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Exploiting Hierarchical Dense Structures
on Hypergraphs for Multi-Object Tracking

Longyin Wen, Zhen Lei, Siwei Lyu, Stan Z. Li and Ming-Hsuan Yang

Abstract—Most multi-object tracking algorithms are developed within the tracking-by-detection framework that consider the pairwise
appearance similarities between detection responses or tracklets within a limited temporal window, and thus less effective in handling
long-term occlusions or distinguishing spatially close targets with similar appearance in crowded scenes. In this work, we propose an
algorithm that formulates the multi-object tracking task as one to exploit hierarchical dense structures on an undirected hypergraph
constructed based on tracklet affinity. The dense structures indicate a group of vertices that are inter-connected with a set of
hyperedges with high affinity values. The appearance and motion similarities among multiple tracklets across the spatio-temporal
domain are considered globally by exploiting high-order similarities rather than pairwise ones, thereby facilitating distinguish spatially
close targets with similar appearance. In addition, the hierarchical design of the optimization process helps the proposed tracking
algorithm handle long-term occlusions robustly. Extensive experiments on various challenging datasets of both multi-pedestrian and
multi-face tracking tasks, demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.

Index Terms—Multi-object tracking, tracklet, hierarchical, undirected affinity hypergraph, dense structures.
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1 INTRODUCTION

MULTI-TARGET tracking in unconstrained environ-
ments is an important and challenging problem with

numerous applications including video surveillance, activ-
ity analysis, and abnormal detection, to name a few. Re-
cent multi-object tracking algorithms have been developed
within the tracking-by-detection framework where targets
are usually detected by pre-trained object detectors or
background subtraction methods, and matched throughout
video sequences. Such approaches are attractive and effec-
tive for handling visual drifts and recovering from tracking
failure. Specifically, the task of correctly matching target
objects over time is known as the data association problem.
Although numerous methods have been proposed to tackle
the target association problem, less effort has been made
to exploit high-order information (i.e., beyond pairwise
relations between objects) contained among multiple objects
in the temporal domain.

Most existing multi-object tracking methods exploit sim-
ilarities between pairwise detection responses or tracklets
for data association (e.g., MCMC data association [1], [2],
[3], detection matching [4], [5], network flow [6], [7], [8],
[9], k-shortest path (KSP) [10], maximum weight indepen-
dent set [11], linear programming [12], tensor power itera-
tion [13], [14], and Hungarian algorithm [15], [4], [16], [17],
[18]), rather than among multiple tracklets in the temporal
domain within a global view. For example, when several
objects with similar appearance or motion patterns appear
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Fig. 1: (a) Existing methods often fail when multiple ob-
jects with similar appearance or motion patterns appear in
proximity. (b) The proposed tracking algorithm based on
an undirected affinity hypergraph effectively handles such
cases. The circles denote different tracklets and the colors
represent the corresponding appearance or motion patterns.
Existing methods, which focus on the pairwise similarities
of spatial-temporal neighboring tracklets in short and local
temporal span, are likely to generate incorrect trajectories
(blue splines). In contrast, the proposed algorithm searches
for dense structures on the affinity hypergraph of tracklets
which consider similarities among multiple tracklets across
the temporal domain (i.e., high-oder information), and gen-
erates correct trajectories (red splines).

in close proximity as denoted by the circles in Fig. 1, identity
switches are likely to occur. To alleviate this problem, a
method based on minimum clique graph optimization [19]
has been developed recently which considers the relation-
ships between different detections across the temporal do-
main. Dehghan et. al [20] pose the data association problem
as a generalized maximum multi-clique task and present
an integer program algorithm for multi-target tracking.
However, these two methods are less effective in handling
non-linear object motion in crowded scenes when occlusions
happen frequently, mainly due to only the pairwise relation-
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ships of the targets are considered.
In this paper, an undirected hierarchical affinity hyper-

graph based tracker (H2T) is proposed, which formulates
the tracking task as exploiting multiple dense structures on
a constructed tracklet affinity hypergraph as depicted in
Fig. 1(b). Different from existing methods, the similarities
(e.g., appearance or motion similarities) among tracklets
across the temporal domain are considered globally by con-
sidering the high-order connections and exploiting motion
constraints to distinguish spatially close target objects with
similar appearance. Meanwhile, a local-to-global strategy
is developed to generate target trajectories hierarchically,
which significantly reduces the computational complexity
in exploiting dense structures and handles large appearance
variations as well as sudden motion changes effectively. The
main contributions of this paper are summarized as follows:

• We propose a novel multi-object tracking algorithm
by exploiting dense structures from hierarchically
constructed undirected affinity hypergraphs of track-
lets.

• The motion and appearance patterns are analyzed in
the optimization process by considering high-order
similarities among multiple tracklets globally in the
constructed hypergraph.

• We use a RANSAC-style approach to convert the
hypergraph to an approximate common graph which
retains all the significant structures and facilitates
extraction of dense structures efficiently.

• We evaluate on both multi-pedestrian and multi-
face tracking tasks, and demonstrate the proposed
algorithm performs favorably against the state-of-
the-art methods, especially in crowded scenes.

2 RELATED WORK

We review the most relevant multi-object tracking methods
for generic objects and specifically for faces.

Multi-Object Tracking. Numerous approaches based on
Kalman or particle filters and detection results for state
prediction have been proposed in recent years [21], [22],
[23], [24], [25], [26], [27]. These methods typically predict
states effectively for short durations but do not perform
well in complex scenes. Data association approaches based
on the joint probabilistic data association filter (JPDAF) [28]
and multiple hypotheses tracking (MHT) [29] have been
developed to address these problems. The JPDAF method
estimates the best assignment at each time step by consider-
ing all possible associations between targets and detections.
In contrast to frame-by-frame predictions by the JPDAF
method, the MHT approach evaluates the likelihoods of
the hypothesized assignments over several time steps. Since
the search space grows exponentially with the number of
frames, both methods are less effective for handling long-
term association. To alleviate this issue, Yu et al. [2] present a
data driven Markov Chain Monte Carlo method to estimate
target trajectories using a batch of observations. However,
this sampling-based method entails proper settings of nu-
merous parameters that restricts its application domains.

Greedy approaches have been developed for multi-
object tracking [4], [5] in which detection results with similar

appearance and motion patterns are matched in multiple
consecutive frames. As limited temporal locality is used in
matching multiple objects, these methods do not perform
well in sequences with long-term occlusions, complex mo-
tions, or clutter backgrounds.

Recent algorithms consider associations of detection
pairs as an optimization task based on network flows [6],
[8], [30], [7], K-shortest paths (KSP) [10], maximum weight
independent sets [11], tensor power iterations [13], [14], lin-
ear programs [12], and high-order motion constraints [31],
[32]. Meanwhile, several methods have been developed in
which short tracklets are constructed using detections in
consecutive frames based on spatial-temporal proximity,
and connected to generate long trajectories. The tracklet
association problem has been posed as a continuous energy
minimization problem [33], or a discrete-continuous opti-
mization task [34] involving data association of the tracklets
and trajectory fitting. In addition, the tracklets assignment
problem has also been tackled by the hierarchical Hungarian
algorithm [15], [17], [18] to generate trajectories of target ob-
jects. By exploiting global information, the aforementioned
methods are more effective in dealing with partial occlu-
sions and complex motions. However, as only associations
of detection results in consecutive frames are considered,
these algorithms do not perform well when multiple similar
objects appear in proximity.

In [9], a directed graph is constructed to describe pair-
wise associations between candidate couplings, which are
constructed by the detections from different cameras at the
same time step. In contrast, we construct an undirected
hypergraph, in which each vertex represents one tracklet,
and the hyperedges are constituted by multiple tracklets
across the temporal domain. The optimization processes for
these two approaches are not similar since the hypergraph
construction and the objectives are significantly different.

Multi-Face Tracking. Robust multi-face tracking in un-
constrained surveillance scenes involves challenging fac-
tors (e.g., large pose and illumination changes) different
from generic multi-object tracking, and existing approaches
mainly focus on constructing robust appearance models.
Kim et al. [35] introduce visual constraints using a com-
bination of generative and discriminative models in the
particle filtering framework for specific face tracking. Wang
et al. [36] combine an offline trained generic face model and
an online appearance model specific to a target in a dynamic
Bayesian network. However, both methods do not handle
drift problems well when abrupt pose variations occur. Con-
sequently, methods based on active appearance models [37],
[38] have been developed to handle pose variations.

To better handle recovery from tracking failure, Kalal et
al. [39] propose an algorithm in which an offline trained de-
tector is used to localize frontal faces and an online trained
validation module is employed for matching the detected
results. Cai et al. [40] present a method that integrates
an offline detector, an online learned recognizer, and an
online learned face tracker for person-specific face tracking.
Both methods perform well when the goal is to track one
specific face, but fail to handle multiple faces in surveillance
scenarios.

Roth et al. [41] associate face detection responses from
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two stages using the Hungarian algorithm for multi-face
tracking. On the other hand, Duffner et al. [42] propose an
approach to address the tracklet management problem (i.e.,
deciding when to add a new target or stop a tracklet) within
a Bayesian filtering framework where the states are esti-
mated by a Markov Chain Monte Carlo sampling method.
More recently, an approach [43] that simultaneously clusters
and associates face tracklets (based on detection responses)
using a hidden Markov Random Field (MRF) model to rep-
resent the joint dependencies of cluster labels and tracklet
associations. This method focuses on multi-face tracking
in movie clips with relative fixed camera view angles in
indoor scenes. Although the aforementioned methods per-
form well in constrained indoor scenes, they are not effective
for unconstrained surveillance scenes which contain similar
targets with frequent occlusions.

3 ALGORITHMIC OVERVIEW

In this section, we give an overview of the proposed multi-
object tracking algorithm based on a hierarchical undirected
affinity hypergraph. The notations used in this paper are
listed in Table 1. After detection responses are obtained in
each frame, we construct an undirected affinity hypergraph
where the vertices are the tracklets (i.e., we treat each
detection response as a degenerated tracklet of unit length),
and the hyperedges describe the high-order relationships
among them. The affinity value of a hyperedge indicates the
probability of the tracklets corresponding to the hyperedge
associated with the same object.

The multi-object tracking problem is solved by extracting
dense structures on the constructed hypergraph of degree
k . As it is computationally expensive to operate directly
on a large number of hyperedges, we construct a Random
Consensus Hypergraph (RCH) in a way similar to [44] by
sampling reliable Minimal Size Samples (MSSs) which are
vertex sets of k−1 vertices. To further reduce computational
complexity, we convert a RCH to a common graph in which
the significant dense structures are retained. Consequently,
the underlying dense structures in a hypergraph can effi-
ciently be extracted on a common graph using the search
algorithm for searching dense neighborhoods on an affinity
graph [45]. We further process the extracted results resolve
conflicting dense structures, and then connect the tracklets
in each dense structure to generate target trajectories.

As it entails significant amount of run time and memory
to directly process all image frames, we propose a hierarchi-
cal approach for a multi-object tracking that consists of the
following main steps:
1. An image sequence is first divided into multiple non-

overlapping segments where each one consists of δ1
frames.

2. For each segment, an undirected hypergraph is con-
structed where the graph vertices correspond to the
tracklets. Dense structures on a graph are extracted to
generate longer tracklets. The tracklets in all segments
are processed in this manner.

3. Furthermore, temporally δl apart segments are merged
to generate a new segment division for the next layer.

The above step 2 and 3 are repeated until only one segment
remains in the last layer (i.e., the whole image sequence).

TABLE 1: Notation
δl Number of temporal adjacent segments in the l -th

layer used to generate the new segment division in
the l + 1-th layer.

k k is the degree of an edge
vi i-th vertex (tracklet) in the affinity hypergraph.
G Undirected affinity hypergraph, i.e. G = (V ,E).
V Vertex set of a hypergraph G , i.e. V = {v1, . . . , vn},

where n is the number of vertices.
E Hyperedge set of the hypergraph, i.e., E ⊂

k︷ ︸︸ ︷
V × · · · ×V .

e k-tuple vertices involved in a hyperedge, i.e., e =
{ve1 , . . . , vek}.

h i i-th minimal size samples involving k − 1 vertices.

Finally, dense structures are extracted on the constructed
hypergraph of the segment in the last layer to generate the
final target trajectories.

4 EXTRACTING DENSE STRUCTURES

The multi-object tracking problem is solved by exploiting
dense structures on an undirected affinity hypergraph. Here
a dense structure indicates a group of vertices that are
inter-connected by a set of hyperedges with high affinity
values. The core problem for extracting dense structures of
a tracklet on an undirected affinity hypergraph is to estimate
the number of vertices in each dense structure. This number
is treated as the hidden variable in the optimization process
and estimated by maximizing the affinity value of each
structure. Multiple dense structures can thus be extracted.

4.1 Problem Formulation
We denote the collection of detected tracklets in a segment
as {T1, · · · , Tn} and use ti = {ti1, · · · , tiri} to denote the set
of all frame indices of the corresponding tracklet Ti 1, where
ri is the length of tracklet Ti. In a segment, we construct
a global tracklet affinity hypergraph G = (V ,E ,A) to
describe the relationships among multiple tracklets, where
the i-th vertex vi ∈ V in the hypergraph corresponds to
the i-th tracklet Ti (i.e., vi ∼ Ti), i = 1, · · · , n, and E is

the hyperedge set, i.e., E = {e} ⊂
k︷ ︸︸ ︷

V × · · · ×V , where
e = {ve1 , · · · , vek} and k is the degree of the hyperedge
e . In one hypergraph, A : E → R is the affinity values
of hyperedges in E which reflects the probability of the
tracklets in e being associated with one tracked target. The
constructed affinity graph is a hypergraph when k > 2 and
degenerates to a common graph when k = 2.

In the multi-object tracking context, certain prior knowl-
edge can be exploited for better results, e.g., removing edges
between tracklets that are far apart even when they have
similar appearance. Thus, we construct a vertex constraint
function P indicating whether two vertices in G can belong
to the same hyperedge to guide the construction of hyper-
edges in E .

1. Note that our definition of tracklets generalizes cases for single
detection response (i.e., |ti| = 1) or continuous sequence of detection
responses (i.e., ti = {a − 1, a, · · · , b, b + 1} where a < b are two
integers).
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After constructing a graph G , we exploit the dense struc-
tures to determine the target trajectories. Intuitively, if some
vertices belong to a dense structure, they should be inter-
connected by a set of hyperedges with high affinity values.
Based on this aspect, for the vertex vp, we aim to determine
its dense structure N (vp), which has the maximum value
based on a predefined affinity measure function Γ(·) of the
vertex set:

N ∗(vp) = arg max
N (vp)

Γ
(
vp ∪N (vp)

)
s.t. N (vp) ⊂ V , vp /∈ N (vp), |N (vp)| = φ,

(1)

where φ represents the number of vertices in a dense
structure which can be inferred automatically. However, for
multi-object tracking in crowded scenes, it requires high
computational load as the number of hyperedges in G is
large. For example, suppose there are 40 vertices in G ,

and the degree k = 5, there exists
(

40
5

)
≈ 6.6 × 105

hyperedges. Nevertheless, when k = 2, G degenerates to
a common graph in which dense structures can be extracted
directly [46]. For computational efficiency, we approximate
a hypergraph G (k ≥ 3) with a common graph G? through
a RCH G ′ rather than traverses all the hyperedges of G
in [46]. The detail algorithm will be discussed in the follow-
ing sections.

4.2 Enforcing Hyperedge Constraints

In most multi-object tracking applications, the target objects
are assumed to move with a terminal velocity. We set the
maximal velocity of the tracked targets in a scene to α∗

based on prior knowledge of object velocity, and introduce
the vertex constraint function P to guide the construction
of hyperedges in G , i.e., P : V × V → {0, 1} is a function
indicating whether two vertices can be included in the same
hyperedge of G . Clearly, if the two vertices vi and vj overlap
in time, they cannot be associated with the same target since
a target cannot occupy two different positions at a time. We
set P(vi, vj) = 0 if that is the case. Thus, we only consider
the vertices with non-overlapping frame indices. Without
loss of generality, the vertex vi is assumed to precede vj
in the temporal domain. If the `2 distance between the
last frame of vi and the first frame of vj is larger than
the maximal distance the target object can reach with the
maximal velocity α∗ in the corresponding time lapse, we set
P(vi, vj) = 0 to indicate vi and vj cannot be associated with
one target, and otherwise P(vi, vj) = 1.

4.3 Constructing Random Consensus Hypergraph

To convert a hypergraph G to a common graph, we first
approximate it with a RCH G ′, which preserves important
dense structures. We gradually sample multiple hypothet-
ical MSSs {h1, . . . ,h i, . . .}, where the i-th sampled MSS
h i is a vertex set involving k − 1 vertices. To ensure all
important structures of a hypergraph are included in a RCH,
we traverse all hypergraph vertices to generate the hypo-
thetical MSSs. For the i-th vertex vi, we randomly select the
other k−2 vertices {vs1 , . . . , vsk−2

} satisfying the hyperedge
constraint P . That is, for each sj , P(vi, vsj ) = 1, and we
have the hypothetical MSS h i = {vi}∪{vs1 , . . . , vsk−2

}. The

hyperedge constraints of target objects are thus integrated
in the process of generating MSSs to remove unreliable
hyperedges introduced in a RCH. To further remove un-
reliable MSSs, we use three affinity functions to quantify the
hypothetical MSS h based on appearance affinity Ra(h),
motion affinity Rm(h), and smoothness affinity Rs(h). A
hypothetical MSS h is retained if the corresponding affinity
values are all above the predefined thresholds, θa, θm, and
θs.

We compute the confidence scores of all vertices for
each generated MSS to indicate the reliability of all vertices
and MSSs for constructing the hyperedges. The confidence
scores of h i are defined as

C(h i) = {C1(h i), . . . , Cn(h i)}. (2)

If the j-th vertex vj is included in h i (i.e., vj ∈ h i), we set
Cj(h i) = µ, where µ is the predefined confidence threshold.
Otherwise, we have

Cj(h i) = ω1 · Ra(v̄ i,j) + ω2 · Rm(v̄ i,j) + ω3 · Rs(v̄ i,j), (3)

where Ra(v̄ i,j), Rm(v̄ i,j), and Rs(v̄ i,j), are the appear-
ance, motion, and trajectory smoothness affinities of the
vertex set v̄ i,j = h i ∪ {vj}, and ω1, ω2, and ω3 are the
weight parameters such that

∑3
i=1 ωi = 1.

The sampling process of the MSSs is a progressive refine-
ment procedure of a RCH G ′ to approximate a hypergraph
G . For each hyperedge e ∈ E , we define its instantaneous
affinity value after sampling the i-th MSS h i,

Ce(h i) = min
j={1,...,k}

Cej (h i). (4)

If Ce(h i) is larger than the current affinity value, we set the
hyperedge affinity value to be Ce(h i). The obtained hyper-
graph is called a Random Consensus Hypergraph G ′. As the
number of hypothetical MSSs increases, we obtain a series of
better approximation of hypergraph G , {G ′1, . . . ,G ′m}, with
G ′ = G ′m. For any hyperedge e in G ′i , we have

A(i)
e =

i
max
j=1
Ce(hj), (5)

where A(i)
e is the current affinity value of the hyperedge e

after sampling the i-th MSS h i. We have A(1)
e ≤ . . . ≤ A(m)

e ,
where m is the number of generated hypothetical MSSs.
Clearly, A(i)

e is non-negative with an upper bound. As a
number of MSSs are generated, A(m)

e approximates the
hyperedge affinity value Ae of the original hypergraph G
with non-decreasing affinity values. Thus, we approximate a
hypergraph G using a RCH G ′ more accurately by sampling
MSSs gradually. Similar to [44], we do not need to compute
or store the affinity value of each hypergraph. Instead, we
store all confident vectors {C(h1), · · · ,C(hm)} generated
by the sampled MSSs and the graph vertices, which retains
all information of a RCH.

As a crucial part in constructing a RCH, three vertex set
affinity functions are described with details. As tracklets that
overlap in time cannot be associated with one target (i.e.,
one target cannot occupy two different positions at a time),
we set all affinity measures to zero if that is the case. Thus, in
the subsequent discussion of affinity functions, we consider
only all tracklets with no overlapping frame indices.
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Fig. 2: (a) appearance affinity of a set of tracklets. (b) motion affinity of a set of tracklets. (c) smoothness affinity of a set of
tracklets.

Appearance Affinity. We use object appearance to measure
the affinity of the tracklets sorted in time v = {v1, · · · , vu}
associated to one target based on three histograms of color,
gradient and local binary patterns (LBPs) [47], respectively.
Specifically, we use 8 bins for each channel of the RGB
space for the color histogram, and 36 dimensions for the
gradient histogram. As depicted in Fig. 2(a), for a pair of
tracklets vi and vi+1 with vi preceding vi+1, the appearance
affinity is computed based on the Bhattacharyya similar-
ities between the color histograms χc(vi, vi+1), gradient
histograms χs(vi, vi+1), and LBP histograms χb(vi, vi+1) in
the last frame detection of vi and the first frame detection of
vi+1, that is

ϕa(vi, vi+1) = eλ1χc(vi,vi+1)+λ2χs(vi,vi+1)+λ3χb(vi,vi+1), (6)

where λ1, λ2 and λ3 are the predefined weight parameters.
Thus, the appearance affinity of a set of tracklets is com-
puted by the sum of affinity values between consecutive
tracklet pairs, i.e.,

Ra(v) =
u∑
i=1

ϕa(vi, vi+1). (7)

Motion Affinity. We use the forward-backward prediction
strategy to measure the motion affinity of the tracklets
sorted in time v = {v1, · · · , vu} associated with one target.
Before describing the motion affinity of a set of tracklets
v , we first discuss the motion affinity of a pair of non-
overlapping tracklets vi and vi+1 with vi preceding vi+1,
which is computed based on the forward-backward pre-
diction between the last frame detection of vi and the first
frame detection of vi+1. As depicted in Fig. 2(b), the trailing
velocity of vi is first estimated by dividing the position
difference of its last two frame detections with their cor-
responding time lapse. The predicted position for the first
frame of vi+1 is obtained by projecting the position of the
last frame detection of vi with the estimated trailing velocity,
multiplied by the time lapse between the last frame of vi
and that of the first frame of vi+1. After that, the `2 distance
dfp(vi, vi+1) between the actual position of the first frame
of vi+1 and its forward prediction from vi is computed.
Similarly, the backward prediction is computed as the `2 dis-
tance between the actual position of the last frame of vi and
its backward prediction from vi+1, donated as dbp(vi, vi+1).
Thus, the motion affinity between the tracklet vi and vi+1 is
computed by

ϕm(vi, vi+1) = e−λ4

(
dfp(vi,vi+1)+dbp(vi,vi+1)

)
, (8)

where λ4 is a weight parameter controlling the sensitivity
of the affinity to the forward and backward distances. After
computing the motion affinity between a pair of tracklets,
we define the motion affinity of the tracklets v as

Rm(v) =
u∑
i=1

ϕm(vi, vi+1). (9)

Smoothness Affinity. We assume the tracked target ob-
jects to have continuous and smooth motion patterns. The
smoothness affinity is used to evaluate the spatio-temporal
coherence of a longer trajectory formed by a set of non-
overlapping short tracklets v = {v1, · · · , vu}. Specifically,
we fit a piecewise second order smooth parametric tra-
jectory with cubic spline interpolation to a subset of the
detection responses sampled with equally interval of these
tracklets v as shown in Fig. 2(c). Then, the `2 distance
dsmo(v) of the remaining detection responses on these
tracklets v with their predictions based on the fitted smooth
curve is computed. Note that smaller values of this quantity
indicate more coherent of the tracklets in v associated with
the same tracked target object. The smoothness affinity of
these tracklets is computed from dsmo(v) by

Rs(v) = e−λ5dsmo(v), (10)

where λ5 is a weight parameter controlling the sensitivity of
affinity deviation to smooth trajectories.

4.4 Converting Hypergraph to Common Graph
As there usually exist a large number of hyperedges in
a RCH G ′, we convert it to a common graph G? =
(V ?,E?,W ?) by analyzing the consensus information con-
tained in G ′ to retain most significant structures effectively.
The consensus information of vertices describes the mutual
supporting evidence of them belonging to the same target
object. In a common graph G?, V ? is the vertex set contain-
ing the same vertices as G ′, E? = V ? × V ? is the edge set
describing the consensus information between different ver-
tices, and W ? is the weight array of the edges. Intuitively, if
the two vertices are in the same structure (i.e., they are part
of a target trajectory), they are expected to appear in several
hyperedges in a RCH. Thus we construct G? by counting
the number of hyperedges with large affinity values for
each vertex pair according to the corresponding confidence
scores {C(h1), · · · ,C(hm)}.

To remove unreliable hyperedges counted in the edge
weight W ?, we construct a binary neighboring graph Θ =
(Λ, E) in which Λ = {vj |Cj(hs) ≥ µ, j = 1, · · · , n} is a
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Algorithm 1 Constructing a Common Graph
Input: Confidence scores of MSSs {C(h1), · · · ,C(hm)} and

confidence threshold µ.
1: Set all elements in W ? to zeros.
2: for s = 1 to m do
3: Construct a binary neighboring graph Θ = (Λ, E), where

Λ = {vj |Cj(hs) ≥ µ, j = 1, · · · , n} and E is the edge set
describing whether two vertices in Λ satisfying P .

4: Find all the cliques {Y1, · · · ,Yβs} in Θ using [48].
5: for i = 1 to βs do

6: Compute κi =

(
|Yi| − 3
k − 3

)
.

7: for each vertex pair {p, q}, p < q, vp, vq, vj ∈ Yi, j 6= p,
and j 6= q do

8: W ?(p, q) = W ?(p, q) + κi · Cj(hs).
9: end for

10: end for
11: end for
12: E?(p, q) is added, iff W ?(p, q) > 0.
13: W ?(q, p) = W ?(p, q).
Output: Common graph with edge E? and weight W ?.

vertex set with the confidence larger than µ corresponding
to the MSS hs (µ is the predefined confidence threshold)
and E is the edge set describing whether two vertices in Λ
satisfying P . The neighboring relationship between vertices
vi and vj is constructed if and only if P(vi, vj) = 1. We
partition a binary neighboring graph Θ into a few cliques
{Y1, . . . ,Yβs

} using [48], where Yi is the i-th clique in Θ,
and βs is the number of cliques in Θ. Different from [44],
which treats all vertices equally, we take the confidence
scores between the vertices and MSSs into account. Hence,
the edge weight between a vertex pair vp and vq in G? is
defined by

W ?(p, q) =
m∑
s=1

βs∑
i=1

∑
vp,vq,vj∈Yi

j 6=p,j 6=q

κi · Cj(hs), (11)

where κi =

(
|Yi| − 3
k − 3

)
is the number of hyperedges involv-

ing vertices vp and vq
2. We note that W ? is a symmetrical

matrix and thus the computational load can be further
reduced. Algorithm 1 shows the main steps to construct a
common graph from a hypergraph.

4.5 Extracting Structures on Common Graph
As discussed above, the problem of recovering longer tra-
jectories of target objects is formulated as searching for
dense structures on a constructed common graph G? based
on [45]. Starting from each vertex vp, we aim to find φ
vertices in V ? with the maximum value according to a
predefined affinity measure function Γ?(vp

⋃
N (vp)) cor-

responding to a common graph G?, such that the dense
structure contains φ + 1 vertices (as described by (1) in
Section 4.1). To avoid the degeneracy problem, we require
the minimal size of the dense structure to be a fixed number,
i.e., φ∗ ≤ minvp∈V ? |N (vp)|. Let U = {vp}

⋃
N (vp) ⊂ V ?

be the vertex set including vp and the φ exploited vertices.

2. The number of hyperedges contained in a RCH, including vertices
vp, vq and vj (j 6= p and j 6= q) is a combinational problem, i.e.,
selecting k − 3 vertices from Yi that exclude the vertices vp, vq and vj .

We use y ∈ Rn as the indicator vector of the subset U
where yi = 1 if vertex vi is included in the dense structure,
vi ∈ U , and yi = 0 otherwise. Thus, we have the following
constraints:

n∑
i

yi = φ+ 1, yi ∈ {0, 1}, yp = 1. (12)

The first two terms requires that φ+ 1 vertices are included
in the dense structure, and the last term requires that a
solution must contain vertex vp.

The key issue of exploiting dense structures is the defi-
nition of the affinity measure function Γ?(vp

⋃
N (vp)). For

ease of presentation, we define EU as the edge set corre-
sponding to the vertex set U . Intuitively, if the vertices in U
are associated to the same target, most of the edges in EU

should have large weights. Thus, we use the total weight
value of the edge set EU as the affinity measure function,

Γ̃?(U ) =
∑

vi,vj∈U
W ?(i, j). (13)

However, in the multi-object tracking context, the weight
of the edges in G? are all non-negative and Γ̃?(U ) usually
increases as the number of vertices in U increases, which
makes it hard to handle dense structures of different size3.
Thus, we use the average weight values for the affinity mea-
sure function describing the confidence of dense structures.
Since

∑n
i yi = φ+1, there are (φ+1)2 summations in Γ̃?(U ),

we have

Γ?(U ) =
1

(φ+ 1)2
Γ̃?(U ) =

∑
vi,vj∈U

W ?(i, j)
yi

φ+ 1

yj
φ+ 1

.

The problem of exploiting dense structures on a common
graph is then formulated as

max
x

g(x ) =
∑

vi,vj∈U
W ?(i, j) · xi · xj

s.t.
n∑
i

xi = 1, xi ∈ {0, ε}, xp = ε,

(14)

where xi = yi
φ+1 and ε = 1

φ+1 ≤
1

φ∗+1 . To reduce the
complexity of this NP-hard problem, the conditions in (14)
are relaxed to xi ∈ [0, 1

φ∗+1 ], i.e., xi ≥ 0, and xi ≤ 1
φ∗+1 .

The pairwise update algorithm [49] is used to solve (14)
effectively. More details regarding the optimization process
for (14) can be found in [49].

4.6 Post-processing
The dense structures directly exploited from a common
graph may not obey the physical constraints, e.g., one vertex
included in more than two dense structures violates the
constraint that an object can only occupy one position at
a time. Thus, we propose two post-processing procedures to
remove the conflicts among dense structures. As described
above, the average affinity value of each dense structure
reflects its reliability. Thus, we first obtain the sorted dense
structures {ψ1, · · · , ψn} according to the corresponding av-
erage affinity values in descending order, where n is the

3. Large size dense structures are always preferable according to this
kind of affinity measure function.
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number of dense structures. Let Ψ∗ be the dense structure
set after post-processing. We have Ψ∗ = ∅ first and add
the sorted dense structures sequentially. For the i-th dense
structure ψi, if ψi ∩ ψ∗j = ∅, ∀j, ψ∗j ∈ Ψ∗, we add ψi to Ψ∗,
i.e., Ψ∗ ← Ψ∗

⋃
{ψi}. Otherwise, if ψi ∩ ψ∗j 6= ∅, we use the

following conservative or greedy approach to process the
dense structure ψi.

Clearly, in the first layer of the hierarchical optimization,
the tracklets are short that contains relative unreliable evi-
dence (due to limited motion and appearance information)
to ensure the accuracy of dense structures. To avoid iden-
tity switches, a conservative approach is used to remove
the intersecting part from ψi and then add it to Ψ∗, i.e.,
ψi ← ψi/ψ

∗
j and Ψ∗ ← Ψ∗

⋃
{ψi}. On the other hand,

the tracklets are much longer in the remaining layers and
contain enough evidence (with much richer motion and
appearance information). To reduce the fragmentation er-
rors of tracklets, a greedy approach is designed by directly
adding the cluster ψi to ψ∗j , i.e., ψ∗j ← ψ∗j

⋃
ψi. With these

procedures, the post-processed dense structure set Ψ∗ is
extracted. According to the post-processed dense structure
set Ψ∗, the target trajectories in the segment are obtained by
threading the tracklets in the same dense structure based on
their temporal ordering.

5 EXPERIMENTS

We evaluate the proposed algorithm against the state-of-
the-art methods on both multi-pedestrian and multi-face
tracking tasks. We denote the method of our prior work [46]
as H2T woAcc which directly exploits dense structures on
a hypergraph using the pairwise update algorithm [49], and
denote the proposed RANSAC-style algorithm that exploits
dense structures as H2T Acc. The source code and datasets
will be make available to the public.

5.1 Datasets
Multi-Pedestrian Datasets. For multi-pedestrian tracking
experiments, we use five sequences from the PETS2009
dataset [50]: S2L1, S2L2, S2L3, S1L1-1, and S1L1-2 sequences
and the ParkingLot dataset [19]. These sequences can be
roughly categorized as low-density (S2L1 and ParkingLot),
or high-density (S2L2, S2L3, S1L1-1, and S1L1-2). The S2L1
sequence is widely used for multi-object tracking which
consists of 795 frames with non-linear motion patterns,
multiple similar objects appearing at proximity with fre-
quent occlusions. The ParkingLot sequence contains 1000
frames of a few pedestrians. The S2L2 and S2L3 sequences
are high-density datasets with long-term occlusions and
various motion patterns, which contain 436 and 240 frames,
respectively. The S1L1-1 and S1L1-2 sequences are more
challenging datasets which contain a large crowd of pedes-
trians with 221 and 241 frames, respectively.

Multi-Face Datasets. In addition to pedestrians, we also
evaluate multi-object tracking methods on the SubwayFaces
dataset, which is captured from surveillance videos with
ground truth annotations. The dataset consists of the S001,
S002, S003, and S004 sequences with 1199, 1000, 1600, and
1001 frames, respectively. The S001, S002, and S004 se-
quences contain a crowd of people with frequent occlusions,

whereas the S003 sequence is composed of a few fast moving
people with blurry appearance.

5.2 Evaluation Metrics

We use two CLEAR Multi-Object Tracking (MOT) met-
rics [51] for evaluation, i.e., the Multi-Object Tracking Accu-
racy (MOTA) and Multi-Object Tracking Precision (MOTP)
metrics. The MOTA metric integrates False Negatives (FN),
False Positives (FP), and Identity Switches (IDS) to eval-
uate the overall performance of a tracker. On the other
hand, the MOTP metric computes the total error of esti-
mated positions for matched object-hypothesis pairs over
all frames, with normalization to the hit/miss threshold
value. In addition, we report the Mostly Lost (ML), the
Mostly Tracked (MT), the Ground truth Trajectories (GT),
the Identity Switches (IDS), and the Fragmentations of the
target trajectories (FM) scores. The ML and MT metrics
measure the percentage of tracked trajectories less than
20% of the time span based on the GT, and the targets
successfully tracked (where objects are tracked at least 80%
of the time span). The IDS metric summarizes the number
of times that the matched identity of a tracked trajectory
changes, while the FM measure is the number of times that
trajectories are disconnected. The IDS and FM metrics reflect
the accuracy of tracked trajectories. Other metrics including
Recall (Rcll), Precision (Prcsn), and False Alarms per Frame
(Fa/F) are also presented.

5.3 Multi-Pedestrian Tracking

It is well known in the MOT literature [52] that detection re-
sults and ground truth annotations are important for perfor-
mance evaluation. For fair and comprehensive comparisons,
we use the original source codes [10], [33], [8], [34] with
the same detection results and ground truth annotations in
each sequence for all methods. In addition, some reported
results (marked by asterisk) are also listed for comparisons.
Table 3 shows quantitative multi-pedestrian tracking results
of the H2T woAcc and H2T Acc algorithms, as well as eight
state-of-the-art trackers [8], [33], [10], [34], [19], [5], [41], [53].
Furthermore, we also report the average performance of
the trackers across all image sequences. Some qualitative
tracking results of the H2T Acc method are shown in Fig. 5,
and more tracking results are available at www.youtube.
com/watch?v=bZYbVRF7Jfw&feature=youtu.be/.

It is worth noting that the H2T woAcc and H2T Acc
methods track all targets in the 2D image plane. Since most
trackers track targets of the PETS2009 sequences in the 3D
space, we evaluate the tracking results similar to [53]. For 3D
evaluations, the hit/miss threshold of the distance between
an output trajectory and the corresponding ground truth
on the ground plane is set to be 1 meter. In addition, 2D
evaluations are carried out on the ParkingLot sequence as
the camera parameters are not known. For 2D evaluations,
the hit/miss threshold of the bounding box overlap between
an output trajectory and the ground truth is set to be 50%.

5.3.1 Parameter Settings
The parameters for the H2T Acc method are detailed as
follows. The maximal velocity α∗ of an tracked target is

www.youtube.com/watch?v=bZYbVRF7Jfw&feature=youtu.be/
www.youtube.com/watch?v=bZYbVRF7Jfw&feature=youtu.be/
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Fig. 3: Effect of the hypergraph degree k on tracking per-
formance and running speed for the H2T Acc (Denoted
by the suffix Acc) and the H2T woAcc (Denoted by the
suffix woAcc) methods. The left and right figures show
the tracking performance in terms of accuracy (measured
by MOTA) and speed (measured by frame-per-second (fps))
by changing the hypergraph degree k .

empirically set to be 50 pixels per frame. The affinity thresh-
olds θa, θm, and θs for MSS generation are 0.5, 0.35, and 0.2,
respectively. The weight parameters for computing the con-
fidence between the vertices and MSSs in (3) are ω1 = 0.6,
ω2 = 0.2, and ω3 = 0.2. The number of generated MSSs
m is set to be 60 for each vertex, and the preset confidence
threshold µ indicating whether the vertex belongs to the
model is set to be 0.1. The values for parameters λ1, · · · , λ5
for computing affinity based on appearance, motion and
smoothness affinities are: λ1 = 0.7, λ2 = 0.1, λ3 = 0.2
in (7); λ4 = 0.02 in (9); λ5 = 0.01 in (10). The minimal size
of the dense structure parameter φ∗ is 3.

The hypergraph degree k and the number of temporal
adjacent segments δl are two critical parameters for the
H2T Acc method. To examine the effect of the hypergraph
degree k , we change the value of k from 2 to 8 while
keeping other parameters fixed. Since only the common
graph is used to describe the pairwise similarities between
the tracklets for k is 2, the H2T woAcc method and the
H2T Acc method achieve the same tracking performance.
We present the results of both the H2T woAcc and H2T Acc
methods for k = 2, . . . , 6 on the S2L2 sequence, due to high
computational cost of the H2T woAcc method when k is
larger than 6. As depicted in Fig. 3, the performance for
both the H2T woAcc and H2T Acc methods decrease as k
increases when k is larger than 5. Taking both accuracy and
speed into account, we use the hypergraph of degree 3 in
our algorithm for multi-pedestrian tracking.

For the number of temporal adjacent segments δl, we
set δl to be δ∗ for all layers l > 1, and δ1 to be δ◦ in
all the experiments. To show the effect of δl, we carry out
two experiments: 1) change δ◦ from 6 to 15 while keeping
other parameters fixed; 2) change δ∗ from 2 to 8 while
keeping other parameters fixed. The results of the first
experiment, presented in the first column of Fig. 4, show
that δ◦ has limited effect on the performance, and the speed
is decreased as the segment size increases in the first layer.
We set δ◦ to be 8 in the following experiments. The results
of the second experiment, presented by the curves in the
second column of Fig. 4, demonstrate that δ∗ has little effect
on both accuracy and speed of the H2T Acc method. In the
following evaluations, we set δ∗ to be 4.

Fig. 4: Effect of the number of temporal adjacent segments
used to generate the new segment division for both the first
layer and the remaining ones. The first and second columns
present the tracking performance (measured by MOTA) and
speed (measured by frame-per-second (fps)) by changing δ◦

and δ∗.

5.3.2 Discussion

We first demonstrate the contributions of different compo-
nents of the proposed algorithm in Table 2 using the CLEAR
MOT metrics.

Effectiveness of Dense Structures. We construct two track-
ers to demonstrate the effect of dense structures exploited
in the proposed algorithm. One is the undirected Hierar-
chical affinity Graph based Tracker (HGT) which considers
pairwise similarities between tracklets, and the other one
is based on the widely used Hungarian algorithm. Since
similarities between different tracklets of both methods are
the same as the H2T Acc method, we evaluate these two
algorithms to demonstrate the importance of exploiting
dense structures for MOT.

Table 2 shows that the HGT algorithm outperforms the
Hungarian algorithm. The Hungarian algorithm uses the
similarities between pairwise tracklets greedily instead of
considering multiple similarities of pairwise tracklets jointly
used in the HGT algorithm. Consequently, the Hungarian
algorithm generates a considerable number of incorrect
associations as shown by the high IDS and FM scores. The
IDS, FM, and MOTA scores on average performance of both
methods show that exploiting dense structures on the affin-
ity graph significantly helps improve tracking performance.

Effectiveness of Hypergraph. To demonstrate the impor-
tance of hypergraph in the proposed algorithm, we compare
the H2T woAcc and HGT methods. The HGT algorithm
merely considers pairwise similarities between tracklets in-
stead of the high-order similarities among multiple tracklets
in a hypergraph of the H2T woAcc method.

As shown in Table 2, the H2T woAcc algorithm per-
forms well with higher MOTA scores in three sequences,
and better results on IDS and FM metrics in all sequences
than the HGT method. These results can be attributed to
the use of hypergraphs in which high-order similarities
among multiple tracklets instead of simple pairwise ones
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TABLE 2: Effect of different components in the proposed method. The symbol ↑ means higher scores indicate better
performance while ↓means lower scores indicate better performance. The red and blue colors indicate the best and second
best performance of the tracker on that metric.

Sequence Method MOTA ↑ MOTP ↑ GT MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ FM ↓ Rcll ↑ Prcsn ↑ Fa/F ↓
PETS-S2L1 Hungarian 51.0% 73.5% 23 95.7% 0.0% 1502 287 149 66 92.7% 70.9% 1.89

Detection [54] HGT 92.0% 82.7% 23 95.7% 0.0% 31 267 20 19 93.3% 99.2% 0.04
Groundtruth [50] H2T woAcc 92.7% 72.9% 23 95.7% 0.0% 62 222 5 10 94.4% 98.4% 0.08

PETS-S1L1-1 Hungarian 34.8% 63.8% 46 34.8% 23.9% 586 1656 249 137 56.7% 78.7% 2.65
Detection [50] HGT 43.8% 75.2% 46 34.8% 45.7% 59 2063 25 31 46.0% 96.8% 0.27

Groundtruth [50] H2T woAcc 41.1% 71.9% 46 23.9% 41.3% 5 2237 11 10 41.5% 99.7% 0.02
PETS-S2L2 Hungarian 43.3% 61.8% 74 43.2% 2.7% 2173 1909 653 428 77.1% 74.8% 4.98

Detection [55] HGT 59.7% 56.8% 74 29.7% 5.4% 551 2725 91 206 67.4% 91.1% 1.26
Groundtruth [50] H2T woAcc 62.1% 52.7% 74 36.5% 4.1% 640 2402 125 175 71.2% 90.3% 1.47

PETS-S2L3 Hungarian 32.9% 64.1% 44 20.5% 40.9% 406 1613 169 119 50.5% 80.2% 1.69
Detection [55] HGT 53.2% 55.8% 44 31.8% 20.5% 261 1210 56 63 62.9% 88.7% 1.09

Groundtruth [50] H2T woAcc 55.3% 53.2% 44 27.3% 20.5% 149 1272 36 40 61.0% 93.0% 0.62
Average Hungarian 40.5% 65.8% - 48.6% 16.9% 1166.8 1366.3 305.0 187.5 69.3% 76.2% 2.80

Performance HGT 62.2% 67.6% - 48.0% 17.9% 225.5 1566.3 48.0 79.8 67.4% 94.0% 0.67
H2T woAcc 62.8% 62.7% - 45.9% 16.5% 214.0 1533.3 44.3 58.8 67.0% 95.4% 0.55

are used such that full motion information is exploited in
the presence of appearance ambiguities, thereby reducing
IDS by 8% and FM by 26% on average. Although we use
an approximate algorithm to convert the hypergraph to
a common graph, such that the dense subgraph can be
searched efficiently, the approximate common graph retains
the high-order information to ensure tracking performance.

5.3.3 Quantitative Evaluation

As presented in Table 3, the H2T woAcc and H2T Acc meth-
ods perform favorably against the state-of-the-art track-
ers [10], [33], [34], [8] with more than 8% and 9% gain in
MOTA and MT scores, while on average reducing more than
7% trajectories that are not correctly matched (ML score) by
other methods.

Low-Density Sequences. The S2L1 sequence is one of the
most widely used videos in multi-pedestrian tracking which
contains non-linear motion, targets in close proximity with
similar appearance and frequent occlusions. As shown in
Table 3, the H2T woAcc and H2T Acc methods perform
well against the state-of-the-art trackers based on the MOTA
metric. The ParkingLot sequence which contains 14 pedes-
trians with frequent occlusions and similar appearance.
Table 3 shows that the proposed H2T woAcc and H2T Acc
algorithms outperform the state-of-the-art trackers [8], [10],
[33], [34] in nearly all metrics.

Table 3 shows that in the two low-density sequences
the H2T Acc method outperforms other trackers with high
MOTA and MT scores as well as low IDS and FM scores.
When only local similarities of detection results are consid-
ered, it is difficult for other methods [8], [10], [33], [34] to
robustly track multiple objects, especially when two similar
targets appear in close proximity. Note that the H2T Acc
algorithm performs well by considering similarities among
multiple tracklets across the temporal domains in a global
view, thereby achieving lower IDS and FM than other meth-
ods.

Compared to the H2T woAcc tracker, the H2T Acc
method achieves comparable performance in most metrics
(i.e., MOTA, MT and FM). Fig. 3 also shows that the
H2T Acc method performs well against the H2T woAcc

tracker when the degree of hypergraph changes in both S2L1
and S2L2 sequences with much faster execution speed. This
can be explained by hypothesize-and-test approaches which
construct a common graph that approximates a hypergraph
to efficiently exploit dense structures. Specifically, as shown
in Fig. 3, we note that both the H2T woAcc and H2T Acc
methods perform well for the hypergraph with the degree
between 3 and 5. That is, the approaches using excessive
high-degree hypergraphs to exploit dense structures are
not effective in dealing with scenes where objects move in
drastically different direction and speed.

High-Density Sequences. The S2L2 sequence contains 74
pedestrian with different motions and frequent occlusions,
while the S2L3 sequence contains up to 44 pedestrians with
frequent occlusions and illumination changes. The proposed
H2T woAcc and H2T Acc algorithms perform well in both
sequences in terms of MOTA, ML, FN and Rcll metrics.

The S1L1-1 and S1L1-2 sequences are two dense se-
quences containing target objects with linear motion pat-
terns. Overall, the H2T Acc method performs well with
high MOTA, MT, FN, and Rcll scores and low ML scores.
The results also demonstrate that the H2T Acc method
performs more effectively on the high-density sequences.
As presented in Table 3, the H2T Acc method outperforms
the state-of-the-art trackers [8], [10], [33], [34] in the high-
density sequences with the highest MOTA scores, mainly by
exploiting the hierarchical dense structures which consider
similarities among multiple tracklets globally.

Although the H2T Acc algorithm performs better than
the H2T woAcc method in MOTA, it has higher IDS and
FM scores. This can be explained by two factors. First, in
the crowded scenes, the hypothesize-and-test process in the
H2T Acc method facilitates exploiting dense structures in
the presence of noise. Second, some true positives for each
dense structure are inevitably removed in the sampling
process, thereby resulting in higher IDS and FM scores.

The H2T Acc and H2T woAcc methods perform worse
in terms of MOTP for the crowded scenes (e.g., S2L2, and
S2L3) containing non-linear motion patterns. As the linear
interpolation based trajectory recover mechanism is used
in the proposed methods, it is unlikely to handle scenes
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TABLE 3: Quantitative comparison results of the proposed trackers with other state-of-the-art trackers in the multi-
pedestrian tracking sequences (results marked with the asterisk are taken directly from the literature). The symbol ↑
means higher scores indicate better performance while ↓means lower scores indicate better performance. The red and blue
colors indicate the best and the second best performance of the tracker on that metric.

Sequence Method MOTA ↑ MOTP ↑ GT MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ FM ↓ Rcll ↑ Prcsn ↑ Fa/F ↓
∗Milan et al. [53] 90.6% 80.2% 23 91.3% 4.4% 59 302 11 6 92.4% 98.4% 0.07

PETS-S2L1 ∗Berclaz et al. [10] 80.3% 72.0% 23 73.9% 8.7% 126 641 13 22 83.8% 96.3% 0.16
Detection [54] Andriyenko et al. [33] 86.3% 78.7% 23 78.3% 4.4% 88 417 38 21 89.5% 97.6% 0.11

Groundtruth [50] Andriyenko et al. [34] 88.3% 79.6% 23 82.6% 0.0% 47 396 18 14 90.0% 98.7% 0.06
795 frames Pirsiavash et al. [8] 77.4% 74.3% 23 60.9% 4.4% 93 742 57 62 81.2% 97.2% 0.12

up to 8 targets H2T woAcc 92.7% 72.9% 23 95.7% 0.0% 62 222 5 10 94.4% 98.4% 0.08
H2T Acc 91.7% 78.4% 23 95.7% 0.0% 41 266 16 20 93.3% 98.7% 0.06

∗Milan et al. [53] 56.9% 59.4% 74 37.8% 16.2% 622 2881 99 73 65.5% 89.8% 1.43
PETS-S2L2 ∗Berclaz et al. [10] 24.2% 60.9% 74 9.5% 54.1% 193 6117 22 38 26.8% 92.1% 0.44

Detection [55] Andriyenko et al. [33] 48.5% 62.0% 74 20.3% 18.9% 301 3850 152 128 53.9% 93.7% 0.69
Groundtruth [50] Andriyenko et al. [34] 48.0% 61.6% 74 20.3% 14.9% 245 3957 143 125 52.6% 94.7% 0.56

436 frames Pirsiavash et al. [8] 45.0% 64.1% 74 9.5% 23.0% 199 4257 137 216 49.0% 95.4% 0.46
up to 33 targets H2T woAcc 62.1% 52.7% 74 36.5% 4.1% 640 2402 125 175 71.2% 90.3% 1.47

H2T Acc 64.2% 57.3% 74 40.5% 2.7% 708 2141 136 235 74.4% 89.8% 1.62
∗Milan et al. [53] 45.4% 64.6% 44 20.5% 40.9% 169 1572 38 27 51.8% 90.9% 0.70

PETS-S2L3 ∗Berclaz et al. [10] 28.8% 61.8% 44 11.4% 70.5% 45 2269 7 12 30.4% 95.7% 0.19
Detection [55] Andriyenko et al. [33] 51.2% 54.2% 44 15.9% 22.7% 144 1366 82 64 58.1% 92.9% 0.60

Groundtruth [50] Andriyenko et al. [34] 46.9% 57.8% 44 15.9% 40.9% 68 1589 73 57 51.3% 96.1% 0.28
240 frames Pirsiavash et al. [8] 43.0% 63.0% 44 11.4% 40.9% 46 1760 52 72 46.0% 97.0% 0.19

up to 42 targets H2T woAcc 55.3% 53.2% 44 27.3% 20.5% 149 1272 36 40 61.0% 93.0% 0.62
H2T Acc 59.9% 57.0% 44 34.1% 25.0% 91 1180 37 50 63.8% 95.8% 0.38

Berclaz et al. [10] 41.8% 67.0% 46 32.6% 41.3% 80 2109 35 53 44.8% 95.5% 0.36
PETS-S1L1-1 Andriyenko et al. [33] 40.0% 69.4% 46 19.6% 43.5% 34 2236 25 18 41.5% 97.9% 0.15

Detection [50] Andriyenko et al. [34] 37.6% 65.8% 46 19.6% 41.3% 50 2291 44 36 40.1% 96.8% 0.23
Groundtruth [50] Pirsiavash et al. [8] 32.8% 76.5% 46 15.2% 47.8% 30 2502 35 42 34.5% 97.8% 0.14

221 frames H2T woAcc 41.1% 71.9% 46 23.9% 41.3% 5 2237 11 10 41.5% 99.7% 0.02
up to 42 targets H2T Acc 44.9% 70.5% 46 32.6% 41.3% 59 2016 31 30 47.3% 96.8% 0.27

∗Milan et al. [53] 57.9% 59.7% 36 52.8% 30.6% 148 918 21 13 64.5% 91.8% 0.61
PETS-S1L1-2 ∗Berclaz et al. [10] 51.5% 64.8% 36 44.4% 38.9% 98 1151 4 8 55.5% 93.6% 0.41

Detection [50] Andriyenko et al. [33] 48.0% 64.5% 36 25.0% 33.3% 35 1292 17 12 50.0% 97.4% 0.15
Groundtruth [50] Andriyenko et al. [34] 54.4% 64.3% 36 41.7% 30.6% 54 1102 24 17 57.4% 96.5% 0.22

241 frames Pirsiavash et al. [8] 45.4% 66.8% 36 25.0% 38.9% 6 1367 38 32 47.1% 99.5% 0.02
up to 20 targets H2T woAcc 57.1% 54.8% 36 50.0% 22.2% 34 1071 4 7 58.6% 97.8% 0.14

H2T Acc 56.6% 56.3% 36 44.4% 19.4% 72 1023 28 26 60.4% 95.6% 0.30
∗Zamir et al. [19] 90.4% 74.1% 14 - - - - - - 85.3% 98.2% -

ParkingLot ∗Shu et al. [5] 74.1% 79.3% 14 - - - - - - 81.7% 91.3% -
Detection [56] ∗Izadinia et al. [7] 88.9% 77.5% 14 - - - - - - 96.5% 93.6% -

Groundtruth [56] Berclaz et al. [10] 46.1% 76.2% 14 28.6% 0.0% 105 1052 172 166 57.3% 93.1% 0.42
1000 frames Andriyenko et al. [33] 60.0% 70.7% 14 21.4% 7.1% 162 756 68 97 69.3% 91.3% 0.65

up to 14 targets Andriyenko et al. [34] 73.1% 76.5% 14 78.6% 0.0% 253 326 83 70 86.8% 89.4% 1.01
Pirsiavash et al. [8] 65.7% 75.3% 14 7.1% 7.1% 39 754 52 60 69.4% 97.8% 0.16

H2T woAcc 88.4% 81.9% 14 78.6% 0.0% 39 227 21 23 90.8% 98.3% 0.16
H2T Acc 79.8% 69.7% 14 78.6% 0.0% 196 279 23 81 88.7% 91.8% 0.78

Berclaz et al. [10] 45.5% 67.1% - 33.4% 35.6% 107.8 2223.2 42.2 49.8 49.8% 94.4% 0.33
Average Andriyenko et al. [33] 55.7% 66.6% - 30.1% 21.7% 127.3 1652.8 63.7 56.7 60.4% 95.1% 0.39

Performance Andriyenko et al. [34] 58.1% 67.6% - 43.1% 21.3% 119.5 1610.2 64.2 53.2 63.0% 95.4% 0.39
Pirsiavash et al. [8] 51.6% 70.0% - 21.5% 27.0% 68.8 1897.0 61.8 80.7 54.5% 97.5% 0.18

H2T woAcc 66.1% 64.6% - 52.0% 14.7% 154.8 1238.5 33.7 44.2 69.6% 96.3% 0.42
H2T Acc 66.2% 64.9% - 54.3% 14.7% 194.5 1150.8 45.2 73.7 71.3% 94.8% 0.57

with non-linear target motions precisely. On the other hand,
methods that perform well with higher MOTP [8], [34] fail
to re-identify the targets when the occlusions occur and miss
the targets completely, as shown by the FN scores.

5.4 Multi-Face Tracking

We evaluate the proposed algorithms on four challenging
multi-face tracking sequences, which are collected by our-
selves in the crowded subway scenes. For fair compar-
isons, we use publicly available source codes [10], [33], [8],
[34] with the same detection results and annotated ground
truth as our methods. Both the H2T woAcc and H2T Acc
methods track multi-face in the 2D image plane. Similar to

multi-pedestrian tracking, the hit/miss threshold is set to be
50%. Quantitative evaluation results using different metrics
are shown in Table 4, and some tracking screenshots are
presented in Fig. 5.

For multi-face tracking, we consider both face and upper
torso regions for object representations. We include ζ% of
a whole face (20% in all our experiments), and extract
color, gradient, and LBP histograms for representation. Most
parameters for multi-face tracking are set the same as the
multi-pedestrian tracking, as described in Section 5.3.1, ex-
cept the number of temporal adjacent segments used to
generate the new segment division is set as δ1 = δ◦ = 10,
δl = δ∗ = 5 , l > 1, and the maximal velocity of the tracked
objects in the scene α∗ is set to be 60 pixels per frame.
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TABLE 4: Quantitative results of the evaluated MOT algorithms in the subway surveillance sequences. The symbol ↑
denotes higher scores indicate better performance while ↓ means lower scores indicate better performance. The red and
blue colors indicate the best and second best performing method using one metric.

Sequence Method MOTA ↑ MOTP ↑ GT MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ FM ↓ Rcll ↑ Prcsn ↑ Fa/F ↓
Berclaz et al. [10] 37.6% 76.6% 29 20.7% 27.6% 628 2724 22 40 49.7% 81.1% 0.52

SubwayFaces-S001 Andriyenko et al. [33] 23.0% 73.7% 29 27.6% 13.8% 1633 2499 35 57 53.8% 64.1% 1.36
Detection [57] Andriyenko et al. [34] 40.9% 75.4% 29 34.5% 6.9% 1190 1967 39 36 63.6% 74.3% 0.99
1199 frames Pirsiavash et al. [8] 46.8% 75.6% 29 31.0% 10.3% 709 2139 33 44 60.5% 82.2% 0.59

H2T woAcc 52.0% 75.9% 29 31.0% 10.3% 335 2224 39 42 58.9% 90.5% 0.28
H2T Acc 50.8% 75.2% 29 31.0% 6.9% 675 1967 22 29 63.6% 83.6% 0.56

Berclaz et al. [10] 45.8% 75.5% 28 28.6% 10.7% 498 2670 64 73 55.2% 86.9% 0.50
SubwayFaces-S002 Andriyenko et al. [33] 23.2% 72.9% 28 28.6% 35.7% 1126 3406 45 55 42.9% 69.4% 1.13

Detection [57] Andriyenko et al. [34] 46.9% 75.5% 28 35.7% 7.1% 852 2258 55 50 62.1% 81.3% 0.85
1000 frames Pirsiavash et al. [8] 51.5% 75.7% 28 35.7% 10.7% 431 2424 36 43 59.3% 89.1% 0.43

H2T woAcc 51.2% 75.5% 28 32.1% 10.7% 396 2465 47 50 58.7% 89.8% 0.40
H2T Acc 53.3% 75.1% 28 35.7% 7.1% 560 2182 41 55 63.4% 87.1% 0.56

Berclaz et al. [10] 18.1% 67.9% 24 4.2% 62.5% 223 3065 7 55 23.8% 81.1% 0.14
SubwayFaces-S003 Andriyenko et al. [33] 20.1% 68.8% 24 16.7% 51.2% 379 2818 18 22 30.0% 76.1% 0.24

Detection [57] Andriyenko et al. [34] 26.0% 67.7% 24 8.3% 29.2% 537 2402 40 45 40.3% 75.1% 0.34
1600 frames Pirsiavash et al. [8] 26.7% 67.7% 24 8.3% 29.2% 312 2566 69 92 36.2% 82.4% 0.20

H2T woAcc 26.7% 68.5% 24 8.3% 29.2% 259 2648 41 47 34.2% 84.1% 0.16
H2T Acc 31.8% 68.1% 24 12.5% 25.0% 355 2358 31 60 41.1% 82.4% 0.22

Berclaz et al. [10] 29.6% 76.0% 43 7.0% 27.9% 1245 5898 187 161 43.3% 78.4% 1.24
SubwayFaces-S004 Andriyenko et al. [33] 9.3% 70.0% 43 2.3% 48.8% 1603 7658 181 267 26.4% 63.1% 1.60

Detection [57] Andriyenko et al. [34] 36.4% 76.0% 43 23.3% 7.0% 2361 4137 131 106 60.3% 72.7% 2.36
1001 frames Pirsiavash et al. [8] 45.4% 75.9% 43 23.3% 7.0% 1264 4304 113 117 58.6% 82.8% 1.26

H2T woAcc 44.5% 75.7% 43 23.3% 11.6% 1227 4448 104 103 57.3% 82.9% 1.23
H2T Acc 47.3% 75.2% 43 30.2% 7.0% 1379 4029 78 85 61.3% 82.2% 1.38

Berclaz et al. [10] 32.8% 74.0% - 15.1% 32.2% 648.5 3589.3 70.0 82.3 43.0% 81.9% 0.60
Average Andriyenko et al. [33] 18.9% 71.4% - 18.8% 37.4% 1185.3 4095.3 69.8 100.3 38.3% 68.2% 1.08

Performance Andriyenko et al. [34] 37.6% 73.7% - 25.5% 12.6% 1235.0 2691.0 66.3 59.3 56.6% 75.9% 1.14
Pirsiavash et al. [8] 42.6% 73.7% - 24.6% 14.3% 679.0 2858.3 62.8 74.0 53.7% 84.1% 0.62

H2T woAcc 43.6% 73.9% - 23.7% 15.5% 554.3 2946.3 57.8 60.5 52.3% 86.8% 0.52
H2T Acc 45.8% 73.4% - 27.4% 11.5% 742.3 2634.0 43.0 57.3 57.4% 83.8% 0.68

5.4.1 Quantitative Evaluation
Compared to the state-of-the-art trackers [10], [33], [8], [34],
Table 4 shows the proposed H2T woAcc and H2T Acc algo-
rithms achieve more than 3.2% and 1.9% improvements on
MOTA and MT metrics, while reduce more than 24% IDS of
average performance.

Low-Density Sequence. The S003 sequence contains a few
faces in the scenes. Due to large illumination variations and
motion blurs, some faces are not detected in all the frames,
which in turn affects the performance of the tracking meth-
ods. In contrast to the state-of-the-art trackers [8], [10], [33],
[34], the H2T Acc method performs well since it considers
similarities among multiple tracklets across the temporal
domain and associates the tracklets with long-term tempo-
ral interval. Meanwhile, the H2T Acc algorithm performs
better than the H2T woAcc method with higher MOTA, MT
and Rcll, and lower IDS and ML scores, mainly due to the
RANSAC-style optimization process for exploiting dense
structure that helps distinguishes noisy observations.

High-Density Sequences. The S001, S002, and S004 se-
quences contain multiple faces with fast motion and
frequently occlusions in the unconstrained scenes. The
H2T Acc method performs well against the state-of-the-art
trackers [8], [10], [33], [34], which can be explained by high-
order similarities among multiple tracklets for distinguish-
ing similar targets in close proximity. In contrast to multi-
pedestrian tracking, the H2T Acc algorithm outperforms
the H2T woAcc method with higher MOTA, MT, ML, IDS,
FM, FN, Rcll scores in most of the sequences. Overall, the

TABLE 5: Run time performance of evaluated methods.
Frame-per-second (fps) is used to measure the speed of the
tracker. The red and blue colors indicate the top performing
and second methods in each sequence.

Method (fps) [10] [8] [33] [34] H2T woAcc H2T Acc
PETS-S2L1 18.15 802.8 10.00 5.880 5.510 56.31
PETS-S2L2 7.730 517.9 1.960 0.490 5.430 7.500
PETS-S2L3 19.93 877.4 1.450 2.470 6.400 10.58

PETS-S1L1-1 23.67 1692 2.700 2.650 10.11 16.82
PETS-S1L1-2 20.62 1803 2.940 3.390 11.57 22.02
ParkingLot 88.93 1426 3.030 20.96 13.43 123.5

Average Speed 29.84 1187 3.680 5.973 8.742 39.46
SubwayFaces-S001 129.3 3218 5.560 12.39 45.43 257.4
SubwayFaces-S002 104.8 2678 4.350 12.39 45.46 191.0
SubwayFaces-S003 154.3 9374 33.33 53.30 215.7 1086
SubwayFaces-S004 69.47 1474 1.100 6.94 17.74 151.2

Average Speed 114.5 4186 11.09 21.26 81.08 421.4

H2T Acc method is more effective for handling multi-object
tracking in that scenes (e.g., the crowded scenes) where the
targets are similar but with different motion patterns.

5.5 Run Time Performance
We implement the H2T woAcc and H2T Acc methods in
C++ without any code optimization. We run all the eval-
uated tracking methods 5 times in a single thread for all
the sequences of both the multi-pedestrian and multi-face
tracking on a laptop with a 3.2 GHz Intel processor and 16
GB memory. Given the detection responses, we present the
average execution speed for all these trackers in Table 5.
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PETS2009-S2L2

PETS2009-S2L3

SubwayFaces-S001

SubwayFaces-S002

SubwayFaces-S003

SubwayFaces-S004

Fig. 5: Tracking results of the proposed tracking algorithm in multi-pedestrian tracking sequences (PETS2009-S2L2 and
PETS2009-S2L3) and multi-face sequences (SubwayFaces-S001 SubwayFaces-S002, SubwayFaces-S003 and SubwayFaces-
S004). The highlighted area in the PETS2009 sequences is the tracking region which is set as [53].

Frame-per-second (fps) is used to measure the speed of the
tracker. Compared with other state-of-the-art methods [8],
[10], [33], [34], the proposed H2T Acc algorithm performs
well in run time for both multi-pedestrian and multi-face
tracking sequences. Meanwhile, the H2T Acc method gen-
erates better tracking results against [8], [10], [33], and [34]
with 14.6%, 20.7%, 10.5% and 8.1% higher MOTA scores
in multi-pedestrian tracking (Table 3) and 3.2%, 13.0%,
26.9% and 8.2% higher MOTA scores in multi-face tracking
(Table 4). In addition, the H2T Acc algorithm runs about 4.5
times faster in the multi-pedestrian tracking sequences and
5.2 times faster in the multi-face tracking sequences than
the H2T woAcc method on average, respectively. Overall,
the proposed H2T Acc method is more effective for multi-
object tracking task for real-world applications.

6 CONCLUSION

In this paper, a multi-object tracking algorithm that exploits
dense structures is proposed. The multi-object tracking task

is carried out by exploiting dense structures on multiple
affinity hypergraphs constructed hierarchically, which con-
sider similarities among different tracklets across the tem-
poral domain for better association in terms of identity and
trajectory. Visual cues including appearance, motion and
trajectory smoothness are used for measuring affinity. For
computational efficiency, we propose a hypothesize-and-test
algorithm to approximate a hypergraph with a common
graph from which the dense structures are exploited. Ex-
perimental evaluations on both multi-pedestrian and multi-
face tracking demonstrate the proposed algorithms perform
favorably against the state-of-the-art tracking methods.
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[47] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study
of texture measures with classification based on featured distribu-
tions,” Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996.

[48] C. Bron and J. Kerbosch, “Finding all cliques of an undirected
graph (algorithm 457),” Commun. ACM, vol. 16, no. 9, pp. 575–576,
1973.

[49] H. Liu, L. J. Latecki, and S. Yan, “Robust clustering as ensembles
of affinity relations,” in Advances in Neural Information Processing
Systems, 2010, pp. 1414–1422.

[50] A. Milan, “Continuous energy minimization tracker website,”
http://www.cvg.rdg.ac.uk/PETS2009/a.html.

[51] R. Stiefelhagen, K. Bernardin, R. Bowers, J. S. Garofolo, D. Mostefa,
and P. Soundararajan, “The clear 2006 evaluation,” in CLEAR,
2006, pp. 1–44.

[52] A. Milan, K. Schindler, and S. Roth, “Challenges of ground truth
evaluation of multi-target tracking,” in Workshops in Conjunction
with IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 735–742.

[53] A. Milan, S. Roth, and K. Schindler, “Continuous energy min-
imization for multitarget tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 1, pp. 58–72, 2014.

[54] B. Yang, http://iris.usc.edu/people/yangbo/downloads.html.
[55] J. Yan, Z. Lei, D. Yi, and S. Z. Li, “Multi-pedestrian detection in

crowded scenes: A global view,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2012, pp. 3124–3129.

[56] Dehghan, O. Oreifej, E. Hand, and M. Shah, http://crcv.ucf.edu/
data/ParkingLOT.

[57] S. Z. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, and H. Shum,
“Statistical learning of multi-view face detection,” in Proceedings of
European Conference on Computer Vision, 2002, pp. 67–81.

Longyin Wen received the B.Eng. degree in
Automation from University of Electronic Science
and Technology of China (UESTC) in 2010, and
the PhD degree from Institute of Automation,
Chinese Academy of Sciences (CASIA) in 2015.
He now moves to the University at Albany, State
University of New York, for postdoc research. His
research interests are computer vision, pattern
recognition and object tracking in particular.

Zhen Lei received the B.S. degree in automation
from the University of Science and Technology of
China, in 2005, and the Ph.D. degree from the In-
stitute of Automation, Chinese Academy of Sci-
ences, in 2010, where he is currently an Asso-
ciate Professor. He has published over 100 pa-
pers in international journals and conferences.
His research interests are in computer vision,
pattern recognition, image processing, and face
recognition in particular. He served as an Area
Chair of the International Joint Conference on

Biometrics in 2014, the IAPR/IEEE International Conference on Bio-
metric in 2015 and 2016, and the IEEE International Conference on
Automatic Face and Gesture Recognition in 2015.

Siwei Lyu is an associate professor in Computer
Science at University of Albany, State University
of New York. He obtained his B.S. degree in In-
formation Science and M.S. degree in Computer
Science, both from Peking University, China, in
1997 and 2000, respectively. From 2000 to 2001,
he was an assistant researcher at Microsoft Re-
search Asia. He obtained Ph.D. degree in com-
puter science from Dartmouth College. From
2005 to 2008 he was a post-doctoral research
associate at New York University. His research

interests include image processing and forensics, machine learning and
computer vision.

Stan Z. Li received the B.Eng. degree from
Hunan University, China, the M.Eng. degree
from National University of Defense Technology,
China, and the Ph.D. degree from Surrey Uni-
versity, U.K. He is currently a professor at the
National Laboratory of Pattern Recognition and
the director of the Center for Biometrics and Se-
curity Research (CBSR), Institute of Automation
(CASIA), and the director of the Center for Visual
Internet of Things Research (VIOT), Chinese
Academy of Sciences. He worked at Microsoft

Research Asia as a researcher from 2000 to 2004. Prior to that, he was
an associate professor at Nanyang Technological University, Singapore.
He was elevated to IEEE Fellow for his contributions to the fields of
face recognition, pattern recognition, and computer vision. His research
interest includes pattern recognition and machine learning, image and
vision processing, face recognition, biometrics, and intelligent video
surveillance. He has published over 200 papers in international journals
and conferences, and authored and edited eight books. He was an
associate editor of IEEE Transactions on Pattern Analysis and Machine
Intelligence and was acting as the Editor-in-Chief for the Encyclopedia
of Biometrics. He serves / served as a program co-chair for the Interna-
tional Conference on Biometrics 2007, 2009, 2015 and 2016, a general
chair for the 9th IEEE Conference on Automatic Face and Gesture
Recognition, and has been involved in organizing other international
conferences and workshops in the fields of his research interest.

Ming-Hsuan Yang is an Associate Professor
of electrical engineering and computer science
with the University of California, Merced, CA,
USA. He received the Ph.D. degree in computer
science from the University of Illinois at Urbana-
Champaign, Urbana, IL, USA, in 2000. Prior to
joining UC Merced in 2008, he was a Senior
Research Scientist with the Honda Research In-
stitute, Mountain View, CA, USA, on vision prob-
lems related to humanoid robots. He served as
an Associate Editor of the IEEE Transactions on

Pattern Analysis and Machine Intelligence from 2007 to 2011, and is an
Associate Editor of the International Journal of Computer Vision, Image
and Vision Computing, and Journal of Artificial Intelligence Research.
He received the NSF CAREER Award in 2012, and the Google Faculty
Award in 2009. He is a senior member of the ACM.

http://www.cvg.rdg.ac.uk/PETS2009/a.html
http://iris.usc.edu/people/yangbo/downloads.html
http://crcv.ucf.edu/data/ParkingLOT
http://crcv.ucf.edu/data/ParkingLOT

	Introduction
	Related Work
	Algorithmic Overview
	Extracting Dense Structures
	Problem Formulation
	Enforcing Hyperedge Constraints
	Constructing Random Consensus Hypergraph
	Converting Hypergraph to Common Graph
	Extracting Structures on Common Graph
	Post-processing

	Experiments
	Datasets
	Evaluation Metrics
	Multi-Pedestrian Tracking
	Parameter Settings
	Discussion
	Quantitative Evaluation

	Multi-Face Tracking
	Quantitative Evaluation

	Run Time Performance

	Conclusion
	References
	Biographies
	Longyin Wen
	Zhen Lei
	Siwei Lyu
	Stan Z. Li
	Ming-Hsuan Yang


