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Abstract

Person re-identification is becoming a hot research topic
due to its value in both machine learning research and video
surveillance applications. For this challenging problem,
distance metric learning is shown to be effective in match-
ing person images. However, existing approaches either re-
quire a heavy computation due to the positive semidefinite
(PSD) constraint, or ignore the PSD constraint and learn
a free distance function that makes the learned metric po-
tentially noisy. We argue that the PSD constraint provides
a useful regularization to smooth the solution of the metric,
and hence the learned metric is more robust than without
the PSD constraint. Another problem with metric learning
algorithms is that the number of positive sample pairs is
very limited, and the learning process is largely dominat-
ed by the large amount of negative sample pairs. To ad-
dress the above issues, we derive a logistic metric learn-
ing approach with the PSD constraint and an asymmetric
sample weighting strategy. Besides, we successfully apply
the accelerated proximal gradient approach to find a glob-
al minimum solution of the proposed formulation, with a
convergence rate of O(1/t2) where t is the number of iter-
ations. The proposed algorithm termed MLAPG is shown
to be computationally efficient and able to perform low
rank selection. We applied the proposed method for person
re-identification, achieving state-of-the-art performance on
four challenging databases (VIPeR, QMUL GRID, CUHK
Campus, and CUHK03), compared to existing metric learn-
ing methods as well as published results.

1. Introduction

Person re-identification is a technique to search a desired
person from a large set of gallery. This task is very challeng-
ing because there exist complex intra-class variations in il-
lumination, pose or viewpoint, blur, and occlusion. Many

approaches have been proposed for person re-identification
[4], which greatly advance this field.

Among existing approaches, the metric learning meth-
ods are shown to be effective in matching person images
[33, 9, 10, 13]. The Mahalanobis distance learning pro-
posed by [27] is a relatively simple but effective approach,
which has been widely studied. This method tries to learn
a Mahalanobis distance function parameterized by a PSD
matrix to separate the positive sample pairs from the neg-
ative sample pairs. However, existing Mahalanobis metric
learning methods either require a heavy computation when
the PSD constraint is applied, or ignore the PSD constrain-
t and learn a free distance function that makes the learned
metric potentially noisy. We argue in this paper that the PS-
D constraint provides a useful regularization to smooth the
solution of the metric, and hence the learned metric is more
robust than without the PSD constraint.

Alternatively, the PSD constraint can also be achieved
by representing the Mahalanobis metric with a product of
two matrices [26, 33]. However, the quadratic form makes
the objective function more complex. Besides, a rank pa-
rameter has to be given beforehand for optimization. For a
different rank, the metric has to be learned again, which is
inconvenient. What’s more, there is no principle to select
the most informative dimensions from the learned projec-
tion matrix. In practice, most existing methods apply the
Principle Component Analysis (PCA) dimension reduction
method before metric learning, of which the effect is un-
clear. Considering this, it is better to perform metric learn-
ing in a higher dimensional space while allowing low rank
selection with the learned metric.

Another issue in applying metric learning for person re-
identification is that, the numbers of positive and negative
sample pairs are largely unbalanced. Especially, most ex-
isting person re-identification datasets are relatively smal-
l (e.g. VIPeR [5] and QMUL GRID [17]), resulting in
very limited number of positive sample pairs. Therefore,



the learning process can be dominated by a large number of
negative sample pairs, making the limited positive pairs eas-
ily be neglected and resulting in a weak metric. This issue
is even more important than the PSD constraint according
to the study of this paper.

To address the above issues, we derive a logistic metric
learning approach with the PSD constraint and an asym-
metric sample weighting strategy. Besides, we successful-
ly apply the widely used Accelerated Proximal Gradient
(APG) [21, 25, 2] approach to find a global minimum so-
lution of the proposed formulation, with a convergence rate
of O(1/t2) where t is the number of iterations. We ap-
plied the proposed method termed MLAPG to the person
re-identification problem, achieving state-of-the-art perfor-
mance on four challenging databases (VIPeR [5], QMUL
GRID [17], CUHK Campus [11], and CUHK03 [12]), com-
pared to existing metric learning methods as well as pub-
lished results. In addition, we also reveal some nice proper-
ties of the proposed method, such as the fast convergence,
efficient computation, and the ability of low rank selection1.

2. Related Work

Many Mahalanobis distance learning approaches have
been proposed following [27]. Among them, the Large
Margin Nearest Neighbor Learning (LMNN) [26], Infor-
mation Theoretic Metric Learning (ITML) [3] and Logistic
Discriminant Metric Learning (LDML) [7] are three repre-
sentative methods and regarded as the state of the art [10].
The LMNN algorithm tries to learn a Mahanalobis distance
metric to improve the k-nearest neighbor classifier, where
the goal is to pull samples of the same class lying within
the k-nearest neighbors, while push samples from different
classes by a large margin. The ITML algorithm consider-
s minimizing the differential relative entropy between two
multivariate Gaussians for learning the Mahalanobis dis-
tance function. It is further formulated as a Bregman op-
timization problem that minimizes the LogDet divergence
subject to linear constraints. The LDML algorithm applies
the logistic discriminant function to model the probabili-
ty of samples being the same class or not. It can be con-
verted as a linear logistic discriminant model, and a general
gradient descent procedure is applied to maximize the log-
likelihood and learn the metric.

The metric learning approach has been applied to com-
puter vision problems in recent years and shown to be ef-
fective [26, 7, 33, 9, 10, 13, 14]. Particularly, the Keep
It Simple and Straightforward Metric Learning (KISSME)
[10], Locally-Adaptive Decision Functions (LADF) [13],
and Cross-view Quadratic Discriminant Analysis (XQDA)
[14] algorithms have shown to be achieving the state of the

1Code available at http://www.cbsr.ia.ac.cn/users/
scliao/projects/mlapg/

art for face recognition and person re-identification. The
KISSME algorithm considers a log likelihood ratio test of
two Gaussian distributions, and a simplified and very ef-
ficient solution can be obtained accordingly. The LADF
method is a joint model of a distance metric and a locally
adapted thresholding rule, which are combined to form a
unified quadratic classifier. The XQDA algorithm learns a
discriminant subspace as well as a distance metric simulta-
neously, and it is able to perform dimension reduction and
select the optimal dimensionality.

Though not explicitly addressing the problem of unbal-
anced positive and negative sample pairs, several metric
learning approaches are immune to this issue. For exam-
ple, the LMNN algorithm only considers impostors with-
in the k-nearest neighbors, the KISSME and XQDA algo-
rithms formulate the metric learning problem as separately
estimating two gaussian distributions for the two classes,
and the PRDC algorithm [33] considers ranking one posi-
tive pair and one negative pair at a time which is balanced.

The proposed approach is mostly related to LDML [7]
and PRDC [33], which propose two similar logistic metric
learning formulations. Though sharing the same superiority
due to the soft-margin loss function, there are notable differ-
ences with the proposed method: 1) we explicitly model the
PSD constraint, which brings a notable accuracy gain; 2) we
introduce an asymmetric sample weighting strategy in the
loss function, which is important and also brings impressive
performance gain; and 3) we present an efficient approach
based on APG to solve the PSD constrained metric learning
problem, which has a fast convergence rate. Detail analysis
of the three components can be found in the experiments. In
contrast, the LDML algorithm does not apply the PSD con-
straint, does not consider largely unbalanced samples, and
the LDML solver is based on the general gradient descent
algorithm which is known to be slow (O(1/t)). The PRD-
C algorithm is quite different, which formulates the metric
learning problem as a ranking problem through relative dis-
tance comparison of a positive pair and a negative pair at
a time. Therefore, it needs to compute O(n2) difference
vectors and O(n3) relative difference comparisons, which
becomes intractable with large dataset.

Regarding optimization, the APG is a general first-order
method but its limitation is that one needs to find a closed-
form solution for the constraint iteratively. In this paper, we
show that the PSD constrained metric learning problem can
be successfully solved by APG, and we give a closed-form
solution for this constraint in each iteration, resulting in ef-
ficient learning and some interesting findings such as the
low-rank representation and selection. To our knowledge,
such solution has not been found for metric learning.

There are many other approaches beyond metric learning
for person re-identification, such as the ensemble of local
features (ELF) [6], SDALF [1], RankSVM [23], kBiCov

http://www.cbsr.ia.ac.cn/users/scliao/projects/mlapg/
http://www.cbsr.ia.ac.cn/users/scliao/projects/mlapg/


[18], salience match [30], mid-level filter [32], local fisher
discriminant analysis (LF) [22], to name a few. Interested
readers please refer to [4] for a survey.

3. Cross-view Logistic Metric Learning
Suppose we have a cross-view training set {X,Z,Y},

where X = (x1,x2, . . . ,xn) ∈ Rd×n contains n sam-
ples in a d-dimensional space from one view, Z =
(z1, z2, . . . , zm) ∈ Rd×m contains m samples in the same
d-dimensional space but from the other view, and Y ∈
Rn×m is the matching label between X and Z, with yij = 1
indicating that xi and zj are from the same class, and
yij = −1 otherwise. We call (x, z) a positive sample pair
if y = 1, and a negative sample pair otherwise. The cross-
view matching problem arises from many applications, for
example, heterogeneous face recognition and viewpoint in-
variant person re-identification. Note that Z is the same
with X in the single-view matching scenario.

The task is to learn a Mahalanobis distance function [27]

D2
M(x, z) = ‖x− z‖2M = (x− z)TM(x− z) (1)

to measure the distance between the cross-view samples,
where M � 0 is a PSD matrix so that DM satisfies the
nonnegativity and the triangle inequality. To learn such a
metric, a smooth and convex loss function can be applied.
We consider a log-logistic loss function similar as in [7, 33]

fM(x, z) = log
(
1 + ey(D

2
M(x,z)−µ)

)
, (2)

where µ = ED2
I (x, z) is a constant positive bias, which

is applied considering that D has a lower bound of zero.
The logistic function provides a soft margin to separate the
two classes, which is particularly useful for classification
problems, for example, in the traditional logistic regression
formulation. Accordingly, the overall loss function is

F (M) =
∑n

i=1

∑m

j=1
wijfM(xi, zj), (3)

where wij = 1
Npos

if yij = 1, and 1
Nneg

otherwise, and
Npos andNneg are the total number of positive and negative
sample pairs, respectively. This asymmetric weighting is
important because Npos and Nneg are heavily unbalanced.

As a result, the cross-view logistic metric learning prob-
lem is formulated as

min
M

F (M), s.t. M � 0. (4)

4. Accelerated Proximal Gradient Solution
4.1. Proximal Operator

The problem (4) contains a nonlinear, but smooth and
convex objective function, and a closed convex conic con-
straint. Therefore, it has a unique global minimum solu-
tion. Considering this structure, we apply the widely used

APG [21, 25, 2] approach to solve (4). APG is a first-order
optimization method that achieves the optimal convergence
rate O(1/t2) where t is the number of iterations [21]. Giv-
en a solution path {Mt}t≥0, the APG optimization proce-
dure constructs an aggregation sequence {Vt}t≥1 by linear-
ly combining the two most recent solution Mt−1 and Mt−2

at each iteration to accelerate the optimization, that is

Vt = Mt−1 +
αt−1 − 1

αt
(Mt−1 −Mt−2), (5)

where αt = (1 +
√
4α2

t−1 + 1)/2 following [2].
With the aggregation forward matrix Vt, the gradient of

the objective function F (V) at iteration t is computed as

∇F (Vt) =
∂F (V)

∂V
|V=Vt

=
∑n

i=1

∑m

j=1
g
(t)
ij (xi − zj)(xi − zj)

T

= XAtX
T −XGtZ

T − (XGtZ
T )T + ZBtZ

T ,

(6)

where
g
(t)
ij =

wijyij

1 + e−yij(D
2
Vt

(xi,zj)−µ)
, (7)

and A and B are two diagonal matrices with the main di-
agonal containing the row sum and column sum of G, re-
spectively. This matrix computation is more efficient than
previous methods which compute all (xi − zj).

As a result, a proximal operator can be constructed to
linearize the objective function at the search point Vt,

Pηt(M,Vt) =

F (Vt) + 〈M−Vt,∇F (Vt)〉+
1

2ηt
‖M−Vt‖2F ,

(8)

where < A,B >= Tr(ATB) is the matrix inner product,
‖A‖F is the Frobenius norm of a matrix, and ηt > 0 is the
step size. With a proper step size ηt, the proximal operator
Pηt(M,Vt) is an upper bound of F (M) [21]. Therefore,
at the t-th iteration, minimizing (4) is equivalent to solving

min
M

Pηt(M,Vt), s.t. M � 0. (9)

4.2. Solution

Theorem 1. The solution to the problem (9) is

Mt = UtΛ
+
t UT

t , (10)

where UtΛtU
T
t is the singular value decomposition (SVD)

of a symmetric matrix Ct = Vt − ηt∇F (Vt), with
UT
t Ut = I and Λt being a diagonal matrix contain-

ing the singular values of Ct in the main diagonal, and
Λ+
t = max{0,Λt}.



Proof. By ignoring the constant term F (Vt) and adding an-
other constant term ηt

2 ‖∇F (Vt)‖2F , solution of (9) is equiv-
alent to minimizing

1

2ηt
‖M− (Vt−ηt∇F (Vt))‖2F =

1

2ηt
‖M−Ct‖2F . (11)

Since {Mk}t−1
k=0 is a sequence of symmetric PSD matrices,

we can infer from (5) and (6) that Ct is a symmetric ma-
trix. Therefore, Ct can be decomposed as Ct = UtΛtU

T
t

by SVD, where UT
t Ut = I, and Λt is a diagonal matrix

containing the eigenvalues {λi}di=1 of Ct in the main diag-
onal. As a result, finding the optimal solution Mt in (11)
satisfying Mt � 0 is known as the nearest PSD matrix ap-
proximation problem under the Frobenius norm [24, 8]. In
fact, considering that UT

t Ut = I, we have

‖M−Ct‖2F = ‖UT
t MUt −Λt‖2F , (12)

and S = UT
t MUt must also be a PSD matrix because M

is required to be PSD. Thus, we have sii ≥ 0 for all i, and

‖M−Ct‖2F = ‖S−Λt‖2F
=
∑

i,j
s2ij +

∑
i
(sii − λi)2

≥
∑

λi<0
(sii − λi)2 ≥

∑
λi<0

λ2i

(13)

The equality is uniquely achieved for S = Λ+
t . Therefore,

the solution to the problem (9) is given by (10).

Note that the operation of (10) was early noticed by [24],
where it is called a smoothing procedure to regularize a ma-
trix to be PSD. This kind of smoothing operation is useful to
regularize the learning procedure and derive a robust metric,
as will be demonstrated later through experiments.

4.3. Line Search of Step Size

According to [21], the working step size is η ≤ L
where L is the Lipschitz constant of the gradient function
∇F (M). However, L is unknown and not easy to estimate.
Alternatively, we start with a large η0 and do a line search
similar as in [2], which iteratively check whether

F (Mt) ≤ Pηt(Mt,Vt) (14)

is satisfied. If the condition (14) is not satisfied, adapt ηt to
be ηt/γ for a constant factor γ > 1 and repeat the condi-
tion checking until it is satisfied. This procedure adaptively
ensures that the step size is suitable and the convergence
is guaranteed. In practice, we empirically found that the
adaptation occurs only in the initialization of the algorith-
m. Once a suitable step size is found, the condition (14) is
found to be always satisfied. This is supported in an exper-
iment shown in Fig. 1, where it is observed that η could be
as large as 128 (given that features were normalized to unit
length), and once initialized, it was unchanged. Therefore,
the line search procedure of the proposed algorithm does
not require much computation.
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Figure 1. A demonstration of ηt, rt, and F (Mt) as a function of
the iteration number t during the training on the VIPeR dataset
[5]. The training data contained c = 316 classes with d = 631
dimensions, the η was initialized to 28, and γ = 2.

4.4. Dimension Reduction

Since the solution of the proposed algorithm is always
found by SVD as in (10), a low-rank structure of the so-
lution Mt is naturally followed. Therefore, we are able to
decompose Mt as Mt = PtP

T
t , where

Pt = U+
t (Λ

++
t )1/2, (15)

and U+
t and Λ++

t are sub matrices of Ut and Λ+
t , respec-

tively, by removing dimensions corresponding to zero diag-
onal elements of Λ+

t . This way, Pt ∈ Rd×rt is a projec-
tion matrix, where rt is the number of nonzero diagonal ele-
ments of Λ+

t . Therefore, the Mahalanobis distance defined
in (1) can be reduced to an Euclidean distance as follows

D2
Pt
(x, z) = ‖PT

t x−PT
t z‖22, (16)

where Pt is applied for dimension reduction. As demon-
strated in Fig. 1, for a training data of 316 classes, we found
that the proposed algorithm was able to reduce the rank of
M from 631 to 315 after 15 iterations.

Furthermore, by removing dimensions corresponding to
small eigenvalues of Ct, the dimensions of the projection
matrix Pt can be further reduced. The influence of recogni-
tion performance by this kind of dimension reduction will
be analyzed in the experiment section.

4.5. Convergence Analysis

The following theorem states that the convergence rate of
the proposed algorithm, termed MLAPG, isO(1/t2), where
t is the number of iterations.

Theorem 2. Let {Mt} and {Vt} be the sequences gener-
ated by the MLAPG algorithm. Then ∀t ≥ 1 we have

F (Mt)− F (M∗) ≤ 2γL‖M0 −M∗‖2F
(t+ 1)2

, (17)

where M∗ is the optimal solution to (4).

This theorem can be similarly proofed following [2], and
it is omitted here. The example shown in Fig. 1 indicates
that the algorithm converges with 89 iterations, measured
by |F (Mt)−F (Mt−1)

F (Mt−1)
| ≤ 0.001.



5. Experiments

We evaluated the proposed algorithm on four challeng-
ing person re-identification databases, VIPeR [5], QMUL
GRID [17], CUHK Campus [11], and CUHK03 [12]. Sev-
eral state-of-the-art metric learning algorithms with the
same feature representation were compared, and the state-
of-the-art published results on the four datasets were also
compared. We detail the experimental description below.

5.1. Feature Representation

We utilized the Local Maximal Occurrence (LOMO)
feature proposed in [14] for person representation. The LO-
MO feature is proved to be robust against illumination vari-
ations and viewpoint changes, and it is also discriminant,
which captures local region characteristics of a person. The
LOMO feature first applies a multiscale Retinex transform
for image preprocessing, resulting in a consistent color rep-
resentation. Then, a set of sliding windows are extracted,
and both color and texture histograms are computed, with
each histogram bin represents the occurrence probability of
one pattern in a subwindow. To overcome the difficulty in
viewpoint changes, the maximal occurrence of each pattern
among all subwindows at the same horizontal location is
computed. The final descriptor has 26,960 dimensions.

5.2. Baseline Metric Learning Algorithms

We evaluated several state-of-the-art metric learning al-
gorithms, including LMNN v2.5[26], ITML [3], LDML [7],
PRDC [33], KISSME [10], LADF [13], and XQDA [14],
where LMNN and ITML are two popularly used metric
learning algorithms, while KISSME, LADF, and XQDA are
recent methods that have shown state-of-the-art results for
person re-identification. In particular, the LDML and PRD-
C algorithms also apply the logistic loss function for metric
learning. Brief introductions of these algorithms have been
described in Section 2. For all algorithms, the PCA was first
applied but all energies were reserved. This step reduces the
computation of metric learning but does not affect the per-
formance, since the feature dimensions of LOMO are much
larger than the number of samples in the three databases.
Then, the LMNN, ITML, KissMe, and LADF algorithms
were applied with the first 100 PCA components. The XQ-
DA, PRDC, LDML, and MLAPG algorithms were applied
with all PCA components, since they were able to further
learn a low-rank projection matrix. The learned projection
matrices of XQDA and MLAPG were truncated to 100 di-
mensions for a fair comparison. Parameters used for the
proposed method were η0 = 28 and γ = 2, which were
not critical for the performance of the proposed method,
because they only affected the convergence rate of the pro-
posed method to find the global minimum. Besides, we set
the maximal iterations to 300, with a stopping criterion by

(a) VIPeR [5] (b) GRID [17]
Figure 2. Example pairs of images from the VIPeR and GRID
databases. Images in the same column represent the same person.

Table 1. Comparison of state-of-the-art metric learning algorithms
with the same feature on the VIPeR dataset (P=316). The subspace
dimensions were truncated to 100.

Method rank = 1 rank = 10 rank = 20
MLAPG 39.21 81.42 92.50
XQDA 38.23 81.14 92.18

KISSME 33.54 79.30 90.47
LMNN 28.42 72.31 85.32
LADF 27.63 75.47 88.29
ITML 19.02 52.31 67.34
LDML 13.99 38.64 48.73
PRDC 12.15 35.82 48.26

|F (Mt)−F (Mt−1)
F (Mt−1)

| ≤ 10−4.

5.3. Experiments on VIPeR

VIPeR [5] is a challenging person re-identification
dataset that has been widely used for benchmark evaluation.
It contains 632 pairs of person images, captured by a pair of
cameras in an outdoor environment. Images in VIPeR con-
tain large variations in background, illumination, and view-
point. Fig. 2(a) shows some example pairs of images from
this dataset. All images were scaled to 128×48 pixels. The
widely adopted experimental protocol on this database is to
randomly divide the 632 pairs of images into half for train-
ing and the other half for test, and repeat the procedure 10
times to get an average performance.

Table 1 shows the results with the same LOMO feature
representation. It is clear that the proposed MLAPG algo-
rithm outperforms the other existing metric learning meth-
ods. Especially, MLAPG achieves a 39.21% rank-1 identi-
fication rate, outperforming the second-best one XQDA by
about 1%. It can also be seen that the performances of XQ-
DA and KISSME are impressive; especially, they achieve a
comparable performance as MLAPG at larger ranks.

The success of MLAPG is mainly due to the soft-margin
loss function, the PSD regularization, and the asymmetric
sample weighting strategy. Note that LDML and PRDC
also apply a logistic loss function for metric learning, but
their performances are not so good. For LDML, the reason
may be the absence of the PSD constraint, and the learning



Table 2. Comparison of state-of-the-art results on the VIPeR
database (P=316). MLAPG dimensions were not truncated.

Method rank=1rank=10rank=20 Reference
MLAPG 40.73 82.34 92.37 Proposed
XQDA 40.00 80.51 91.08 2015 CVPR [14]
SCNCD 37.80 81.20 90.40 2014 ECCV [29]

Kernel Ensb 2 36.1 80.1 85.6 2014 ECCV [28]
kBiCov 31.11 70.71 82.45 2014 IVC [18]
LADF 30.22 78.92 90.44 2013 CVPR [13]

SalMatch 30.16 65.54 79.15 2013 ICCV [30]
Mid-level Filter∗ 29.11 65.95 79.87 2014 CVPR [32]

MtMCML 28.83 75.82 88.51 2014 TIP [19]
RPLM 27.00 69.00 83.00 2012 ECCV [9]
SSCDL 25.60 68.10 83.60 2014 CVPR [15]

LF 24.18 67.12 82.00 2013 CVPR [22]
SDALF 19.87 49.37 65.73 2013 CVIU [1]

KISSME 19.60 62.20 77.00 2012 CVPR [10]
PCCA 19.27 64.91 80.28 2012 CVPR [20]
PRDC 15.66 53.86 70.09 2013 TPAMI [33]
ELF 12.00 44.00 61.00 2008 ECCV [6]

∗Note that [32] reports a 43.39% rank-1 accuracy by fusing their method with LADF
[13]. Fusing different methods generally improves the performance. In fact, we also

tried to fuse our method with LADF, and got a 47.88% rank-1 identification rate.

is largely affected by excessive negative sample pairs. For
PRDC, our comparison here is not very fair, because PRDC
could not directly handle the high-dimensional LOMO fea-
ture and we had to apply PRDC on the PCA subspace, but
it was empirically shown that the sample difference based
ranking worked not well with transformed features2.

We also compare the performance of the proposed ap-
proach (without truncation of the learned projection ma-
trix) to the state-of-the-art results reported on the VIPeR
database using the same protocol. The results are sum-
marized in Table 2. From Table 2 it can be observed that
the proposed algorithm achieves the new state of the art,
40.73% at rank 1. Compared to the second best one XQDA,
the improvement by MLAPG is 0.73%, 1.83%, and 1.29%,
respectively, at rank 1, 10, and 20. This promising result
may indicate that the proposed MLAPG algorithm is effec-
tive in learning a robust metric for viewpoint invariant per-
son re-identification. It should be noted that the success of
the proposed method is partially due to the robust feature
representation, as can be observed from Table 1 that the
existing algorithms KISSME and XQDA can also achieve
impressive performance with the LOMO feature.

5.4. Experiments on QMUL GRID

The QMUL underGround Re-IDentification (GRID)
Dataset [17] is another challenging person re-identification
test bed but have not been largely noticed. The GRID
dataset was captured from 8 disjoint camera views in a un-

2This has been confirmed by the authors of PRDC [33].

Table 3. Comparison of metric learning algorithms with the same
feature representation on the QMUL GRID database (P=900). The
subspace dimensions were truncated to 100.

Method rank = 1 rank = 10 rank = 20
XQDA 16.56 41.44 52.48

MLAPG 15.60 40.48 52.48
LMNN 10.80 34.24 45.76

KISSME 10.64 31.60 43.20
ITML 9.44 27.04 35.20
LDML 8.16 22.24 27.36
PRDC 7.52 23.84 31.44
LADF 6.00 27.36 41.28

derground station. It contains 250 pedestrian image pairs,
with each pair being two images of the same person from
different camera views. Besides, there are 775 additional
images that do not belong to the 250 persons which can be
used to enlarge the gallery. Sample images from GRID can
be found in Fig. 2(b). It can be seen that these images have
poor image quality and low resolutions, and contain large
illumination and viewpoint variations.

An experimental setting of 10 random trials is provided
for the GRID dataset. For each trial, 125 image pairs are
used for training, and the remaining 125 image pairs, as
well as the 775 background images are used for test.

Performance comparison of the metric learning algo-
rithms applied with the same LOMO feature representa-
tion is shown in Table 3. Compared to Table 1, it can be
observed that the GRID database is more challenging than
the VIPeR database, because the GRID database has 8 un-
derground camera views, while VIPeR contains only two
camera views. The MLAPG algorithm achieves comparable
accuracy to the best performer XQDA; both of them show
quite better performance than other existing algorithms. In-
terestingly, LADF performs good on the VIPeR database,
but it is not able to handle the complex viewpoint changes
involved in the GRID database. In contrast, MLAPG and
XQDA seems to be more robust than the existing algorithms
in addressing such challenges of the GRID database.

Next, we compare the performance of the proposed
method (without truncation of the learned projection ma-
trix) to state-of-the-art results reported on the GRID
database following the same protocol, as shown in Table
4. It can be observed that the proposed MLAPG algorith-
m outperforms all existing algorithms at rank 1, though it
is only slightly better than XQDA. This indicates that the
new algorithm is also promising in handling complex view-
point changes and poor image conditions as involved in the
GRID database. Note that the MtMCML algorithm [19] u-
tilizes the camera network information available from the
GRID dataset, and learns specific metrics for each individu-
al pair of camera views. Therefore, it successfully improves
the re-identification accuracy at higher ranks.



Table 4. Comparison of state-of-the-art results on the QMUL
GRID database (P=900). MLAPG dimension was not truncated.

Method rank=1 rank=10 rank=20
MLAPG 16.64 41.20 52.96

XQDA [14] 16.56 41.84 52.40
MtMCML [19] 14.08 45.84 59.84

MRank-RankSVM [16] 12.24 36.32 46.56
MRank-PRDC [16] 11.12 35.76 46.56

RankSVM [23] 10.24 33.28 43.68
PRDC [33] 9.68 32.96 44.32

L1-norm [16] 4.40 16.24 24.80

Table 5. Comparison of state-of-the-art multi-shot results on the
CUHK Campus database (P=486,M=2). MLAPG dimensions
were not truncated.

Method rank=1 rank=10 rank=20
MLAPG 64.24 90.84 94.92

XQDA [14] 63.21 90.04 94.16
Mid-level Filter [32] 34.30 64.96 74.94

SalMatch [30] 28.45 55.67 67.95
GenericMetric [11] 20.00 56.04 69.27

eSDC [31] 19.67 40.29 50.58

5.5. Experiments on CUHK Campus

The CUHK Campus dataset [11] contains two camera
views captured in a campus environment. Different from
the VIPeR and GRID datasets, images in this dataset are of
higher resolution. This dataset includes 971 persons, two
images per person in each camera view. The persons were
split to 485 for training and 486 for test. All the images were
normalized to 160×60 for evaluation. Multi-shot matching
scenario was applied, which fused scores of multiple images
of the same person by the sum rule.

We compare the performance of the proposed method
(without truncation of the learned projection matrix) to
the state-of-the-art results reported on the CUHK Campus
database following the same protocol. As shown in Table 5,
the proposed method improves the rank-1 identification rate
by 1.03% over XQDA, while both of them largely outper-
form the other existing state of the art methods.

5.6. Experiments on CUHK03

Compared to XQDA, MLAPG has a 1%-2% improve-
ment for most experiments, which is not a big improvement
considering that XQDA is simpler. However, the XQDA
model is based on covariance estimation, which follows the
Gaussian assumption and may have a limitation with com-
plex data distributions. To demonstrate this, we did an ex-
periment on the CUHK03 dataset, which is much larger and
more complex. The CUHK03 dataset [12] includes 13,164
images of 1,360 pedestrians. It was captured with 6 surveil-
lance cameras over months, with each person observed by
two disjoint camera views and having an average of 4.8 im-

Table 6. Comparison of state-of-the-art rank-1 identification rates
(%) on the CUHK03 database [12] with both labeled and detected
setting (P=100). MLAPG dimensions were not truncated. Most of
the compared results are from [12].

Labeled Detected
LOMO+MLAPG 57.96 51.15

LOMO+XQDA [14] 52.20 46.25
DeepReID [12] 20.65 19.89
KISSME [10] 14.17 11.70

LDML [7] 13.51 10.92
eSDC [31] 8.76 7.68

LMNN [26] 7.29 6.25
ITML [3] 5.53 5.14

SDALF [1] 5.60 4.87

ages in each view. Beyond manually cropped pedestrian
images, samples detected with a state-of-the-art pedestrian
detector are also provided. This is a more realistic setting
considering misalignment, occlusions and part missing.

We run our algorithm with the same setting of [12].
That is, the dataset was partitioned into a training set of
1,160 persons and a test set of 100 persons. The experi-
ments were conducted with 20 random splits and all result-
s were computed with the single-shot setting. The rank-
1 identification rates of various algorithms in both labeled
and detected setting are shown in Table 6. The proposed
method achieved 57.96% and 51.15% rank-1 identification
rates with the labeled bounding boxes and the automatically
detected bounding boxes, respectively, which clearly out-
perform the state-of-the-art method XQDA [14], with an
improvement of 5.76% for the labelled setting, and 4.9%
for the detected setting. This indicates a better capability of
MLAPG in learning from complex data.

5.7. Analysis of the Proposed Algorithm

In this subsection, we will analyze the proposed algo-
rithm in several aspects: dimension reduction effects, PS-
D regularization effects, asymmetric weighting effects, and
training time. The analysis was performed on the VIPeR
database, by randomly sampling a training set of 316 per-
sons, and a test set of the remaining persons.

5.7.1 Influence of Dimensions

To understand the influence of the dimensions, we per-
formed the matching with different dimensions of P in Eq.
(16). The result is shown in Fig. 3(a). It can be observed
that: i) all dimensions of the learned projection matrix are
useful for distance matching, because the identification rate
almost increases with the increasing dimensions; and ii)
the low-rank representation is effectively learned, observing
that the proposed method with a very low dimension 20 can
achieve about 30% rank-1 identification rate, and with 50



Table 7. Comparison of average training time (seconds).
Method KISSME LDML XQDA ITML MLAPG LADF LMNN PRDC

Training Time 1.3 1.4 1.9 19.3 25.1 29.2 141.3 356.3
MEX Function No Yes No No No Yes Yes No
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Figure 3. (a) Rank-1 identification rate versus the dimensionality
of the projection matrix P; and (b) CMC curves of the proposed
method with and without the PSD constraint and the asymmetric
sample weighting.

dimensions the performance is almost comparable to other
larger dimensions. Therefore, selection of a discriminant
low-rank subspace is possible.

5.7.2 Influence of PSD Regularization

For the influence of the PSD regularization, Fig. 3(b) shows
an example of the proposed method with and without the
PSD constraint. As can be observed, MLAPG with the PS-
D constraint is much better than without the PSD constraint
at rank-1 (40.82% vs. 33.23%), though the two methods
show similar performance with larger ranks. As noticed in
[24], projecting the solution to a PSD cone helps to derive a
smooth and robust estimate. Our study also shows that this
helps to derive a smooth and robust metric, so that it gen-
eralizes better, resulting in more correct retrievals at rank
1. This phenomena also explains why the proposed method
performs better at rank-1 in Table 1.

5.7.3 Influence of Asymmetric Weights

We did another experiment comparing the proposed method
with and without the asymmetric sample weighting in E-
q. (3). The results are also shown in Fig. 3(b). It can
be observed that the proposed MLAPG algorithm with the
asymmetric sample weighting is much better than without
the asymmetric sample weighting (40.82% vs. 23.73% at
rank 1). This finding, as well as the benefit of the PSD
regularization, explains why the proposed method perform-
s much better than the LDML algorithm where a logistic
metric learning formulation is also proposed. Besides, by
the comparison shown in Fig. 3(b), we can find that the
asymmetric sample weighting is even more important than
the PSD constraint, which has not been paid much attention
to in the metric learning literature.

5.7.4 Training Time

Table 7 shows a comparison of average training time on
the VIPeR dataset for 10 random trials. All algorithms are
implemented in MATLAB, with some algorithms having
MEX functions implemented in C or C++ to accelerate the
computation. The training was performed on a desktop PC
with an Intel i5-2400 @3.10GHz CPU. From the compari-
son in Table 7, KISSME and XQDA are shown to be very
efficient, which have closed-form solutions. The LDML al-
gorithm is also very efficient, thought with the help of MEX
functions. The training speed of the proposed MLAPG al-
gorithm is comparable to that of ITML and LADF, but it is
much faster than LMNN and PRDC. Note that the LMNN
algorithm also learns a metric that requiring PSD, but it took
nearly 5 times longer than MLAPG for training, despite that
MEX functions were applied in LMNN for acceleration.

The overall training time of MLAPG on this database
is reasonable, though it requires SVD per iteration. How-
ever, the feature dimension in this example is 631 after a
full-energy PCA, which is relatively small. Considering
that the complexity of SVD is O(d3), the MLAPG algo-
rithm may still have a difficulty in directly addressing high-
dimensional data. Therefore, working in the PCA subspace
with a reasonable dimension may still be a better choice in
practice, as with many other metric learning methods.

6. Conclusion
We have proposed a logistic metric learning algorithm

with the PSD constraint and an asymmetric sample weight-
ing strategy, which can be efficiently solved by APG. The
proposed method termed MLAPG is shown to be fast in
convergence, and with low-rank representation. We have
applied it to the person re-identification problem, achieving
state-of-the-art performance on four challenging databas-
es, compared to existing metric learning methods as well
as published results. Due to the general APG optimization
framework, other additional smooth or non-smooth con-
straints may be studied in future research for robust metric
learning. Besides, the proposed method may also have po-
tential values for other applications, e.g. face recognition.
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