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Abstract

Moving cast shadow removal is a difficult problem in
video analysis. This paper presents a novel algorithm
for detection of moving cast shadows, based on a local
texture descriptor called Scale Invariant Local Ternary
Pattern (SILTP). An assumption is made that the tex-
ture properties of cast shadows bears similar patterns to
those of the background beneath them. The likelihood of
cast shadows is derived using information in both color
and texture. An online learning scheme is employed to
update the shadow model adaptively. Finally, the poste-
rior probability of cast shadow region is formulated by
further incorporating prior contextual constrains using
a Markov Random Field (MRF) model. The optimal so-
lution is found using graph cuts. Experimental results
tested on various scenes demonstrate the robustness of
the algorithm.

1. Introduction

Extracting moving objects is one of the key problems
in video analysis applications, including visual surveil-
lance, content-based video retrieval, etc. The problem
is further plagued by moving cast shadows caused by
e.g. sunlight. Misclassification of moving cast shadows
as parts of foreground objects usually induces problem-
s, such as silhouette distortions and merging of nearby
objects, and hence mistakes in subsequent stages. An
effective moving shadow detection method is therefore
necessary for accurate extraction of moving objects.

There are a number of cues that provide informa-
tion regarding properties and behavior of cast shadows.
A direct way for modeling cast shadows is based on
the assumption that shadow pixels should have low-
er luminance and the same chrominance as the corre-
sponding background. This attenuation property has
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been employed in different color spaces like RGB [5]
and HSV [3]. Unfortunately, such assumptions are d-
ifficult to justify in general, especially when pixels of
foreground objects are darker than the reference surface
they cover. Furthermore, it is not reliable to exploit on-
ly the color information of isolated point. Therefore,
in addition to color properties, texture or gradient in-
formation extracted from the spatial domain is used to
detect cast shadows [7, 13]. Some physical models [2]
are also used to model cast shadows. The major limita-
tion of these methods is that they require offline train-
ing and often estimate parameters again for each new
scene. Hence, they cannot handle complex conditions
like time-varying lighting. A comprehensive study of
moving cast shadow detection approaches can be found
in [11].

Recently, online approaches have been developed to
learn moving cast shadows [6, 9, 10] in color space
adaptively. Compared to the complexity and variabil-
ity of cast shadows in color spaces, the distribution of
texture differentia is relatively simple, hence we pro-
pose to also update the cast shadow model online in the
texture space.

In this paper, we propose a novel method for shadow
detection, using a local texture descriptor called Scale
Invariant Local Ternary Patterns (SILTP) [8]. Glob-
al properties of cast shadows in both texture and col-
or domains are learned through the use of Mixture of
Gaussian, with an online-EM update scheme. Contex-
tual constraint from MRF modeling is further incorpo-
rated to obtain the MAP estimation of the cast shadows.
Experimental results demonstrate the effectiveness and
robustness of the proposed method. The contribution-
s are the following: Firstly, SILTP is used as a lo-
cal texture descriptor for cast shadow detection, which
can deal with the sudden changes of gray scale inten-
sities caused by environmental illumination variation-
s. Secondly, an online learning scheme is introduced
to shadow learning process in both texture and color s-
pace, which makes the proposed method more robust to
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Figure 1. Flow diagram of the algorithm

changes in environments.

2 Learning Cast Shadows

A flow diagram of the proposed algorithm is illus-
trated in Figure 1. For each pixel p, a background mod-
el is learned by the nonparametric KDE method in the
RGB color space [4], from which the foreground proba-
bility can be estimated. After that, potential moving ob-
jects are segmented, and within it we evaluate the like-
lihood probability of cast shadows over both the color
and texture domain as follows

P (MP |S, p) =
∑
i=1,2

P (MP |Di, S, p)P (Di|S, p)

(1)
where MP denotes potential moving pixels, S denotes
shadow, D1 and D2 represent the texture and color do-
mains respectively. The estimation details are described
in the following.

2.1 Shadow Model in Texture Space

With the assumption that the texture within the cast
shadow tends to be similar with that in the correspond-
ing background surface, in this work we propose to
learn a texture shadow model to discriminate the shad-
ow from moving objects and update it online.

Tan in [12] proposed a local image texture descriptor
called Local Ternary Pattern (LTP) for face recognition.
It is robust to image noises but not invariant to gray-
scale changes. However, in practice, for surveillance s-
cenario, there always exist sudden changes of gray scale
intensities due to environmental illumination variations
such as shadow. To address this problem, we extend the
original LTP to the intensity scale invariant LTP (SILT-
P) as in [8] for handling cast shadows.

As shown in Figure 2, for any pixel location (xc, yc),
SILTP can be encoded as

SILTP τ
N,R(xc, yc) =

N−1⊕
k=0

sτ (Ic, Ik), (2)

where Ic is the gray intensity value of the center pixel,
Ik(k = 0, 1, ...N − 1) are that of its N neighborhood
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Figure 2. The SILTP operator
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Figure 3. Hamming distance of SILTP

pixels equally spaced on a circle of radius R1,
⊕

is
defined as concatenation operator of binary strings, and
sτ denotes a piecewise function defined as

sτ (Ic, Ik) =


01, if Ik > (1 + τ)Ic,

10, if Ik < (1− τ)Ic,

00, otherwise.

(3)

In real scenarios, illumination variations always
make the gray intensities of neighboring pixels to be
changed simultaneously, from brighter to darker or con-
versely, which approximately causes a scale transform
on neighboring pixels with a constant factor. In this case
the proposed SILTP can well encode the illumination-
invariant textures. Figure 3 shows the Hamming dis-
tance of SILTP between the potential moving objects of
a frame and the corresponding background. As can be
seen from Figure 3, the cast shadow regions are more
similar with the the corresponding backgrounds (with
lower distances), except that the boundaries have high-
er distances. Thus we apply Gaussian mixture model
(GMM) with two states to learn a universal likelihood
distribution of such distance as our shadow model in
texture space. Consequently, the likelihood probability
P (MP |D1, S, p) of a pixel p being moving cast shadow
can be evaluated by the learned texture shadow model.

The Expectation Maximization (EM) algorithm is
adopted to estimate the parameters of GMM from d-
ifferent scenes. Moreover, online-EM is employed to
update the universal GMM model automatically for a
specific scene in real-time video. Since the distribution
of the distance based shadow likelihood probability in
texture space is usually simple for various scenes, the
Online-EM based adaptation can converge very quick-
ly.

1In this work, N=8 and R=1 are used for SILTP.
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2.2 Shadow Model in Color Space

Figure 3 shows that SILTP can represent shadows
similar with the corresponding backgrounds, thus dis-
criminates them from moving objects. Yet it also shows
that with SILTP some flat surfaces of moving objects
are also similar with the flat background regions. How-
ever, in this case the surface colors of the two are differ-
ent. Therefore, we also learn a color shadow model for
a complement with textures.

Porikli and Thomton showed that in RGB color s-
pace shadow can be defined as a conic volume around
the corresponding background [10]. Following their
work, we also learn a shadow model in RGB color s-
pace. For a moving pixel p, the relationship of the ob-
servation pixel vector zt(p) and the corresponding back-
ground pixel vector bt(p) can be characterized by two
parameters [10]: luminance ratio rl(p) and angle varia-
tion θ(p), which are defined as follows :

rl(p) =
∥bt(p)∥

∥zt(p)∥cos(θ(p))
, (4)

θ(p) = arccos(
< zt(p), bt(p) >

∥zt(p)∥ · ∥bt(p)∥
), (5)

where ∥ · ∥is the norm of a vector, and <,> is the in-
ner product operator. Figure 4 illustrates the distribution
of (rl, θ) collected from shadows of some scenarios. It
can be seen that the two parameters fall within several
clusters. Therefore, we adopt GMM with five compo-
nents to learn the above parameter distribution as a col-
or shadow model. We also apply EM algorithm first to
learn a universal GMM model with (rl, θ) samples over
shadows of various scenarios. And then, for a real-time
video of a specific scene, we update it automatically by
online learning based on Online-EM algotithm. Final-
ly, the likelihood probability P (MP |C2, S, p) of cast
shadows in color space is estimated by the updated G-
MM model.

3 Segmentation for the cast shadow

In the likelihood probability map of cast shadows,
if we deal with each pixel independently, the segmen-

tation results may contain many small pieces. Conse-
quently, we build the likelihood probability into an MR-
F energy function which considers neighboring smooth
information that will refine the final segmentation. The
energy is defined as

E(f) =
∑
p∈P

Dp(fp) +
∑

p,q∈N

Vp,q(fp, fq), (6)

where E(f) is the energy of a particular shad-
ow/foreground labeling f , p and q are indexes over
the pixels, Dp(fp) is the data cost of assigning the
pth pixel to label fp, and Vp,q(fp, fq) represents the
smoothness cost of assigning pixels p and q in a
neighborhood N to respective labels fp and fq . In
this work, the data cost assigning shadow is set as
−logP (MP |S, p), while that assigning foreground is
defined as log(1−αP (MP |S, p)), where α is a weight-
ing factor. The smoothness cost term is defined as

Vp,q = (fp − fq)
2e−β|Ip−Iq| (7)

where Ip and Iq denote gray-scale intensities of pixels
p and q, | · | denotes absolute difference, and β is a con-
stant. To minimize the energy function of Equ. (6), we
apply the graph cut algorithm [1] for an approximate
MAP estimation of the labeling field, and hence obtain
the final segmentation result.

4 Experiment Results

We run experiments on three benchmark video se-
quences containing moving cast shadows 2 to evaluate
the effectiveness of the proposed method. Figure 5 il-
lustrates the visual results of our method on these se-
quences. As shown in Figure 5, moving cast shadows
can be almost completely detected by our approach,
except for some thin mistakes presented around the
boundary of cast shadows in the outdoor sequences. For
the indoor sequence, the soft cast shadows of moving
objects can be removed better by the texture descriptor
SILTP. Also notice that, thanks to the new descriptor,
the moving highlight reflected on the road is also re-
moved (see Figure 5(1)c).

For a quantitative evaluation, we calculate the accu-
racy of the cast shadow detection by using two metrics
proposed in [11]. The shadow detection rate η mea-
sures the percentage of correctly labeled shadow pixels
among all detected ones, while the shadow discrimina-
tion rate ξ measures the discriminative power between
foregrounds and shadows. The quantitative compari-
son with both the proposed and previous approaches are

2http://cvrr.ucsd.edn/aton/shadow.
http://vision.gel.ulaval.ca/ CastShadows
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Figure 5. Visual results in various environments. a|b
c|d (a) Frame from video sequence. (b) Po-

tential foreground labels. (c) Hamming distance of SILTP. (d) Final result using MRF

Table 1. Quantitative evaluation results
Sequence Highway I Highway II Hallway
Method η% ξ% η% ξ% η% ξ%

Proposed 72.51 84.90 75.38 74.12 82.31 91.07
Physics[6] 70.83 82.37 76.50 74.51 82.05 90.47
Kernel[2] 70.50 84.40 68.40 71.20 72.40 86.70
GMSM[9] 63.30 71.30 58.51 44.40 60.50 87.00

given in Table 1. The results for other’s approaches are
taken directly from [6][2][9]. From Table 1, we can
see that the proposed method achieves comparable per-
formance as the state-of-the-art algorithms in the litera-
ture. Due to the illumination invariant texture descrip-
tor SILTP, our approach performs better in indoor scene
like Hallway, and outdoor scenario with large cast shad-
ow regions, such as HighwayI.

5 Conclusions and Future work

A novel method for moving cast shadow removal
is presented in this paper. Color and texture informa-
tion using SILTP are built into a MRF energy function.
Additionally, with the aid of online-EM process, the
shadow model is updated dynamically. Qualitative and
quantitative evaluation in various experiments validate
the effectiveness of our method. Moreover, our method
performs better in the indoor scenarios. The proposed
pixel-based method is suitable for parallel computing,
therefore it can be accelerated by multi-core and GPU
implementations, which will be one of our future work.
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