGoogle, transformer[23], trellis[45], up[8]

airbattle, bike, carcorder, circle, driftl, drift2, eagle, flying, game, helicopter, lemming[34], RCPlanel, RCPlane2,

Scale Change
(22 sequences)

avatar[8], aquaplane, carcorder, carscale[45), circle, driftl, drift2, eagle, helicopter, horse, horsemanship, jump[45], lola,
mario, monkey, transformer(23], RCPlanel, RCPlane2, robotGoogle suneo, waterski[17], yunakim[17]

Background Clutter
(15 sequences)

trellis[45], up[8]

airbattle, carcorder, driftl, drift2, eagle, football[33], fighters, horsemanship, larva, mario, RCPlanel, RCPlane2, run,

« scale change. The scale of the target changes drastically.
« background clutter. The background near the target has
the similar appearance as the target.
A detailed break-down descriptions of the dataset are given
in Table 1.

B. Implementation Details

The proposed structure-aware tracker is implemented with
MATLAB and C and runs at 0.5 frames per second (FPS),
on a machine with a 2.9 GHz Intel i7 processor and
16 GB memory.’

The parameters in our algorithm are chosen empirically by
making grid search of one parameter over a range of values
while keep other ones fixed, and all of them are fixed in the
experiments as follows. The frame buffer consists of 7 = 5
consecutive frames. For the searching window, we search the

5We make the source code of our tracker and the Deform-SOT dataset
available on our website: https:/sites.google.com/site/daviddo0323/.

target location in the current frame by 2.5 times size of the
previous one. For the SLIC method used to generate the
candidate parts, the number of pixels in each super-pixel is
set as k = 100, and the range of number of super-pixels is
set as [100, 200]. For the update process, the generative HSV
histogram in (3) is updated every frame, and the discriminative
SVM classifier in (4) is updated every 3 frames. In the energy
function (1), we take the following default values: 1; = 0.9,
Ay = 15, and A3 = 0.5. The balance factors in the weight
calculation in (7) are 14 = 1.0 and A5 = 2.0. We set aazw =2
in (8), and anzm = 16 in (9). In (14), the term i¢ = 3.0.
The impact of some important parameters in our method are
analyzed and discussed in Section I'V-E.

C. Experiment Setup

We evaluate the proposed method against 19 state-of-the-
art trackers, as described in Table II, on the Deform-SOT
dataset. For fair comparison, we use the same initial bounding
box of the first frame of each sequence for all trackers.
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TABLE 11
THE COMPARED STATE-OF-THE-ART TRACKERS IN THE EXPERIMENT

| Main Strategies

Tracking Methods

bounding box
based methods
(8 trackers)

Incremental Visual Tracker (IVT [26]), £1 tracker (L1T [29]), Tracking-Learning-Detection tracker (TLD [21]),
Multiple Instance Learning tracker (MIL [4]), Structured output tracker (Struck [18]), Compressive Tracker (CT [49]),
Multi-Task sparse learning Tracker (MTT [50]), Spatio-Temporal structural context Tracker (STT [40]),
Spatio-Temporal Context tracker (STC [48]), Color Name tracker (CN [11])

part based methods
(11 trackers)

Fragment tracker (Frag [2]), Super-Pixel Tracker (SPT [38]), Sparsity-based Collaborative Model based tracker (SCM [51]),
Locally Orderless Tracker (LOT [31]), Adaptive Structural Local sparse Appearance model based tracker (ASLA [20]),
Latent Structural Learning tracker (LSL [47]), Local and Global Tracker (LGT [9]), Dynamic Graph Tracker (DGT [8]),
Temporally Coherent Part based tracker (our prior work TCP [25])
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Fig. 4. 'The success and precision plots over the dataset using OPE, SRE and TRE. The representative scores for each tracker are reported in the legends.

Best viewed in color.

The experimental results of other trackers are reproduced from
the available source codes with recommended parameters.
Then we use two popular measures, precision plot and success
plot, to compare performances. We choose these two measures
because they contain more comprehensive information than
the other metrics such as Center Location Error (CLE) and
Success Rate (SR). The precision plot shows the percentage
of successfully tracked frames vs. the center location error in
pixels, which ranks the trackers as precision score at 20 pixels.
The success plot draws the percentage of successfully tracked
frames vs. the bounding box overlap threshold, where Area
Under the Curve (AUC) is used as success score for ranking.
Specifically, we run the One-Pass Evaluation (OPE), Spatial
Robustness Evaluation (SRE) and Temporal Robustness Eval-
uation (TRE) (see definitions in [45]) on the dataset.

D. Quantitative Evaluation

As shown in Fig. 4, the precision plot and success plot
for the overall dataset indicate that our method performs
against other 19 state-of-the-art ones. We further present the
experimental results in Fig. 5 for each challenging scenario.

In addition, visual comparison results of the top five perform-
ing methods on several sequences are displayed in Fig. 6.
To aid in the discussion of evaluation, we group evalu-
ated sequences based on 6 challenging factors and discuss
the capabilities of all evaluated trackers under each factor
subsequently.

1) Large Deformation: For the sequences with only local
structural deformation (e.g., neymar and up), bounding box
based tracking method (e.g., [11], [18], [48]) can work well.
However, for the sequences with rapid large deformation
(e.g., avatar, and transformer), the large changes to the
target appearances may render the bounding box based tracker
ineffective. On the other hand, on these sequences, the part
based trackers (e.g., [8], [9], [38]) usually show better and
more robust performance (see Fig. 6 for visual examples).
This is mainly due to the fact that part based trackers using
local (part-based) appearance model that can better adapt to
target appearance changes during deformation. Compared with
the previous part based trackers [2], [20], [38], [51], our
tracker achieves better performance, due to the incorporation
of temporal higher-order dependencies among target parts.
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2) Severe Occlusion: Mild to severe occlusions occur in
sequences such as bluecar, neymar and lola, etc. Tracking
methods usually use built-in mechanism to deal with occlu-
sions, but some of them do not perform well in sequences
involved with other challenges, such as large deformation
and abnormal movement. When partial occlusion occurs, our
tracker will reduce to the non-occluded target parts (e.g., tram-
poline #120). However, our tracker is able to continue tracking
the target after occlusion, as long as sufficient candidate
parts are extracted. The extracted candidate parts facilitates
recovering the right size of the target throughout the tracking
process gradually. For example, as shown in Fig. 6, there exists
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The plots of OPE with different attributes. Best viewed in color.

a smaller bounding box due to an occlusion in bluecar #012
and #277 compared to the fixed-size tracker [11]. But after the
occlusion, the bounding box of our tracker re-approaches the
right size of the target while other trackers fail to handle
the scale change in bluecar #372.

3) Abnormal Movement: The sequences in our dataset
exhibit several types of abnormal movements, such as fast
motion like jumping and diving (avatar and up), in-plane
and out-of-plane rotation (drift2 and waterski) and complex
motion (uneven-bars and trampoline). Many existing trackers
lose the target when such abnormal movements occur as
shown in Fig. 6. Similarly, most trackers become unstable for
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Tracking results of top five performing methods in representative frames of a few example videos in our dataset. The name of sequences and the

index of frames are shown in the top left of each figure. More results and visual comparisons can be found in http://youtu.be/NgN1u8z48bo.

complex motions involving combination of different types of
abnormal movements such as spinning in diving and flipping
in air in trampoline. The results in Fig. 5(c)(i) indicate that
DGT [8] and our tracker perform much better than the other
trackers on such challenging sequences. That is due to the
fact that both methods benefit from coarse candidate parts
generation by the MRF based segmentation method. Moreover,
the dense subgraphs searching method filters out more noisy
parts to resist the performance degradation caused by abnormal
movement.

4) Illumination Variation: Target appearance is strongly
affected by illumination variation. The tracking results of up
and trellis in Fig. 6 show that frequent illumination variation
causes some trackers to fail or not locate well. It is worth
mentioning that CN [11] extracts complex color features
combined with luminance from the target instead of simple

color histogram, which underlies its favorable performance
with regards to illumination variation. However, CN [11] with
fixed-size bounding box performs poorly undergoing other
challenges (e.g., large deformation and scale change) simulta-
neously. On the other hand, DGT [8] and our tracker use an
online updating mechanism for the appearance model, making
them resistant to illumination variation. Furthermore, both
trackers use the appearance-free information (the geometric
structure in DGT [8] and the motion coherence in our tracker)
to assist tracking. Considering multiple frames in a frame
buffer, the higher-order dependencies in our tracker help in
associating the reliable spatio-temporal target parts with severe
illumination variation, as shown in Fig. 5(d)(j).

5) Scale Change: Sequences such as carscale, and
transformer contain significant scale change of the target.
Similar as handling the large deformation challenge, part based
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trackers [8], [9], [20] have more flexibility to handle changes
of target scale, compared to other trackers assuming fixed
size of the target [18], [47], [49]. However, some part based
trackers [8], [20] employ strict geometric structural constraint,
resulting in limiting the performance in the sequences with
large scale change; while our method focuses on temporal
coherence of target parts to extract the change of the whole
target. The results in Fig. 5(e)(k) indicate our tracker achieves
better performance, and examples showing difference in track-
ing results over sequences with the sizes of target undergoing
large scale change, e.g., lola and avatar, are given in Fig. 6.

6) Background Clutter: Many sequences in our dataset
have backgrounds with similar appearance as the target,
e.g., drift2, trellis, and up, which can seriously impact tracking
performance. This is alleviated by considering the context
around each target, e.g., [40], [48], or part based representation
with structural constraints, e.g., [8], [9], [20]. Since back-
ground and the target with similar appearance usually have
inconsistent motion, the temporal higher-order dependencies
of parts can distinguish them based on the determined main
motion direction of target parts. As shown in Fig. 5(f)(i),
our method shows favorably tracking performance compared
to other methods on the sequences with strong background
clutter.

E. Discussion and Analysis

We perform analyses on the effect of several important
parameters in our method to the final tracking performance.
Specifically, we study the influence of parameters including
the length of frame buffer 7, the number of pixels in each
super-pixel x, the balance factor 1; in (2) and the balance
factor 45 in (7). Besides, we justify the color spaces employed
in our algorithm. For simplicity, the evaluations are performed
on 15 sequences selected from the dataset with different kinds
of challenges.

1) Frame Buffer: The length of frame buffer is an impor-
tant parameter describing the number of frames integrated
in constructing the structure-aware hyper-graph. We consider
different values of the length of frame buffer, denoted as
SATfb-7. As shown in Fig. 7(a), SATfb-5 with a relatively
longer length of frame buffer in general leads to better
performance, which integrates more spatio-temporal context
information for the target. However the computation com-
plexity will increase with increased frame buffer. Moreover,
the longer frame buffer may contain noisy frames to bring a
slight decrease in performance for sequences with fast change

in target appearance or background illumination. Stated thus,
we set 7 = 5 in our method.

2) Higher-Order Dependencies: In Fig. 7(a), we report the
performance of SATor-2 considering just pairwise relations,
which brings a big accuracy loss compared to SATfb-z con-
sidering higher-order dependencies. It indicates the importance
and effectiveness of our hyper-graph representation in the
tracking task.

3) Super-Pixels: The number of super-pixels controls the
number of parts (i.e., the number of nodes in the hyper-graph).
As shown in Fig. 7(b), the number of pixels in each super-
pixel x (defined in Section III-A) is numerated in our model,
denoted as SATsp-«x. If the number of pixels in each super-
pixel is too large (i.e., SATsp-250), it is hard to extract precise
motion coherence among relative large size of parts by (9).
On the other hand, if it is too small (i.e., SATsp-60), the
large number of parts considerably increases the computation
complexity and slightly improves the performance. We observe
that the performance is not so sensitive when the number of
pixels in each super-pixel is small (e.g., ¥ < 100). Considering
the tradeoff of performance and running speed, we set x = 100
in our algorithm.

4) Generative Term: Different from our previous work [25],
this work improves the candidate parts generation step by
incorporating a generative HSV histogram using the MRF
based segmentation method. As shown in Fig. 7(c), we con-
sider different balance factor of generative term A; in (2),
i.e., SATgt-11. If it is underrated or overrated, the generated
candidate parts will miss true target parts or introduce more
background parts, both negatively affect the performance.
On the contrary, appropriate values (e.g., SATgt-0.9 and
SATgt-1.0) lead to better performance so that we set 1} = 0.9
in the model.

5) Motion Weight: The balance factor As represents the
importance of motion coherence considered in our model.
Here we consider different values of As, ie., SATmw-As.
As shown in Fig. 7(d), SATmw-2.0 gives the best perfor-
mance. It indicates that too small or too large balance factor
will degrade the tracking results. Consequently our reported
experimental results are obtained with the empirically optimal
value 15 = 2.0. Besides, we report the performance of baseline
tracker SATaw-0.0 using only the motion weight (i.e., without
appearance weight), which is worse than SATmw-2.0. These
results show that motion weight plays a more important role in
our model for tracking performance than appearance weight.
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6) Color Space: Multiple color spaces (e.g., HSV, RGB)
are employed in the proposed method. We compare different
combinations of them, including unary and binary terms using
HSV and RGB color spaces, denoted as SAThsv-rgb, SAThsv-
hsv, SATrgb-rgb, and SATrgb-hsv.® SAThsv-rgb, i.e., unary
term using HSV and binary term using RGB, gives the
best performance among all the combinations in Fig. 7(e).
Therefore, we employ this combination in our method.

7) Optical Flow: The result in Fig. 7(e) indicates that the
tracker using only the color binary term (i.e., without optical
flow), SATno-flow, performs worse than the one considering
optical flow information, SAThsv-rgb. It demonstrates experi-
mentally that optical flow facilitates to exploit motion coher-
ence of local parts, leading to better tracking performance.

V. CONCLUSION

In this paper, we describe a structure-aware hyper-graph
based tracker. Our method formulates the tracking task as
the dense subgraph searching problem on the dynamically
constructed hyper-graph integrating the higher-order structural
dependencies in temporal domain. The optimal target state is
determined by extracting dense subgraphs using a coarse-to-
fine strategy. We demonstrate the effectiveness of our method
and compare its performance with that of state-of-the-art
online tracking methods on the Deform-SOT dataset.

There are a few directions we would like to further extend
the current work. First, in the current method, we only consider
temporal higher-order dependencies among the parts. As a
next step, we will also investigate incorporating spatial higher-
order dependencies among the parts. Considering both spatial
and temporal dependencies among parts is expected to further
improve tracking performance and robustness under deforma-
tion and occlusion. Another important issue is to develop a
more efficient algorithm to search dense subgraphs over a large
number of candidate parts with the higher-order hyper-graph
(m > 3). Good sampling scheme to select more reliable and
important hyper-edges from candidate parts can simplify the
construction and solution of the hyper-graph.
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