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Abstract

Video synopsis provides a means for fast browsing
of activities in video. Principal background selection
(PBS) is an important step in video synopsis. Exist-
ing methods make PBS in an offline way and at a high
memory cost. In this paper we propose a novel back-
ground selection method, “online principal background
selection” (OPBS). The OPBS selects n principal back-
grounds from N backgrounds in an online fashion with
a low memory cost, making it possible to build an effi-
cient online video synopsis system. Another advantage
is that, with OPBS, the selected backgrounds are re-
lated to not only background changes over time but also
video activities in it. Experimental results demonstrate
the advantages of the proposed OPBS.

1. Introduction

Surveillance video cameras are widely deployed for
security purposes. They work 24 hours a day and gen-
erate huge amount of video data. Manual search and
retrieval from such videos are time consuming and even
impossible. In order to solve this problem, video synop-
sis has been introduced in recent years [3, 2, 4, 9, 8] as
an effective means for video retrieval and search. It con-
denses a long video in such a way that moving objects
originally in different frames can be viewed simultane-
ously without occluding each other.

An important step in video synopsis is to generate
a time-lapse background video. It is usually achieved
by selecting n principal backgrounds from N ones with
n ¿ N . We call this “principal background selec-
tion” (PBS). The principal backgrounds should meet
two properties [3]: (i) It should reflect background
changes over time, such as the alternation of day and
night. (ii) It should be related with video activities,
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that is, backgrounds containing more moving objects
are preferred. A simple solution might be that using
time-lapse photography [7], selecting a background ev-
ery N/n frames. However, such homogeneous sam-
pling cannot meet the property (ii) of PBS. In fact, the
two properties may conflict with each other. Pritch [3]
proposed a PBS approach by combining two temporal
histograms with a weight to meet the two properties as a
trade-off solution. However, this method needs to store
all N original backgrounds, requiring a huge storage
space, and processes them offline.

In this paper, we propose an online PBS method
(OPBS) for video synopsis. This online method se-
lects backgrounds by processing a background frame
at a time without storage of all N background frames.
The selected backgrounds reflect not only background
changes over time but also video activities. The OPBS
enables an online selection of principal backgrounds
with a low memory cost, making it possible to build
an efficient online video synopsis system.

The rest of the paper is organized as follows: Section
2 presents the OPBS. Section 3 discusses the process of
video synopsis. Section 4 presents experimental results.

2. Online Principal Background Selection

In order to select principal backgrounds online, we
record two statistics as our preferences for each back-
ground. One is a constant 1, which indicates that each
background over time has an equal probability to be
selected. The other calculates total pixel numbers of
the corresponding foreground as activity information,
which means that the selection prefers backgrounds
containing more moving objects, as required by prop-
erty (ii). Then we construct two temporal histograms,
namely Ht and Ha, with these two statistics in each bin
and normalized respectively. In order to meet the two
properties of PBS, we follow Pritch’s work to construct
a third weighted histogram Hnew = λHa + (1− λ)Ht.
Then the objective of OPBS is to select n principal



backgrounds online so that the histogram Hnew is di-
vided into n equal parts, which means that we select
one background after a certain equal amount of frames
and activities. In the following, we present two algo-
rithms of OPBS: without and then with prediction. The
latter, based on the former, can better divide the area
under Hnew into n equal parts.

2.1 OPBS without Prediction

Refer to Fig. 1. Suppose n principal backgrounds
PB1, . . . , PBn have been selected at time t and let
CPB denote the candidate principal background that
will be considered at an appropriate time. Let Si be the
area between PBi and PBi+1 under Hnew, and denote
S = {Si, i = 1, . . . , n} as the set of all divided areas.
The x in Fig. 1 denotes the incoming area buffer. There
is no need to store every background actually; instead,
we just keep PB1, . . . , PBn, CPB and the activity in-
formation of new coming frames.
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Fig. 1. Illustration of OPBS

Denote Di as the frame set between PBi and
PBi+1, and Ni as the number of frames in Di. With
x we use the notation of Dx and Nx for the same pro-
pose. Also denote Ha(i) and Ht(i) by

Ha(i) =

∑Ni

j=1 aij

aall
,Ht(i) =

Ni

Nx +
∑n

j=1 Nj
, (1)

where aij is the activity information of the frame j in
Di, and the normalization factor aall is the sum of all
activity information. Then the area Si under Hnew is
calculated by Si = λHa(i) + (1 − λ)Ht(i). The cal-
culation of the area x is similar to Si. Because both
Ha and Ht are normalized histograms, the interpolated
histogram Hnew is also normalized. That is to say,
x +

∑n
i=1 Si = 1. It should be noted that the values of

Si and x dynamically change over time. In fact, when
a new frame arrives, aall will be added by the activity
information of this frame, and Nx will be added by 1.

After the calculation of Si and x, the variance of S
will be measured: vars = 1

n

∑n
i=1 (Si − µs)

2, where
µs is the mean of S and it is actually (1−x)/n. For the
increasing buffer x, at a certain time we merge it with S
in some way as shown in Fig. 2.

There are two choices in front of us. In Fig. 2a,
x becomes S

′
n, and two adjacent elements of S are

merged into S
′
j ; while in Fig. 2b, Sn and x are merged

1 j j+1 n

’ ’ ’ ’1 j n-1 n
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’ ’ ’ ’1 j j+1 n

(b)

Fig. 2. Two Situations of Merging

into S
′
n. x will be set to zero after merging. Obvi-

ously the one which has least variance will be chosen:
varx = 1

n

∑n
i=1 (S

′
i − µs′ )

2, where µs′ is the mean of
S
′
i(i = 1, . . . , n) and it is actually 1/n.

There are three situations between varx and vars.
(i) varx < vars, which means that the merging helps
to divide the area under Hnew into n equal parts. In this
case, S will be replaced by S

′
. (ii) vars ≤ varx < α ·

vars, where α is a constant. 1 In this case just let x keep
increasing and don’t launch the merging (iii) varx ≥
α · vars, which means that varx becomes undesirably
large, so x is forced to merge with S. With this method,
vars always has a low value, so the area under Hnew

can be divided into n equal parts as far as possible.

2.2 OPBS with Prediction

If we analyze the relationship between varx and
vars, and add the prediction to the method stated above,
a better solution will come out. According to the calcu-
lation of vars and varx, we further have

vars =
1
n

n∑

i=1

S2
i −

1
n2

(1− x)2, (2)

varx =
1
n

n∑

i=1

S
′
i

2 − 1
n2

. (3)

Let’s recall the process of the calculation of varx.
There are two situations to be considered:

a) Sj is merged with Sj+1 as shown in Fig. 2a. In

this case,
∑n

i=1 S
′
i

2
is given by

n∑

i=1

S
′
i

2
= x2 + 2SjSj+1 +

n∑

i=1

S2
i . (4)

Combine Equ. (2) (3) (4), we get

varx = (
1
n2

+
1
n

)x2 − 2
n2

x + vars +
2
n

SjSj+1.

(5)
1We find that 1.1 < α < 2.5 works well.



b) x is merged with Sn as shown in Fig. 2b. This
time

∑n
i=1 S

′
i

2
is given by

n∑

i=1

S
′
i

2
= x2 + 2Snx +

n∑

i=1

S2
i . (6)

Combine Equ. (2) (3) (6), we get

varx = (
1
n2

+
1
n

)x2+(
2
n

Sn− 2
n2

)x+vars. (7)

According to Equ. (5) (7), it is shown whatever
situation varx is calculated in, it is approximately a
quadratic function of x. We use the word “approxi-
mately” because Sj , Sj+1, Sn and vars are actually the
functions of x. However, when considering the predic-
tion, they are fixed. Furthermore, aall and

∑n
j=1 Nj

will become large numbers in Equ. (1) with the online
process of growing frames, hence Si, Sj , Sn and vars

don’t change much with x before merging.
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Fig. 3. Four cases of varx when varx ≥ vars

With Equ. (5) (7), we can predict varx with x, and
adopt appropriate decisions. If varx < vars, we just
merge x with S; otherwise, there are four cases about
varx as shown in Fig. 3:

a) min(varx) ≥ vars, which means whatever x is,
varx will not be less than vars. Hence x is merged
with S directly.

b) min(varx) < vars, x < xm, which means that
varx will be less than vars as x increases. So this
time there is no need to merge x with S.

c) min(varx) < vars, x ≥ xm, vars ≤ varx <
α · vars. In this case, the buffer x is always much
less than Si and just let it grow.

d) min(varx) < vars, x ≥ xm, varx ≥ α · vars,
which means that varx has no chance to be less
than vars. Hence we force x to be merged with S.

Due to the prediction stated above, the OPBS method
outputs a more stable result with less vars.

3. Video Synopsis

The process of video synopsis includes five steps [2]:

1) Background Estimation and Foreground Segmen-
tation. Background estimation can be achieved by
GMM [5]. In order to get the accurate foreground,
the “graph cut” technique [6] is used .

2) Background Selection. The job of this step is to
generate a time-lapse background video, which is
our main contribution in this work.

3) Tubes Extraction. It is done by tracking method
such as [10].

4) “Play Duration” Assignment. In this step, an en-
ergy function is minimized to determine when the
tubes should appear in the synopsis.

5) Stitching the synopsis video. The job here is to
stitch the tubes to the selected background. It can
be done by Poisson Image Editing [1].

4. Experimental Results

In order to show the efficiency of our algorithm, the
experiments are divided into two groups: 1) artificial
data; 2) real video data. We apply the same parameters
(α = 1.2, λ = 0.35) for all the experiments.

4.1 Artificial Data

Fig. 4a shows an artificial activity histogram as a
mixture of Gaussians. Our goal is to select 50 back-
grounds from 4000 frames. The result of selection by
OPBS with prediction is shown in Fig. 4b. The red verti-
cal lines denote the selection time. It is shown that more
backgrounds are selected from active periods while not

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1
x 10

−3

Time

A
ct

iv
it

y

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6
x 10

−4

Time

In
te

rp
o

la
te

  

 v
a

lu
e

   
   

 

(b)

5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

Si

A
re

a

(c)

Fig. 4. The Results of OPBS with prediction. (a) The input
activity histogram as a mixture of Gaussians. (b) Selection
result by the prediction method. (c) The area of each Si.



totally ignoring inactive periods. Fig. 4c represents the
area of Si(i = 1, . . . , 50) and the red dashed horizontal
line represents the average area of S. We can see that
each Si approximatively shares the same area.
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Fig. 5. Comparison between the OPBS with and without
prediction

Fig. 5 shows the comparison of the OPBS with and
without prediction. It is shown that the method with
prediction has a lower and more stable vars, which re-
flects the robustness of the prediction method.

4.2 Real Video Data

Fig. 6a shows the activity information of a real 24
hours street surveillance video (15 fps). The data is
normalized for display. It is shown that there are more
active objects during the day. This time our goal turns
into selecting 50 backgrounds from that of 24 hours!
Fig. 6b shows the selection result by OPBS with pre-
diction. We can see that more backgrounds are selected
from the day time while not totally neglecting the night
time. The total processing time for OPBS with predic-
tion on the 24 hours video is about 562 seconds at a
standard PC hardware (Intel Core2 Duo 3.00GHz CPU,
2GB Memory). Hence the average time for processing
a frame is 0.43ms, which is so fast that can be ignored.
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Fig. 6. (a) The activity information of a 24 hours street
surveillance video. (b) Selection result by OPBS with pre-
diction.

Fig. 7a is from the original street video, while Fig. 7b
shows the result of video synopsis with OPBS. It is
shown that different objects from different time are dis-
played at the same frame reasonably. Moreover, differ-
ent backgrounds over time are selected by OPBS.

(a)

(b)
Fig. 7. The result of video synopsis

5. Conclusion

Two versions of online PBS method for video syn-
opsis have been presented. Experiments on artificial
data and real video data show the validity of our algo-
rithms. Moreover, it can run at low memory cost on on-
line videos. As for the future work, we plan to develop
an online video synopsis system with OPBS.
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