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ABSTRACT

In this paper we propose a novel kernel sparse representation
classification (SRC) framework and utilize the local binary
pattern (LBP) descriptor in this framework for robust face
recognition. First we develop a kernel coordinate descen-
t (KCD) algorithm for /1 minimization in the kernel space,
which is based on the covariance update technique. Then we
extract LBP descriptors from each image and apply two types
of kernels (x? distance based and Hamming distance based)
with the proposed KCD algorithm under the SRC framework
for face recognition. Experiments on both the Extended Yale
B and the PIE face databases show that the proposed method
is more robust against noise, occlusion, and illumination vari-
ations, even with small number of training samples.

Index Terms— sparse representation, face recognition,
kernel, local binary pattern

1. INTRODUCTION

Face recognition is an important research area in computer vi-
sion. It has many useful applications in real life, such as face
attendance, access control, security surveillance, etc. Face
recognition is also a challenging problem, which suffers from
aging, occlusion, pose, illumination, and expression varia-
tions. Many researchers have been attracted to solve these
problems, making a great development in face recognition
techniques during the past two decades.

Recently Wright et al. proposed the SRC framework for
robust face recognition [1], which makes use of the well-
known /1-norm constrained least-square reconstruction min-
imization technique [2]. They showed that SRC obtained
impressive results against illumination variations, occlusions,
and random noise. In their work image pixel values were used
to represent faces. The training set needs to be carefully con-
structed, i.e. each subject in the training set is constituted with
many images representing various lighting conditions, so that
a probe image of certain illumination condition can be repre-
sented by a sparse linear combination of the training samples.
However, in realistic applications it is hard for every enrolled
user to have such varying lighting images. In terms of this

drawback, Yuan et al. [3] and Chan et al. [4] proposed to
utilize the LBP descriptor in the SRC framework, so that the
system would be more robust against illumination variations,
making it potentially possible to apply SRC for small-sample-
size face recognition problem.

LBP was originally proposed by Ojala et al. for texture
classification [5]. It is a binary string resulted from local
neighboring pixel comparisons. Ahonen et al. have applied
LBP to face recognition and proved that it is robust for illumi-
nation variations [6]. In [3], LBP is also employed to handle
illumination variations in face recognition, showing that it is
more robust than original pixel values under the SRC frame-
work. In their work the LBP encoded images were directly
used in the linear sparse representation system. However, s-
ince LBP codes are converted from binary comparisons, i.e.
they are not regular numerical values, thus it is not very rea-
sonable to linearly combine LBP encodings directly. Actually
LBP is mostly used in the form of histogram features count-
ed in local regions, and the x? distance is preferred to cal-
culate distance between two LBP histogram features [5, 6].
Different from [3], Chan et al. [4] proposed to extract LBP
histogram features instead for SRC based face recognition.

In this work, we propose a novel kernel SRC framework,
and apply it together with LBP descriptor to face recognition.
The contribution lies in two-folds. First, we propose a novel
kernel coordinate descent (KCD) algorithm with covariance
update technique for the /1 minimization problem in the ker-
nel space. Second, we further apply it in SRC framework to
face recognition, in which we are able to take advantage of
the powerful LBP descriptors in two types of kernels: the y?
distance based and the Hamming distance based. We conduct
several experiments on the Yale-B and the PIE face databases
to illustrate the effectiveness of the proposed approach.

2. KERNEL SPARSE REPRESENTATION WITH
LOCAL PATTERNS

2.1. Sparse Representation Classification

Suppose X = [x1,X2, "+ ,X,] € R™*" is a training dictio-
nary with each sample x; having zero mean and unit length,



then given a test sample y € R™, the /[; minimization solves
a linear representation of y in X with the Lasso constraint [2]
as follows
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where 8 € R" is a sparse vector. Given the solution from Eq.
(1), the SRC algorithm [1] classifies y based on
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where J.(+) is the characteristic function [1] that selects coef-
ficients related with the ¢t” class and makes the rest to zero.

2.2. Kernel Sparse Representation
Here we consider the Lasso problem of Eq. (1) in the kernel
space, i.e.
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where ¢(-) is an implicit mapping which maps a feature
vector to a kernel space. We assume that o(-) satisfies
o(x)To(x) = 1 when ||x|ls = 1. To solve Eq. (3), in the
following we develop a Kernel Coordinate Descent (KCD)
algorithm which employs the Coordinate Descent approach
[7] due to its simplicity and efficiency. First, taking partial
derivative of J(/3) with respect to 5, (3 0), we have
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Then similar with [7], by setting Eq. (4) to zero, we get the
update of 3; as
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and (s)4 equals s if s > 0, or 0 otherwise.

Further considering the covariance update idea suggested
in [7], Eq. (6) can be rewritten as
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where K (x,y) = ¢(x)T¢(y) is the kernel function. There-
fore, providing a kernel function K, the KCD algorithm is
able to update [ iteratively in kernel space by Eq. (5) and (7).

For classification, we also develop the corresponding
KCD-SRC criterion as follows
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where R = (K (x4, X;)),,..,, is the training kernel matrix, z =
(K(xi,¥)), «1» and I(7) is the class label of the i*" sample.

The kernelization of the Lasso problem (Eq. (1)) has also
been suggested by Yuan et al. [3] and Gao et al. [8]. In [3]
the formulation is addressed for a multi-task learning setting,
and the resulted optimization problem is solved via the ac-
celerated proximal gradient method [9]. Differently, our for-
mulation does not need to combine multiple features in face
recognition. For problem (3), based on feature-sign search
[10], Gao et al. developed a gradient descent algorithm by
finding the sparse codes and codebook alternatively [8]. In
their work, Gaussian kernel is employed for face recognition.
A drawback could be that simply using Gaussian kernel may
not achieve high efficiency under small dictionary. In con-
trast, here we use coordinate descent approach to solve the
optimization problem. The computation in each iteration is
simple and the convergence can be guaranteed [7]. Further-
more, other than Gaussian kernel, we will develop two types
of efficient kernels with LBP features below, resulting in high
performance under only a few training samples.

2.3. LBP with Kernels

LBP is a powerful descriptor [5] computed from local neigh-
boring pixel comparisons (see Fig. 1). It is a binary string of
length NV or a discrete label in {0, 1, - -- , 2V —1}, where N is
the number of neighboring pixels. LBP histogram with these
discrete bins is often computed from local image region, and
the x? distance is employed for image classification [5, 6].
Inspired by this, we first define our x? kernel as follows
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where a and b are two normalized LBP histograms with L =

N bins. It can be easily verified that 0 < K,» < 1 and
K,2(a,a) = 1. Alternatively, we propose another kernel
with hamming distance, which can be applied directly on LBP
images. The definition is

1 m
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where x and y are two LBP encoded images, and h(-,-) is
a function that counts the number of consistent bits between
two local binary patterns. Note that Kz also ranges in [0,1],
and Ky (x,x) = 1. With these two kernels, we are able to
apply the proposed KCD-SRC algorithm with LBP features
for face recognition.

3. EXPERIMENTS

To verify the effectiveness of the proposed method, several
experiments were conducted on the Extended Yale B [11]
and the CMU-PIE [12] face database. We tested the KCD-
SRC algorithm with LBP features and two kernels proposed
in Section 2.3. For convenience, we denote these two pro-
posed methods by “LBP-Kg” and “LBP-Hist-K, 2" respec-
tively.



Note that the proposed KCD-SRC algorithm with linear
kernel is actually equivalent as the original SRC algorithm
with coordinate descent solver for the /; minimization prob-
lem. Thus we also implemented two other methods in this
setting. One is the SRC algorithm with LBP histogram fea-
tures developed by [4] (denoted by “LBP-Hist”), and the other
is SRC with raw pixels proposed in [1] (denoted by “Pixel”).
For all experiments, the parameter \ was consistently set to
be 0.01 and the maximum iteration number was 100.

For the LBP-K i algorithm, the LBPg ; operator was per-
formed on each image for feature extraction. Then the algo-
rithm can be applied directly on the LBP encoded images. In
contrast, histograms of the LBPg?1 operator [6, 4] was com-
puted for the other two LBP based methods. For this the im-
age was first divided into non-overlapping subregions of 8 x 8
pixels. Then a 59-bin histogram was counted within each sub-
region and all sub-histograms were concatenated to form the
final representation. The final histogram was normalized to
unit length with /s-norm for LBP-Hist, and [, -norm for LBP-
Hist-K, > due to their corresponding requirements.

For each of the two databases we designed experiments in
three scenarios: with original images, with noise, and with oc-
clusion. For all experiments we randomly separated training
samples and testing samples from the database, and repeated
each evaluation for 10 times to obtain mean recognition rates
and the corresponding standard deviations.

3.1. On Extended Yale B Database

The Extended Yale B Database [11] consists of 16,128 facial
images of 38 subjects under 9 poses and 64 illumination con-
ditions. We selected 2,414 frontal images of all the 38 sub-
jects under 64 illumination conditions for experiments. All
faces are cropped to 64 x 56 pixels. Figure 1 shows some ex-
ample images from this database, with the corresponding LBP
encoded images. As we can see, under illumination variations
the LBP features could reserve more local image structures,
which benefits face recognition.
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Fig. 1. LBP operator (left) and samples of LBP encodings (right).

With Original Images: The performance of four al-
gorithms with original images from the Extended Yale B
database is shown in Figure 2. For each individual we ran-
domly chose 5,10,15,20,25,30 images for training and the rest
for testing. It can be seen from Figure 2 that, under different
amount of training samples, the proposed LBP-Kf; algorithm
consistently performs the best, followed by LBP-Hist-K, 2,
LBP-Hist, and Pixel. With the decreasing amount of training
samples, the performances of all algorithms generally drop.

However, LBP- K is the most robust one, with small perfor-
mance degradation. This is because the LBP operator encodes
intrinsic structure of individual face images with even small
training sample size, and the KCD-SRC framework success-
fully makes use of this advantage in the Hamming kernel. It
is impressive that under only five training samples, the recog-
nition rate of LBP-K g can still reach over 97% while that of
Pixel is only 70.18%, with over 20% improvement.
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Fig. 2. Performance with orig-
inal Extended Yale B images.

Fig. 3. Performance with noise
on Extended Yale B images.

With Noise: Next, we tested the robustness of the KCD-
SRC algorithm with noise corrupted images. In this experi-
ment we fixed the training sample size to be 5. Then for each
test image we randomly corrupted a proportion of pixels from
10% to 80% (with a step of 10%) with noise. These chosen
pixels were replaced by uniform distributed independent sam-
ples in [0, 255]. The recognition results are shown in Figure
3. As expected, the performance drops with the increasing
amount of noise. Besides, it can be observed that LBP-K y
outperforms all other algorithms notably.

Surprisingly, LBP-Hist and LBP-Hist-K, > drops drasti-
cally. They perform worse than Pixel after 30% of noise cor-
ruption. This may mainly due to the fact that local noise can
change the neighboring comparison results in some directions
(see Fig. 1), and so the affected LBP codes could disturb the
histogram distribution over LBP bins seriously because of the
discrete nature of LBP. To illustrate this, we draw an example
in Figure 4 showing local LBP histograms with and without
noise. Clearly, the distribution of LBP codes in the same re-
gion is severely affected by noise. In contrast, since Hamming
kernel is calculated bitwisely, the ruined local comparisons
might affect only a fraction (e.g. 30%) of Hamming counts.
Therefore LBP-K 5 is more robust against noise.
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Fig. 4. An example of LBP histograms in a 8 x 8 local region without
noise (left) and with 30% of noise (right).

With Occlusion: Finally we conducted experiments with
random contiguous occlusions. Like in [1], we chose an ir-



related picture, resized it and attached it on each test image
in an independent random position. 7 levels of occlusions
were tested, with the size of the attached picture correspond-
ingto 8 x 7,16 x 14, - - -, 56 x 49 respectively (see Figure 5).
We also evaluated the four algorithms in this scenario, with
randomly selected 5 samples per subject for training. Figure
5 shows corresponding results under different levels of occlu-
sions. As illustrated, LBP- Kf; performs the best, followed by
LBP-Hist-K, 2, LBP-Hist, and Pixel. Obviously, LBP based
methods are more robust against occlusion, compared to raw
pixel based one. With the same LBP histograms, the proposed
KCD-SRC with x? kernel slightly outperforms that with lin-
ear kernel. It is also observed that the performances of all
algorithms drop with the increasing amount of occlusion. It
should be noticed that Hamming kernel with LBP maintains
over 90% recognition rate even with up to 56% of occlusion.
It outperforms the second best algorithm (LBP-Hist-K,2) by
over 15% for all the 7 levels of occlusions.
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Fig. 5. Performance (right) under 7-levels occlusion (left) on Yale B
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3.2. On PIE Database

Similar experiments were also done on the CMU-PIE database
[12]. CMU-PIE database is built up with 41,368 images of
68 subjects under 13 different poses, 43 different illumination
conditions, and with 4 different expressions. We only se-
lected frontal face images for experiments, and cropped and
resized them to 64 x 64 [13]. Due to the limited space, we
only show experiment results with five training samples per
subject in Table 1. In the results the noise level is 50%, and
the occlusion level is 56.25% (48 x 48).

From Table 1 we can see that with original images all LBP
based method perform consistently well. They have little dif-
ference because of the increased dimensions. Similar with the
Extended Yale B database, LBP-Hist and LBP-Hist- K, > have
very low recognition rates with random noise. Yet LBP-Kf;
and Pixel are affected less by noise. As for the occlusion sce-
narios, LBP based methods perform much better than Pixel.
Clearly, LBP-Kf is again the best algorithm among all.

4. CONCLUSION

In this paper, we have proposed a novel kernel coordinate de-
scent (KCD) algorithm based on the covariance update tech-
nique for /; minimization problem in the kernel space. We

Table 1. Recognition Rates on CMU-PIE (%).

Pixel LBP-Hist |LBP-Hist-K,2| LBP-Ky
Original {90.55+1.13]95.98+£0.56| 96.08+£0.66 |94.66+1.15
Noise |68.12+4.32| 2.12+0.75 | 6.15+1.65 |85.40+1.38
Occlusion [48.81+£1.39|77.03+1.22| 80.88+1.51 |88.99+1.10

have applied the new algorithm in the sparse representation
classification framework (which we call KCD-SRC) for face
recognition, and have shown that the powerful LBP descrip-
tor can be utilized in the proposed framework with two ker-
nels based on the x? distance and the Hamming distance. We
have evaluated the proposed approach on both the Extended
Yale B and the CMU-PIE face database. Experimental result-
s show that KCD-SRC with LBP encodings and Hamming
kernel performs impressively well against illumination vari-
ations, random noise, and continuous occlusions, even when
there are only 5 training samples per subject. In most cases
this combination can achieve 90% recognition rate, outper-
forming the original SRC with raw pixel values by 20% in
the same experimental settings.
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