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Abstract

Face recognition has been popular in pattern recognition field for decades, but it is still a

difficult problem due to the various image distortions. Recently, Sparse Representation

based Classification (SRC) was proposed as a novel image classification approach, which

is very effective with sufficient training samples for each class. However, the performance

drops when the number of training samples is limited. In this paper, we show that effec-

tive local image features and appropriate nonlinear kernels are needed in deriving a better

classification method based on sparse representation. Thus, we propose a novel kernel

SRC framework and utilize effective local image features in this framework for robust

face recognition. First, we present a kernel coordinate descent (KCD) algorithm for the

LASSO problem in the kernel space, and we successfully integrate it in the SRC frame-

work (called KCD-SRC) for face recognition. Second, we employ local image features

and develop both pixel-level and region-level kernels for KCD-SRC based face recogni-

tion, making it discriminative and robust against illumination variations and occlusions.

Extensive experiments are conducted on three public face databases (Extended YaleB,

CMU-PIE and AR) under illumination variations, noise corruptions, continuous occlu-

sions, and registration errors, demonstrating excellent performances of the KCD-SRC

algorithm combining with the proposed kernels.
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1. Introduction

Face recognition is an important research area in computer vision. It has many useful

applications in real life, such as face attendance, access control, security surveillance, etc.

Face recognition is also a challenging problem, which suffers from aging, occlusion, and

intra-personal variations with pose, illumination, and expression. Many researchers have

been attracted to solve these problems, making a great development in face recognition

techniques during the past two decades.

Recently, Wright et al. proposed the Sparse Representation based Classification (SR-

C) framework for robust face recognition [1], which makes use of the well-known ℓ1-norm

constrained least-square reconstruction technique (LASSO) [2]. In their work image pixel

values are used to represent faces. The training set needs to be carefully constructed,

that is, each subject in the training set is constituted with many images representing

various lighting conditions. Thus a probe image of certain illumination condition can be

represented by a sparse linear combination of the training samples. However, in realistic

applications it is hard for every enrolled user to have such varying lighting images. When

the number of available images per subject is limited, the linear SRC method may have

difficulty in learning the correct representation. Fig.1 shows an example where the linear

SRC method (denoted as Pixel Linear) fails to identify a probe face image with severe

illumination changes, when only five images per subject are available in the gallery.

The basic assumption in the original SRC algorithm is that the probe image can

be linearly represented by gallery images of the same class. However, this assumption

is hard to hold in difficult scenarios, for example, illumination variations and occlusions

may be present in the probe face image but meanwhile the gallery may have small sample

size. Therefore, nonlinear features and nonlinear kernels are needed to deal with difficult

face recognition problems. Yuan et al. [3], Min et al. [4] and Chan et al. [5] proposed

to utilize the Local Binary Pattern (LBP) descriptor [6] in the SRC framework, so that

the system would be more robust against illumination variations, making it potentially

possible to apply SRC for small-sample-size face recognition problem.

LBP descriptor was originally proposed by Ojala et al. for texture classification [6].

It is a binary string (often converted to the corresponding decimal number as a label)

resulted from local neighboring pixel comparisons. Ahonen et al. have applied LBP to
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Figure 1: Sparse codings (blue bars) and residuals (green bars) by three kernel methods in representing

a probe face image (left) in terms of a gallery of 38 subjects (5 images per subject) from the Extended

YaleB database. Pixel Linear denotes the linear SRC method with raw image pixels as features. LBP-

Hist-Kχ2 denotes kernel SRC with LBP histogram based χ2 kernel. LBPh-KH denotes kernel SRC with

the proposed LBP binary string and Hamming distance based kernel. The first five images in the gallery

have the same identity with the probe image.

face recognition and proved that it is robust for illumination variations [7, 8]. In [3],

the LBP encoded images were directly used in the linear SRC system. However, since

LBP codes are converted from binary comparisons, i.e. they are labels but not regular

numerical values, thus it is not very reasonable to linearly combine LBP values directly.

Actually, LBP is mostly used in the form of histogram features counted in local regions,

and the χ2 distance is preferred to calculate distance between two LBP histogram features

[6, 7]. Different from [3], Chan et al. [5] proposed to extract LBP histogram features

instead of single label for linear SRC based face recognition. However, in all these studies,

LBP histogram features have only been integrated in the linear SRC algorithm, which is

not able to further discover nonlinear relationships between probe and gallery images via

useful nonlinear kernels, such as the histogram intersection and χ2 kernels. Therefore, in

this paper, we propose a kernel SRC based algorithm to effectively integrate nonlinear

features in nonlinear kernels for face recognition. In the examples of Fig.1, it shows that

kernel SRC with LBP histogram based χ2 kernel can deal with illumination variations

better than the linear SRC method.

The original LBP, as shown in Fig.2, encodes each 3 × 3 local region by comparing

the center pixel value with the 8 neighboring pixels and concatenate the results. Thus,

the LBP feature is actually a binary string. Motivated by this, in this paper, we further
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develop an effective local image feature and Hamming distance based kernel (LBPh-KH),

for better utilizing the advantages of LBP features. Note that while LBP histogram based

kernels work in region-level, LBPh-KH is a pixel-level kernel which can represent local

image details better. In Fig.1 it can be observed that, the proposed LBPh-KH is better

than LBP in representing the probe face having severe illumination changes. The success

is because with the proposed nonlinear kernel, the relationship between the probe image

and the gallery images of the same class can be better discovered.

Therefore, in this work, we propose a novel kernel SRC framework, and apply it

together with local image descriptors to face recognition. The contributions can be

highlighted as follows.

1. We propose a novel kernel coordinate descent (KCD) algorithm with covariant

update technique for the kernel LASSO problem.

2. The KCD algorithm is further applied to face recognition in the SRC framework

(KCD-SRC), which enables many effective similarity kernels to be used in the SRC

framework for face recognition.

3. We integrate the well-known LBP features into the proposed KCD-SRC framework,

where both χ2 distance based and histogram intersection (HI) based kernels can

be successfully applied for effective face recognition.

4. Furthermore, we propose a new pixel-level kernel for the LBP feature, denoted

as LBPh-KH , to the KCD-SRC based face recognition. We show that this sim-

ple kernel is fast and robust for face recognition under occlusion and illumination

variations.

We have conducted extensive experiments on the Extended YaleB, CMU-PIE and the

AR face databases to illustrate the effectiveness of the proposed approach in four sce-

narios, including illumination variations, noise corruptions, occlusions, and registration

errors. The results demonstrate that the kernel enabled methods are more effective and

robust than methods without kernel. For example, in many situations, KCD-SRC with

LBPh-KH outperforms raw pixel based SRC method with more than 20% recognition

rates under only five training samples per subject.

This work is based on our preliminary work in [9]. The main improvement is the

development of the LBPh-KH kernel, which utilizes only one half of the LBP encodings.
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We demonstrate that LBPh-KH is equivalent to the KH kernel that we have proposed in

[9], but reduces one half of the computation. It is also equivalent to the linear kernel by a

modification to the LBP encoding, but LBPh-KH is more efficient. It is impressive that

while the computation time of LBPh-KH based KCD-SRC method is comparable to that

of raw pixels based, the former performs much better. Other main changes contained in

this paper include,

1. We give a more detailed formulation of the proposed KCD-SRC algorithm.

2. The HI kernel is evaluated in addition to the χ2 kernel for LBP histogram based

KCD-SRC algorithm.

3. The AR database is included for evaluation in real occlusion scenarios (with sun-

glasses and scarf).

4. Extended experiments are performed on the CMU-PIE database with various sce-

narios.

5. A more challenging scenario, misalignment, is evaluated to test the proposed meth-

ods for face recognition, including both synthesized and real registration errors.

1.1. Related Work

The kernel LASSO problem (Eq.(2)) has also been suggested by Yuan et al. [3]

and Gao et al. [10]. In the work of Yuan et al. [3], the formulation is addressed in

a multi-task learning setting, and the resulted optimization problem is solved via the

accelerated proximal gradient method [11]. Differently, our formulation does not need to

combine multiple features in face recognition. The LBP descriptor is also utilized in their

work. However, they combined the gray-level images and LBP encoded images directly to

represent each face image, which resulted in a two-task classification problem using sparse

representation. As mentioned before, directly operating on LBP labels in a numerical way

lacks of physical meanings. In contrast, we suggest applying LBP histograms extracted

from local regions for our kernel formulation. In addition, we propose a new LBPh-KH

kernel, which works in pixel-level and it is effective for kernel SRC based face recognition.

Grounded on the feature-sign search [12] algorithm, Gao et al. [10] developed a

gradient descent algorithm for finding the sparse codes and the dictionary, alternatively,

in the kernel space. In their work, Gaussian kernel is employed for face recognition.
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A drawback could be that, giving limited number of training samples, simply using

Gaussian kernel may not achieve good performance. In contrast, we apply the coordinate

descent based approach to solve the kernel LASSO problem. The computation in each

iteration is simple and the convergence can be guaranteed [13]. Furthermore, other than

Gaussian kernel, we propose to employ local image feature based kernels, resulting in

high performance under only a few training samples per class.

There are also other existing papers working on deriving kernel LASSO algorithms in

the machine learning research field, like Wang et al. [14] and Roth [15]. These approaches

are targeting on the general regression problem, which is not the main focus of this paper.

LBP descriptor has been proved to be robust under illumination variations, and it is

widely applied for face recognition [7]. Typically, Min et al. [4] and Chan et al. [5] have

applied LBP features in the SRC framework for face recognition. In their methods, LBP

was employed in a popular way where histograms are calculated to gain the performance.

In the work of Chan et al. [5], multi-scale LBP histograms are applied to the original

SRC framework. They also proved that LBP histogram feature is robust to illumination

changes and misalignment. In contrast, Min et al. [4] proposed a pyramid architecture

based SRC algorithm with LBP features. However, these two approaches are not able to

employ effective kernels (e.g. χ2) for LBP histogram features. Moreover, the region-level

LBP histograms are sensitive to image noises (which will be demonstrated later).

Instead of using LBP histograms, a more straightforward way is to use the LBP binary

string directly for image representation. Bai et al. [16] proposed a face recognition method

by applying the Hamming distance to measure the difference between two LBP binary

strings, and classification is done by a hierarchical model called Multi-expert Intelligent

Decision System (MIDS). Yao et al. [17] also proposed to apply the Hamming distance

for LBP binary string based representation. Further with a point-to-point matching

similarity measure, they showed a better performance over the LBP histogram and χ2

based [7] matching method. Previously, in [9] we also applied the Hamming distance

on LBP features to measure the difference between two LBP images, and hence derived

a kernel called KH for kernel SRC based face recognition. In this paper, we further

propose the LBPh-KH , which utilizes only half of the LBP encodings, and applies the

Hamming distance to measure the difference between two reduced LBP encodings. The
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main contribution is that we give a novel view of this kind of kernel, and we reduce half

of the computation compared to the previous kernel. We will show more details in the

main text.

Many efforts have been made to deal with the occluded face recognition problem,

including subspace based methods [18, 19, 20, 21], SVM based methods [22, 23], SRC

based methods [1, 24, 3, 4, 9, 25], and so on. SRC is a recent approach that has been

shown to be effective for face recognition under occlusion, and our effort is also along

this direction.

1.2. Organization

The remainder of this paper is organized as follows. Section 2 illustrates how to solve

the kernel LASSO problem using coordinate descent technique and how to combine it

with the SRC framework in detail. Section 3 describes two kinds of local image kernels

in both pixel-level and region-level for KCD-SRC based face recognition. In Section 4, a

series of experiments are conducted on the Extended YaleB, the CMU-PIE, and the AR

face databases to verify the effectiveness of the proposed approach. Finally, we give a

discussion in Section 5, and conclude this paper in Section 6.

2. Kernel Sparse Representation based Classification

2.1. Sparse Representation based Classification

Wright et al. exploited the sparsity to classification in [1], showing that sparse rep-

resentation is effective for face recognition under illumination variations and occlusions.

Their approach, known as SRC, is developed on the prior knowledge that a probe image

has a strong relationship with its buddies and a weaker relationship with the others.

When it is integrated with the important characteristic of LASSO [2] that can shrink

parts of the coefficients to zero, it displays a remarkable performance for classification.

The problem can be addressed as follows. Suppose we are given sufficient training

samples for every individual, and xi,j is the descriptor of j-th sample for the i-th individ-

ual. Accordingly, we can construct the bases matrix as X = [X1,X2, . . . ,Xk] ∈ Rd×n,

where the sub-matrix Xi = [xi,1,xi,2, . . . ,xi,ni ] ∈ Rd×ni is the bases matrix of the i-th

individual, d is the feature dimensionality, and n = n1 + n2 + . . .+ nk is the number of
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training samples for all of the k individuals. The matrix X is also called as the dictionary.

Given a probe sample y ∈ Rd, the linear representation of y in terms of X can be written

as

y = Xβββ, (1)

where βββ is the coefficient vector. If the individual referred by y has been included in

the bases matrix X, the resulting coefficient vector βββ is tend to be a sparse vector whose

most none zero entries are associated with the corresponding individual in the gallery.

Considering this, in order to ensure the sparsity of βββ and recover it as precise as possible,

SRC casts ℓ1-norm minimization as the following optimization problem

min
βββ

1

2
∥Xβββ − y∥22 + λ∥βββ∥1, (2)

where ∥βββ∥1 =
∑n

j=1 |βj | denotes the ℓ1 norm of βββ, and λ ≥ 0 is a constant parameter

for sparsity. Then we can identity y once the solution to Eq.(2) is obtained. The class

identity of y is based on the minimization of residuals:

min
c

residualc(y) = ∥Xδc(βββ)− y∥22, (3)

where δc(βββ) is a function that selects the coefficients corresponding to the c-th class and

makes the rest to zero. For k classes there are k δc functions, which result in k residuals.

Thus SRC algorithm labels y to the class that has the minimum residual.

2.2. Kernel Sparse Representation based Classification

The well-known LASSO problem, i.e. the linear regression problem with the ℓ1-norm

penalty, was first proposed by Tibshirani in [2]. Since then, many researchers have been

attracted to this problem. Given n observations with zero means and unit lengths in

X = [x1,x2, · · · ,xn] ∈ Rd×n, and their respondences y ∈ Rd, the task of LASSO can be

written as the following optimization problem

min
βββ

1

2

∥∥∥∑n

i=1
βixi − y

∥∥∥2
2
+ λ∥βββ∥1, (4)

where ∥βββ∥1 is the Lasso penalty, and λ ≥ 0 is a constant weight. In this paper, we focus

on the LASSO problem of Eq.(4) in kernel space, i.e.

min
βββ

J(βββ)
.
=

1

2

∥∥∥∑n

i=1
βiφ(xi)− φ(y)

∥∥∥2
2
+ λ∥βββ∥1, (5)
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where φ(·) is an implicit mapping which maps a feature vector to a kernel space. We

assume that φ(·) satisfies φ(x)Tφ(x) = 1. To solve the kernel LASSO of Eq.(5), we

develop the KCD algorithm which employs the Coordinate Descent approach [13] due

to its simplicity and efficiency. Given all βi fixed except for i = j, minimizing Eq.(5) is

equivalent to minimizing
1

2
∥βjφ(xj)− r̂j∥22 + λ|βj |, (6)

where r̂j
.
= φ(y)−

∑n
i=1,i̸=j β̂iφ(xi) is the partial residual [13] for fitting βj . Considering

that φ(xj)
Tφ(xj) = 1, Eq.(6) is further equivalent to

Jj(βj)
.
=

1

2
β2
j − α̂jβj + λ|βj |, (7)

where α̂j
.
= φ(xj)

T r̂j is the residual correlation. If βj ̸= 0, by taking
∂Jj(βj)

∂βj
= 0

in Eq.(7), we get the minimizers as α̂j − λ for βj > 0, and α̂j + λ for βj < 0. The

corresponding conditions are α̂j > λ and α̂j < −λ, respectively. Otherwise, if |α̂j | ≤ λ,

we have

Jj(βj) ≥
1

2
β2
j − α̂jβj + |α̂jβj | ≥ 0. (8)

The equality holds if and only if βj = 0. Consequently, the coordinate-wise update of βj

is

βj ← β′
j
.
=


α̂j − λ, if α̂j > λ,

α̂j + λ, if α̂j < −λ,

0, if |α̂j | ≤ λ.

(9)

This update, denoted as βj ← sign(α̂j)(|α̂j | − λ)+, is the well-known soft-thresholding

shrinkage operation [26, 2].

Now that

α̂j = φ(xj)
T r̂j = φ(xj)

T
[
φ(y)−

∑n

i=1,i̸=j
β̂iφ(xi)

]
, (10)

it can be rewritten as

α̂ = K(xj ,y)−
∑n

i=1,i ̸=j
β̂iK(xj ,xi), (11)

where K(x,y)
.
= φ(x)Tφ(y) is the kernel function and K(x,x)

.
= φ(x)Tφ(x) = 1. This

is a kernel extension of the covariance update idea suggested in [13]. Therefore, providing
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a kernel function K, the above proposed KCD algorithm is able to update βββ iteratively

in kernel space by Eq.(9) and Eq.(11).

For classification, we developed the corresponding kernel SRC criterion as follows

identity = argmin
c

∥∥∥∥∑l(i)=c
βiφ(xi)− φ(y)

∥∥∥∥2
2

=argmin
c

δc(βββ)
TRδc(βββ)− 2zT δc(βββ),

(12)

where R
.
= (K(xi,xj))n×n is the training kernel matrix, z

.
= (K(xi,y))n×1 contains

correlation coefficients in the kernel space, and l(i) is the class label of the i-th sample.

The resulting algorithm, named KCD-SRC, is summarized in Algorithm 1.

Algorithm 1: KCD-SRC

Data: Kernel matrix R, correlation vector z, and Lasso parameter λ ≥ 0.

Result: β̂ββ for Eq.(5).

1 Init: β̂ββ = 0.

2 Sparse Coding Stage:

3 while not converged do

4 for j = 1 to n do

5 α̂j ← zj −
∑n

i=1,i ̸=j β̂iRji;

6 β̂j ← sign(α̂j)(|α̂j | − λ)+;

7 end

8 end

9 Classification Stage: identity = argminc δc(βββ)
TRδc(βββ)− 2zT δc(βββ).

3. LBP Based Kernels

3.1. Region-Level Kernels

Our region-level kernels are based on the well-known LBP features [6]. LBP is an

effective local image descriptor, and has been successfully applied to face recognition [7].

The original LBP is an 8-bits binary string or a corresponding decimal label extracted

from the local neighboring pixel comparisons, as shown in Fig.2. Uniform LBP [27] is an

extension of the original LBP that only counts LBP patterns with no more than two 0-1 or
10



Figure 2: LBP operator.

1-0 transitions in the circular encoding string. This results in 58 uniform LBP patterns,

and all other patterns are considered in an additional group. Various works [6, 7, 5] have

shown that LBP features are discriminative and robust against illumination variations.

In this work, we develop several region-level image kernels based on the above LBP

histogram representation. The process of the LBP histogram representation is demon-

strated in Fig.3. First, the face image is divided into non-overlapping subregions of 8×8

pixels. Then the uniform LBP histogram (59 bins) is computed within each subregion

and all resulting histograms are concatenated to form the final representation.

We utilize the χ2 [6, 7] and the HI [7] kernels for the LBP histogram representation,

which are defined as

Kχ2(a,b) =
∑L

i=1

2aibi
ai + bi

, (13)

KHI(a,b) =
∑L

i=1
min(ai, bi), (14)

where a and b (
∑L

i=1 ai =
∑L

i=1 bi = 1) are two normalized LBP histograms with L

histogram bins (L = 59 in this paper). It can be easily verified that 0 ≤ Kχ2 ≤ 1, and

0 ≤ KHI ≤ 1. What’s more, ∀a, Kχ2(a,a) = 1, and KHI(a,a) = 1, which are required

by our KCD-SRC algorithm (see Eq.(7)). To compare with the LBP based linear SRC

method proposed in [5], we also apply the linear kernel with the same LBP histogram

representation in the KCD-SRC framework, which is defined as

Klinear(a,b) = aTb, (15)

where all feature vectors should be normalized to unit length with the ℓ2 norm, so that

∀a, Klinear(a,a) = 1.

3.2. Pixel-Level Kernel

While LBP histogram representation based kernels are robust to illumination changes

and misalignment to some extent [5], these region-level kernels lose spatial information
11



Figure 3: Process of the LBP histogram representation for the linear, χ2, and HI kernels.

about local image details. Therefore, LBP histogram based kernels may be limited in

fine discrimination of similar faces. In contrast, we propose another kernel working in

pixel-level, named as half LBP based hamming kernel (LBPh-KH).

Before introducing the LBPh-KH , we give a brief review of the LBP-KH proposed

in our previous work [9]. As we have said, LBP is actually a binary string, and the

corresponding decimal number is meaningless other than a label. Thus, if the image pixels

are affected by noise or other image degradation, the corresponding decimal number may

change extremely and irregularly, which makes the region-level histogram representation

unstable. Therefore, the well-known Hamming distance [28] metric in information theory

has been introduced to measure the dissimilarity between two LBP encoding strings

directly. Applying the Hamming distance to LBP binary strings, we define the following

Hamming Kernel (KH) to measure the similarity between two LBP binary strings,

KH(s′, s′′) = 1− 1

N

∑N

i=1
s′i ⊕ s′′i =

1

N

∑N

i=1
s′i ⊙ s′′i , (16)

where s′ and s′′ are two LBP binary strings, ⊕ is the Exclusive Or (XOR) operator, ⊙

denotes the Exclusive NOR (XNOR) operator, and N is the number of the defined LBP

neighbors. For example, as in Fig.2, LBP8,1 code is computed from 8 neighboring points.

In this way, each pixel is represented as an 8-bits binary string. However, the pixelwise

LBP-KH computes redundant comparisons (see details below). Therefore, instead of

applying the original LBP encodings of two images to the KH kernel, we propose to use

half of the LBP (LBPh) encodings for the KH kernel in this paper.

In the original LBP, each pixel is compared with the 8 neighboring pixels (see Fig.2).

As a result, each pixelwise comparison is computed twice in LBP, thus half of the com-

parisons are redundant in the whole LBP encodings. Such as in Fig.4(a), where the
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Figure 4: (a) Pixels and their relationships in LBP encodings. It shows that the LBP encoding of

pixel 10 recomputes the relationship with pixel 6 and 7, respectively. In other words, the relationship

between pixel 6 and pixel 10, pixel 6 and pixel 7, as well as pixel 7 and pixel 10 have been counted

twice. (b)Half LBP encoding (LBPh), which are shown in solid lines. (c) Pixels and their relationships

in LBPh encodings. In this subfigure the redundant comparisons are got rid of by using LBPh.

relationships between pixel 6 and pixel 7, pixel 6 and pixel 10, as well as pixel 7 and pix-

el 10 are computed twice. In contrast, LBPh only calculates pixelwise comparisons with

the nearest neighbors in 4 orientations, as the solid lines in Fig.4(b). Therefore, there is

no redundant computation in LBPh-KH but rich local image details are remained. This

is clearly displayed in Fig.4(c), where all neighboring relationships are compared and no

redundant comparison exists. Note that the LBP binary string based KH kernel (both

of the LBP-KH and the LBPh-KH) ranges in [0,1], and KH(a,a) = 1, where a is a LBP

binary string.

Figure 5: LBPh-KH with additive image noise (top) and illumination variations (bottom). Left: image

patches. Right: LBPh-KH values at the center pixel.

Furthermore, LBPh is computationally more efficient than LBP because redundant

computation in LBP is avoided in LBPh and saves half of the storage memory in the

results. It is also efficient for the KH calculation since the feature length of LBPh is also

half of the LBP’s. Fig.5 demonstrates the robustness of LBPh-KH , where the original

image has been changed by noise and almost doubled illumination intensity, but the

LBPh-KH values remain the same or not much affected. Besides, the proposed LBPh-
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KH is equivalent to the linear kernel when the linear kernel is applied to a modified

LBP encoding where all 0’s in the original LBP encoding are replaced by -1’s (details in

Supplementary Part 2).

4. Experiments

In this section, a series of experiments are conducted on the Extended YaleB [29], the

CMU-PIE [30] and the AR [31] face databases to verify the effectiveness of the proposed

method. The experiments are designed in four scenarios: i) with illumination variations;

ii) with different levels of simulated noises; iii) with synthesized occlusions and real

occlusions; and iv) with registration errors. For all experiments we randomly separated

gallery images and probe images from a database for face identification, and the rank-1

recognition rate is used as the performance measure. We repeated each evaluation for ten

times to obtain the mean recognition rates and the corresponding standard deviations.

The KCD-SRC algorithm with local image feature kernels proposed in Section 3

are tested for face recognition in all experiments. For convenience, we denote the two

proposed kernels based on LBP histogram features by “LBP-Hist-Kχ2” (Eq.(13)) and

“LBP-Hist-KHI” (Eq.(14)), respectively. Note that the proposed KCD-SRC algorithm

with linear kernel (Eq.(15)) is actually equivalent to the original SRC algorithm with

the coordinate descent solver for the ℓ1 minimization problem. Thus we also implement

two other existing methods in this setting for comparison. One is the SRC algorithm

with LBP histogram features developed in [5] (denoted by “LBP-Hist”), and the other

is SRC with raw pixels proposed in [1] (denoted by “Pixel” for convenience). For all

experiments, the parameter λ is consistently set to be 0.01 and the maximum iteration

number is 100.

4.1. Database

The Extended YaleB [29] Database consists of 16,128 face images of 38 subjects

under 9 poses and 64 illumination conditions. In the experiments, we selected 2,414

frontal face images of the 38 subjects under 64 illumination conditions. The original

cropped face images provided are 192× 168 pixels. We resize all the cropped images to
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(a)

(b)

(c)

Figure 6: Cropped face examples in (a) the Extended YaleB database, (b) the CMU-PIE database, and

(c) the AR database.

64 × 56 pixels for our usage. Fig.6 (a) shows some examples of cropped faces from the

Extended YaleB database.

The CMU-PIE [30] Database includes 41,368 face images of 68 subjects under 13

different poses, 43 different illumination conditions, and 4 different expressions. We se-

lected 2,989 images from the database where the two eye coordinates are available. These

images are almost frontal images with different expressions and illumination variations.

We cropped all the 2,989 images according to the two eye coordinates and resized them

to 64 × 64 pixels in the experiments. Some cropped face examples from the CMU-PIE

database are demonstrated in Fig.6 (b).

The AR [31] Database contains more than 4,000 color images of 126 subjects (70

men and 56 women). They are all frontal faces with different facial expressions, illumi-

nation conditions, and occlusions (sunglasses and scarf). Each person participated in

two sessions, separated by two weeks (14 days). In each session, there are 4 images with

different facial expressions under normal illumination, 3 images under different illumi-

nation conditions (left, right, and both-side lighted) with normal expression, 3 images

with sunglasses under different illuminations, and 3 images with scarf under different

illuminations. Images with the same conditions were taken in both sessions, resulting

in 26 images per subject. All color images were first converted to gray scale, and then

cropped and resized to 64× 64 pixels according to the two eye coordinates. We got the

eye coordinates of the AR face database from [32]. Fig.6 (c) shows some examples of

cropped faces from the AR database.
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4.2. With Illumination Variations

In this section, we perform experiments with illumination variations on the Extended

YaleB and the CMU-PIE face databases, respectively. The Extended YaleB frontal face

images are taken under 64 different directions of the light source for each person. As for

the CMU-PIE database, there are 43 frontal facial images in different illuminations for

each person. For each individual in the Extended YaleB database, we randomly chose

5, 10, 15, 20, 25, 30 images, respectively, as gallery, and the rest as probe (with various

illumination variations). The gallery is used as the training set for SRC based methods.

The random partitions were repeated for 10 times. As for the CMU-PIE database,

we randomly chose 5, 10, 15, 20, 25 images, respectively, as gallery and the rest as

probe. The procedure was also repeated for 10 times. The average recognition rates with

respect to the number of training samples are shown in Fig.7 for the Extended YaleB

database and in Fig.8 for the CMU-PIE database, where the 5 algorithms (Pixel, LBP-

Hist, LBP-Hist-Kχ2 , LBP-Hist-KHI , and LBPh-KH) under the KCD-SRC framework

are compared. The standard deviations are also displayed along with the corresponding

average recognition rates.
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Figure 7: Average face recognition rates w.r.t.

the number of training samples on the Extend-

ed YaleB database.
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Figure 8: Average face recognition rates w.r.t.

the number of training samples on the CMU-

PIE database.

From the results shown in Fig.7 and Fig.8, we summarize the observations as fol-

lows. First, the proposed LBPh-KH algorithm performs the best with different number

of training samples, followed by LBP-Hist-Kχ2 , LBP-Hist-KHI , LBP-Hist, and Pixel.
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Second, with the decreasing amount of training samples per subject, the performances

of all algorithms generally drop. However, LBPh-KH is the most robust one, with small

performance degradation. This is because the LBP binary string encodes intrinsic struc-

ture of individual face images regardless of the wide range of illumination variations,

and the KCD-SRC framework successfully makes use of this advantage in the LBPh-KH

kernel, despite the small training sample size. It is impressive that under only 5 training

samples per subject, the recognition rate of LBPh-KH on Extended YaleB can still reach

over 97%, while that of the Pixel is only 70%, with 27% improvement.

Furthermore, as also observed in [5], LBP based methods in the SRC framework

perform better than the pixel based method under illumination variations, since the

LBP feature is known to be robust to illumination changes. In experiments on both

the Extended YaleB and the CMU-PIE database, the LBP-Hist-Kχ2 performs slightly

better than LBP-Hist-KHI and LBP-Hist. Interestingly, the recognition rates on the

Extended YaleB database are not as good as that on the CMU-PIE database. The

reason is probably to be relatively stronger illumination variations in the Extended YaleB

database than the CMU-PIE database.

4.3. With Noise Corruption

Next, we test the robustness of the proposed methods with noise corrupted images

on the Extended YaleB and CMU-PIE databases. In all the following experiments, we

fixed the number of randomly chosen training samples per subject to be five, a relatively

small training sample size for challenge. All other remaining images were used as probe,

and the same procedure was repeated for 10 times. For each image from the probe set,

we randomly corrupted a portion of the pixels with noise. The noise corruption levels

(the proportion of the corrupted pixels) were from 10% to 80%, respectively, with a

step of 10%. These chosen pixels’ values were replaced by independently and identically

distributed samples from a uniform distribution in [0, 255]. The corrupted pixels were

randomly chosen for every image, and the corrupted locations were unknown to any

algorithm. Some examples of different levels of noise corrupted images are shown in

Fig.9 (a). Note that all images in the gallery were not corrupted.

We compared the five methods (Pixel, LBP-Hist, LBP-Hist-KHI , LBP-Hist-Kχ2 , and

LBPh-KH) under the KCD-SRC framework on both the Extended YaleB and the CMU-
17



(a)

(b)

Figure 9: (a) Images corrupted with 8 levels (10% to 80%) of random noises. (b) Images corrupted with

7 levels of synthesized continuous occlusions, with the original image displayed in the left.

PIE face databases. The mean recognition rates as well as the corresponding standard

deviations are shown in Fig.10 (Extended YaleB) and Fig.11 (CMU-PIE). As expected,

with the increasing amount of noises, the performances of all algorithms drop. Yet again,

LBPh-KH is the best performer over all levels of noise corruptions. In the Extended

YaleB database, LBPh-KH consistently outperforms Pixel, the second best one, by over

20% of recognition rates under 10% to 70% of noise corruptions.
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Figure 10: Average face recognition rates w.r.t.

the level of noise corruptions on the Extended

YaleB database.
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Figure 11: Average face recognition rates w.r.t.

the level of noise corruptions on the CMU-PIE

database.

We see that the performances of all LBP histogram based methods drop drastically

with the increasing amount of noises. The results imply that while LBP histogram

feature is robust against illumination variations, it is sensitive to image noise. This may

be mainly due to the fact that local noise might change the neighboring comparison

results (see Fig.2) in some orientations, and so the affected LBP codes could disturb the
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histogram distribution over LBP bins due to the discrete nature of LBP. To illustrate

this, we draw an example in Fig.12 showing local LBP histograms of a face image with

and without noise. Clearly, the distribution of LBP codes is severely affected by noise.

In contrast, thanks to the local binary feature representation and the Hamming distance

measure which is tolerable to some flipping bits (see Fig.5), the LBPh-KH is more robust

to image noise. In the same example of Fig.12, similarities of two regions with LBPh-KH

(Eq.(16)) and χ2 (Eq.(13)) are 0.78 and 0.61, respectively, which indicates that LBPh-

KH is more robust than the χ2 kernel (also the other two LBP histogram based kernels)

against noise.

Figure 12: An example of LBP histograms in a 8×8 local region of the same face without noise (left)

and with 30% of noise (right).

Despite the poor performances of all LBP histogram based methods under image

noise, it looks that LBP-Hist-Kχ2 performs slightly better than LBP-Hist-KHI , and both

of them are better than LBP-Hist. For example, under 20% and 30% of noises, LBP-

Hist-Kχ2 outperforms LBP-Hist by about 20% of recognition rates on both the Extended

YaleB and CMU-PIE database. These improvements indicate that, when integrating

LBP histogram into the SRC framework, using proper nonlinear kernels (like χ2 and

HI) is more robust than using the linear kernel in measuring similarity between possibly

corrupted histograms, and so kernel SRC is required in this situation.

4.4. With Continuous Occlusions

Next, we will demonstrate experiments with continuous occlusions on facial images.

We conducted experiments in two scenarios: different levels of synthesized occlusions in

the Extended YaleB and CMU-PIE database, and real occlusions with sunglasses and

scarf in the AR database.
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4.4.1. Synthesized Occlusions

First, we conducted experiments with randomly synthesized continuous occlusions.

Like in [1], we chose an irrelative picture, resized it to a fixed size and attached it on a

random position of the test image. We tested 7 levels of occlusions, with the size of the

attached picture corresponding to 8 × 7, 16 × 14, . . . , 56 × 49 for the Extended YaleB

database (whole face size is 64 × 56) and 8 × 8, 16 × 16, . . . , 56 × 56 for the CMU-PIE

database (whole face size is 64× 64). Fig.9 (b) shows some examples of these 7 levels of

occlusions from the Extended YaleB database. We also evaluated the five algorithms in

this scenario, with randomly selected uncorrupted five images per subject for training.

0 20 40 60 80
0

20

40

60

80

100

Occlusion  (%)

A
c
c
u

a
c
y
  

(%
)

 

 

Pixel

LBP Hist

LBP Hist K
 

2

LBP Hist K
HI

LBP
h
 K

H

Figure 13: Face recognition performances with

7 levels of occlusions on the Extended YaleB

database.
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Figure 14: Face recognition performances

with 7 levels of occlusions on the CMU-PIE

database.

Fig.13 (Extended YaleB) and Fig.14 (CMU-PIE) demonstrate the mean recognition

rates and their corresponding standard deviations under different levels of occlusions.

Obviously, the performances of all algorithms drop with the increasing amount of oc-

clusion. Similar as in subsection 4.2, LBPh-KH consistently performs the best under

all levels of occlusions, followed by LBP-Hist-Kχ2 , LBP-Hist-KHI , LBP-Hist, and Pixel.

Notice that LBPh-KH maintains over 90% recognition rate with up to 56% of the face

region occluded on both the Extended YaleB and CMU-PIE databases. LBPh-KH out-

performs the second best algorithm, LBP-Hist-Kχ2 , by roughly 20% on the Extended

YaleB database. Besides, it can also be observed that the use of local image features

in kernel SRC is superior than raw pixel values. Furthermore, regarding the same LBP
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Table 1: Face recognition performances with real occlusions on the AR face database (%).

Raw Pixels LBP-Hist LBP-Hist-Kχ2 LBP-Hist-KHI LBPh-KH

Sunglasses 13.53±1.34 53.90±1.91 51.48±1.93 49.15±1.25 29.43±1.43

Scarf 11.38±0.97 84.27±1.22 88.17±1.86 89.30±1.05 93.03±0.95

histogram features, the proposed KCD-SRC with χ2 kernel slightly outperforms that

with histogram intersection kernel and linear kernel.

4.4.2. Real Occlusions

We also conducted experiments with real occlusion on the AR face database [31]. We

selected 100 subjects who participated both the two image capturing sessions, so that

each selected subject has 26 images. In the selected images, each subject has 6 face

images wearing sunglasses and 6 face images with scarf occlusion, which were used as the

probe set. Moreover, we partitioned the occluded images into two sub sets, sunglasses set

and scarf set, and tested them separately. There were 14 images left for each individual,

including 8 with facial expressions and 6 with illumination variations. We randomly

selected 5 from the remaining 14 images for training, and repeated 10 times to obtain

the mean recognition rates.

The recognition performances are shown in Table 1. Clearly, our algorithms perform

much better on the scarf subset than on the sunglasses subset. For the scarf subset, the

LBPh-KH algorithm is still the best one (93.03%), followed by LBP-Hist-KHI (89.30%),

LBP-Hist-Kχ2 (88.17%), LBP-Hist (84.27%), and Pixel (11.38%). However, compared to

the scarf subset, in the sunglasses subset the performances of all algorithms drop except

Pixel. With sunglasses, the kernels based on LBP histogram features are the most robust,

followed by the LBPh-KH method, and Pixel is still the worst one. Note that in our

evaluation on the AR database, the SRC method with raw pixel values performs not as

good as what has been reported in [1]. This is because i) we cropped faces more tightly in

64× 64 pixels, where the forehead region and the face counter were excluded; ii) in real

occlusion experiments, images with illumination variations were not considered in [1];

and iii) we used only 5 training samples randomly selected from the 14 non-occluded

images, while [1] selected 8 non-occluded images per subject for training.

One reason why our algorithms perform worse with sunglasses than with scarf may
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be that the ocular region contains the most important features for distinguishing human

beings. However, with sunglasses the eyes’ coordinates might be labeled not very accurate

compared to the scarf subset. Fig.15 shows some of the cropped AR face images. It can be

observed that the cropped AR face images are not well aligned, especially for those with

sunglasses. There are some translation, rotation, and scale variations between probe and

gallery images. Therefore, the imprecise eye coordinates might generate disturbance on

cropping face and finally affect the performances of all algorithms, especially for LBPh-

KH , which belongs to pixel-level. This phenomena is also known as registration error,

and will be further studied in the next subsection.

Figure 15: Cropped AR facial images.

4.5. Registration Error

In this subsection, we conducted experiments on the CMU-PIE database under reg-

istration errors. Registration error often happens in realistic applications, where some

facial images to be recognized might not be aligned precisely. This has been studied

in [5] by comparing SRC based methods. We give an independent study in this paper,

where two scenarios of registration errors were evaluated. One is with the synthesized

registration errors, where we added random disturbances to the two eye coordinates, and

the other one is with all facial images automatically detected by Viola-Jones face detector

implemented in OpenCV, without further alignment to simulate real registration errors.

4.5.1. Synthesized Registration Error

In this experiment, we also randomly selected five images per subject in the gallery set,

with the remaining images being the probe set, and run 10 trails of this random partition.

This procedure is the same as in subsection 4.2, and we also kept the 10 random partitions

of the CMU-PIE database the same as in subsection 4.2 for comparison. For each trail,
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the gallery face images were normally cropped as before, while each probe face image was

cropped according to disturbed eye coordinates to synthesize a registration error. For

each of the two eyes of a probe face, each of the two (x,y) coordinates was independently

disturbed by a Gaussian distribution of zero mean and standard deviation of 2.0. Some

face image examples with these synthesized registration errors are displayed in Fig.16.

The misaligned face images may cause problems for most face recognition algorithms.

Figure 16: Face images from the CMU-PIE database with synthesized registration errors (top) and

automatic detections (bottom).

4.5.2. Automatically Detected Faces

Instead of cropping face images according to manually labeled eye coordinates, in this

experiment we used the Viola-Jones face detector implemented in OpenCV 2.2 to detect

all face images automatically, and used the detected and cropped face images directly,

without further alignment, for face recognition. Some examples of the OpenCV detected

and cropped face images from the CMU-PIE database are shown in Fig.16. It can be seen

that the automatically detected and cropped face images are not consistently aligned.

For face recognition, all other settings are the same as in subsection 4.2.

Fig.17 shows the mean recognition rates, where the same face images in three scenarios

are compared: i) original images; ii) synthesized registration errors; and iii) automatically

detected faces. The first group of results in Fig.17 are with the original CMU-PIE images,

which are identical to the corresponding experiments in subsection 4.2 on the CMU-PIE

database with 5 images per subject for training. The second and the third groups are

results of synthesized registration errors and automatically detected face images on the

CMU-PIE database, respectively. As we can see from Fig.17, kernels based on LBP

histogram features are more robust against registration errors. LBP-Hist-Kχ2 performs
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Figure 17: Average recognition rates on the CMU-PIE database with original images, synthesized reg-

istration errors and OpenCV detected images.

the best, with a small gap above LBP-Hist-KHI , followed by LBP-Hist, LBPh-KH and

Pixel. As also discussed in [5], the SRC based methods generally degrade with registration

errors. In our experiments, the recognition rates of the five methods all drop with both

kinds of registration errors. Since the LBP histogram representation extracts region-

level characteristics over local subregions, it is more robust against misalignment. In

contrast, LBPh-KH works in pixel-level; it performs less stable than the LBP histogram

based kernels under registration errors (about 5% lower in average). Yet LBPh-KH still

slightly outperforms Pixel, another pixel-level kernel.

5. Discussion

In this paper, two kinds of kernel methods for face recognition are proposed under

the KCD-SRC framework. One is region-level kernel based on the LBP histogram rep-

resentation, including LBP-Hist-KHI , LBP-Hist-Kχ2 , and the linear kernel LBP-Hist.

Another one is the LBPh-KH based on half of LBP features. Extensive experiments

show that LBPh-KH has the best overall performance, which surpasses the other kernel

based methods and the original SRC with raw pixel values under illumination variations,

noise corruptions, and occlusions, particularly with only five training samples per sub-

ject. While LBP-Hist-Kχ2 performs slightly better than LBP-Hist-KHI , both of them
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are superior to the linear kernel LBP-Hist, which demonstrate the effectiveness of the

kernel SRC. Under the registration error scenario, LBP histogram based kernels are the

most robust, followed by LBPh-KH , and they all outperform the raw pixel based one.

However, the LBPh-KH is not as good as LBP histogram based kernels under registra-

tion errors (about 5% lower). But considering the impressive performance of today’s

commercial softwares for automatic face alignment (such as PittPatt [33]), the proposed

LBPh-KH with KCD-SRC method would still be more preferred in handling many kinds

of practical facial image variations.

We have implemented the proposed KCD-SRC algorithm as well as several kernels

with local image features in MATLAB. The source codes are available in

http://www.cbsr.ia.ac.cn/users/scliao/projects/KCD-SRC.html. The proposed KCD-

SRC framework for face recognition generally involves three steps: feature extraction,

kernel computation, and KCD-SRC learning and classification. Table 2 lists the average

computation time of recognizing a probe face image by the five evaluated kernel methods

in our MATLAB implementation. The evaluation time is separated in feature extraction,

kernel computation (the vector z in Eq. 12), and KCD-SRC procedures, respectively, and

the overall computation time is also given in the last row of Table 2. All algorithms were

run on a ThinkPad T420 laptop with Intel Core i7-2640M 2.80 GHz CPU and 4GB mem-

ory. In this evaluation the AR database was used, with 500 face images of 100 subjects

(5 images per subject) enrolled in the gallery and 500 images being used as the probe set.

The computation time is averaged over the whole probe set. Note that feature vectors of

gallery images, as well as the training kernel matrix R in Eq.(12) can be pre-computed

before recognition, therefore they are excluded in the reporting time.

From the first row of Table 2, we can see that feature extraction of LBPh-KH is

significantly faster than that of LBP histograms. This is because i) LBPh-KH avoids

redundant computations; ii) LBPh-KH does not need to convert binary string to decimal

numbers; and iii) LBPh-KH does not need to divide images into blocks and compute

histograms for each block. It is impressive that LBPh-KH only needs 0.57 ms for feature

extraction, which is extremely fast. For the kernel computation, it is obvious that the

linear kernel is the fastest, followed by LBPh-KH , LBP-Hist-KHI , and LBP-Hist-Kχ2 .

As for the kernel sparse learning and classification step, there is no notable difference
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Table 2: Average computation time (ms) of recognizing a probe image by different kernel methods.

Raw Pixels LBP-Hist LBP-Hist-Kχ2 LBP-Hist-KHI LBPh-KH

Feature Extraction - 348.18 0.57

Kernel Computation 1.94 1.72 90.85 73.70 68.21

KCD-SRC 736.98 738.46 734.05 736.06 725.36

Overall 738.92 1088.26 1173.08 1157.94 794.14

among all compared methods. From the last row of Table 2, it can be seen that the

overall computation time of LBPh-KH is comparable to that of Pixel, the fastest method.

Compared to Pixel, LBPh-KH requires about 0.06 second more time to recognize one

probe image in average. Also notice that both LBPh-KH and Pixel are faster than all

LBP histogram based methods, which require more than one second for the same task.

6. Conclusion

We have proposed a novel kernel coordinate descent (KCD) algorithm based on the

covariance update technique for the kernel LASSO problem. The proposed KCD algo-

rithm is applied to the sparse representation based classification framework, resulting

in the KCD-SRC algorithm for face recognition. We have also developed an effective

local image kernel called half LBP encoding based Hamming kernel (LBPh-KH) for face

recognition. LBP histogram features with two kernels based on the χ2 distance and

Histogram Intersection distance are also suggested in the proposed approach. The linear

kernels with raw pixel values and LBP histogram features are also embedded for compari-

son. We have evaluated the proposed approaches on the Extended YaleB, the CMU-PIE,

and the AR face databases. Extensive evaluations under illumination variations, random

noises, continuous occlusions, and registration errors show that the KCD-SRC approach

successfully explores the potential discriminant power of local image features. Experi-

mental results also show that, the two region-level LBP kernels, the χ2 distance and the

Histogram Intersection distance based LBP methods, are the most robust to registration

error, but they are very sensitive to random noise. Alternatively, the proposed LBPh-

KH based pixel-level kernel method performs slightly worse than the region-level kernels

under the registration error situation, but it has the best overall performance among the

five evaluated methods.
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