
Supplementary Materials:
Kernel Sparse Representation with Pixel-level and

Region-level Local Feature Kernels For Face Recognition

Cuicui Kang∗, Shengcai Liao, Shiming Xiang, Chunhong Pan

1. Comparison with KMTJ

We compared the proposed KCDSRC algorithm with the KMTJSRC algorithm [3]

on the Extended YaleB and the CMU-PIE databases. The proposed LBPh-KH kernel

is used due to its best overall performance than the other kernels. The experiment is

conducted under three conditions, illumination, random noise, and synthesized continu-

ous occlusion, where the settings are the same as we have applied before. The KMTJ

source code which is used in our experiment is available on the author’s homepage1. The

parameters of KMTJ used in the experiment are the same as the KCD. The recognition

results along with their standard deviations are shown in Fig.s1. In each figure there are

four curves, which stand for the KCDSRC method with LBPh-KH kernel on the Extend-

ed YaleB and the CMU-PIE (YaleKCD & PieKCD), and the KMTJSRC method with

LBPh-KH method on the Extended YaleB and the CMU-PIE (YaleKMTJ & PieKMTJ)

respectively.

On the left of Fig.s1, it is the recognition results of the KCDSRC and KMTJSRC

algorithms tested on original images of the YaleB and the CMU-PIE databases. We can

see that the performance on the CME-PIE is better than on the YaleB, which is also

occurred in the illumination part subsection 4.2. And the reason lies in the stronger

illumination changes on the YaleB database compared to the CMU-PIE (see Fig.6). It

can also be observed that the KCDSRC with LBPh-KH kernel performs better than

the KMTJSRC with LBPh-KH on both the YaleB and the CMU-PIE databases. With

∗Corresponding Author. Email: cckang@nlpr.ia.ac.cn. Phone: +86 01062612582
1https://sites.google.com/site/xtyuan1980/publications.

Preprint submitted to Elsevier May 3, 2013

0 5 10 15 20 25 30 35
94

95

96

97

98

99

100

Number of Training Sample

A
cc

u
ac

y
 (

%
)

PieKCD
PieKMTJ
YaleKCD
YaleKMTJ

0 20 40 60 80
0

20

40

60

80

100

Noise (%)

A
cc

u
ac

y
 (

%
)

PieKCD
PieKMTJ
YaleKCD
YaleKMTJ

0 20 40 60 80
50

60

70

80

90

100

Occlusion (%)

A
cc

u
ac

y
 (

%
)

PieKCD
PieKMTJ
YaleKCD
YaleKMTJ

Figure s1: Comparison of KCD and KMTJ on the Extended YaleB and PIE databases with illumination

(left), random noise (middle) and synthesized continuous occlusion (right).

the increasing number of the training samples, both the KCDSRC and the KMTJSRC

achieve higher performances, and they are almost the same at last. In the middle of

Fig.s1, experiments with noise show that he KCDSRC algorithm also outperforms the

KMTJSRC algorithm. This is consistent with the experiments with occlusions, of which

the performances are shown on the right of Fig.s1. Interestingly, the performance gain

of KCDSRC compared to KMTJSRC is larger under more difficult settings, for example,

smaller number of training samples, and larger occlusions.

2. LBPh-KH

p q

1 1 1

0 0 1

1 0 0

0 1 0

p’ q’ p’*q’

1 1 1

-1 -1 1

1 -1 -1

-1 1 -1

Figure s2: XNOR truth table (left) and the corresponding results of the entry-wise multiplication (right)

obtained from the modified encoding (replacing 0 by -1).

It should be pointed out that the proposed LBPh-KH is equivalent to the linear kernel

when the linear kernel is applied to a modified LBP encoding where all 0’s in the original

LBP encoding are replaced by -1’s. Fig.s2 shows the truth table of the XNOR operator

used in KH , and the corresponding entry-wise multiplication results obtained from the

modified LBP encoding. Suppose n is the length of two binary strings a and b to be

compared, and k bits of them are the same between the two binary strings. Then, we

get the Hamming distance based kernel KH(a,b) = k/n. For the linear kernel, from
2

Fig. s2 we know that the entry-wise multiplication of the two modified LBP encodings a′

and b′ results in k 1’s and (n− k) -1’s. Hence, we get Klinear(a
′,b′) = 1/n

∑
i a

′
i ∗ b′i =

k/n− (n− k)/n = 2k/n− 1. Therefore, we can infer that,

KH(a,b) =
Klinear(a

′,b′) + 1

2
, (s1)

From Eq.(s1), we can see that the proposedKH can be implemented byKlinear. However,

KH is more efficient than Klinear since the storage of binary bits is less than decimal

numbers, and the most important, the XOR operator in KH (see Eq.(16))is much faster

than the multiplication operation in the Klinear. Therefore, computing the kernel matrix

via the original KH defined in Eq.(16) is better than via the Klinear.

3

