

Person Re-identification

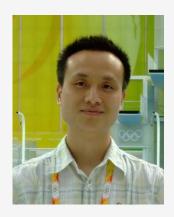
Introduction and Trends

Shengcai Liao

Institute of Automation Chinese Academy of Sciences

CCCV 2017 • Tianjin

Team Members


Center for Biometrics and Security Research

Stan Z. Li Professor

Yang Yang Assistant Professor

Shengcai Liao Associate Professor

Hailin Shi Assistant Professor

CONTENT

01 Introduction

02) Approach

03 Evaluation and Benchmark

04 Future Directions

Introduction

Security concerns

2011 riot in London

2012 "8.10" serial killer Zhou Kehua

2013 Boston Marathon bombings

2014 "3.1" Kunming terror attack

- Surveillance cameras everywhere
- However,
 - Mostly, searching suspects still requires large amount of labors
 - Automatic algorithms are still very poor
 - But the real demand is increasing

Search suspects in a large amount of videos

Concepts

Classification: classes fixed

Cat

Dog

Verification: pairwise

Same?

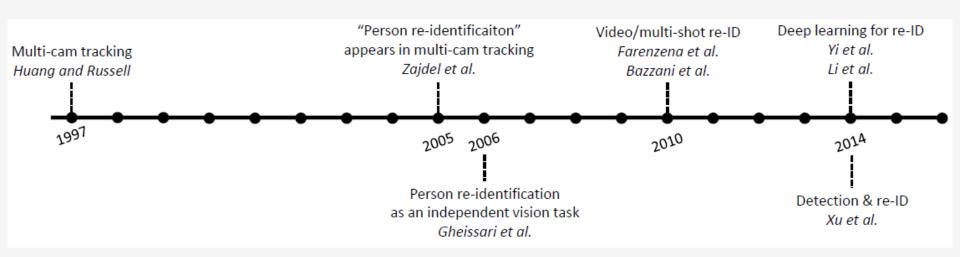
Identification: gallery IDs known

Who?

Re-identification: gallery IDs unknown

注:Identification在国家标准中翻译为辨识,因此Re-identification翻译为再辨识为妥

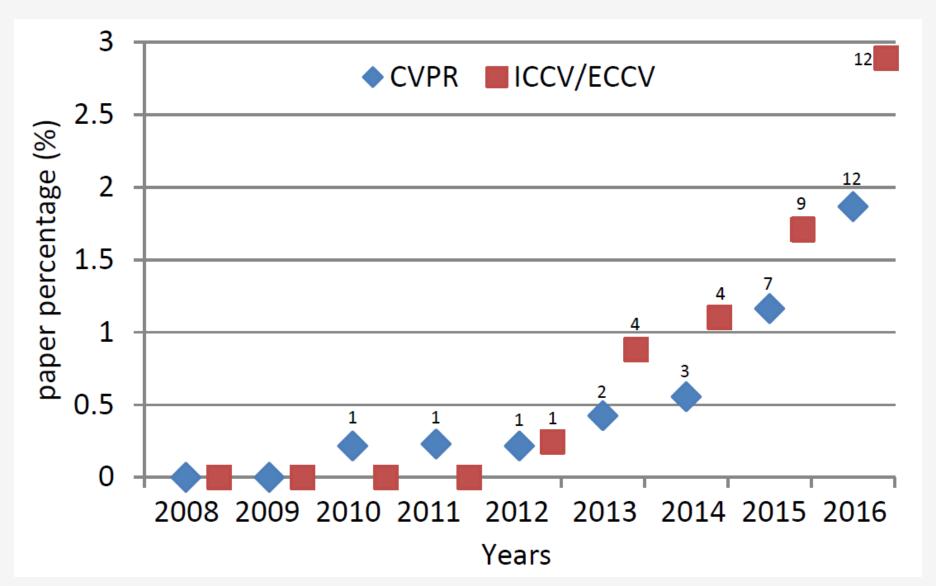
Appeared?



Difference with Multi-camera Tracking

- Multi-camera tracking
 - Usually online

Multi vs. multi


- Need to track all persons in all cameras
- In a local area
- In a short duration
- Person Re-identification
 - Usually offline, for retrieval
 - Re-identify one specific person

One vs. multi

- Across broad areas
- With a possible long time

Oriented from multi-camera tracking, but is a particular independent task now.

Preprocess

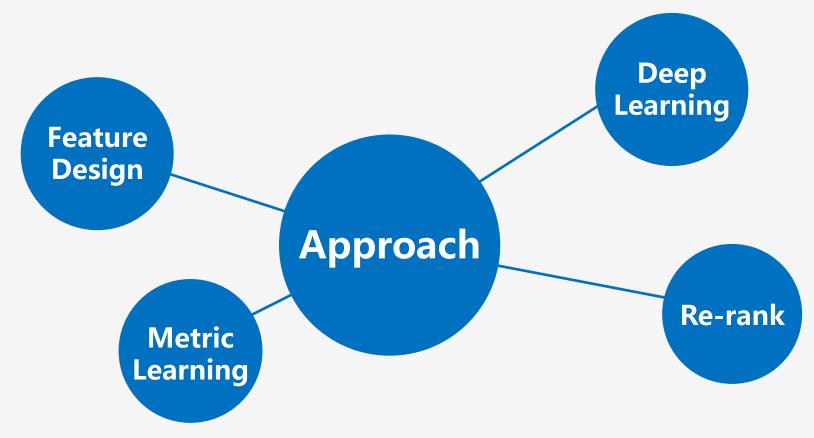
- Pedestrian detection
- SinglecameraTracking

Representation

- Handcrafted features
- Feature learning

Matching

- Traditional Distances
- Metric learning
- Re-ranking


- Viewpoint changes
- Pose changes
- Illumination variations
- Occlusions
- Low resolutions
- Limited labeled data
- Generalization ability

Approach

Main research directions in person re-identification

Feature Design

RGB, HSV, YCbCr, Lab, Color names

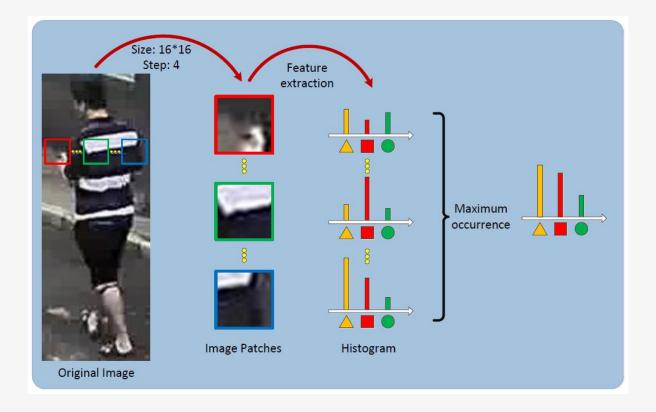
Textures

Gabor, LBP, SILTP, Schmid, BiCov

Hybrid

ELF, LOMO, GOG

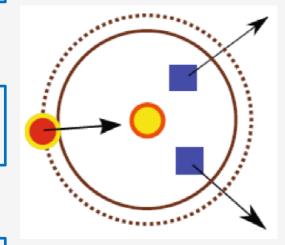
Structure


Pictorial, SDALF, Saliency

Attribute

Age, gender, bag

- Typical feature: LOMO
 - Viewpoint changes: local maximal occurence
 - Illumination variations: retinex and SILTP

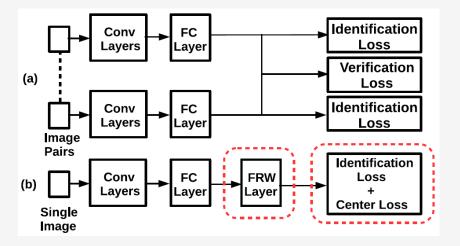

Metric Learning

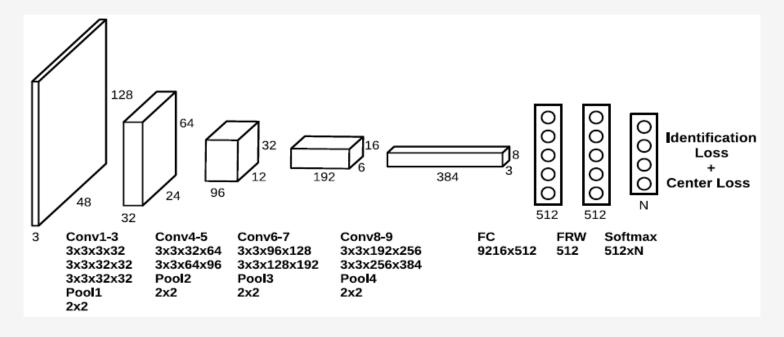
Traditional Methods

ITML, LMNN, LDML

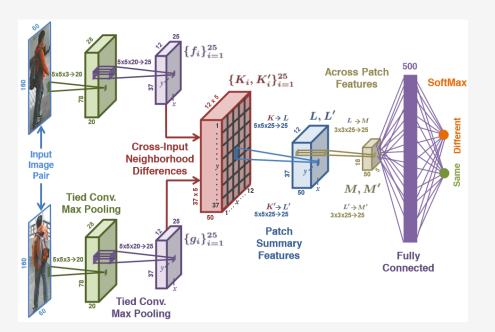
Optimization Methods

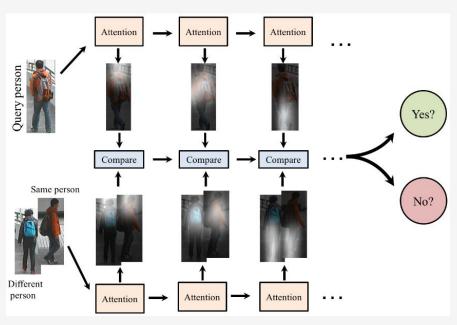
PRDC, MLAPG

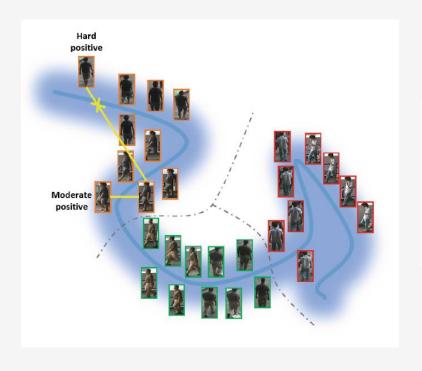

Fast Methods

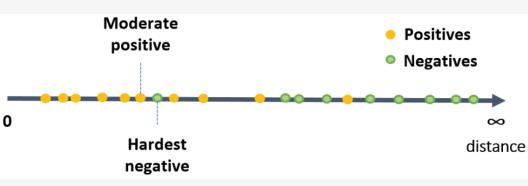

KISSME, XQDA, LSSL

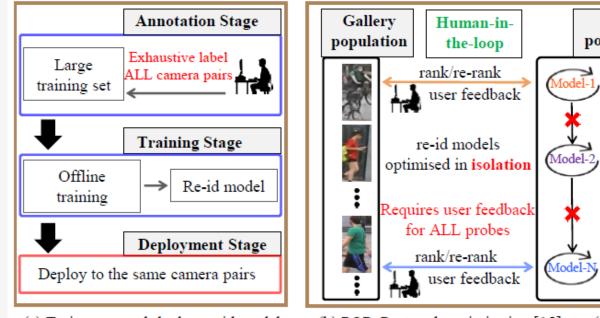
$$D_{\mathbf{M}}^{2}(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\|_{\mathbf{M}}^{2} = (\mathbf{x} - \mathbf{z})^{T} \mathbf{M} (\mathbf{x} - \mathbf{z})$$


- Deep metric learning
 - Cosine similarity
 - Contrastive loss
 - Triplet loss
 - Center loss




- Deep structures
 - Siamese CNN
 - Cross-input neighborhood, patch summary
 - Gating CNN
 - Contextual LSTM
 - Attention network




- Sample mining
 - Hard negative mining
 - Moderate positive sample mining

- User feedback based methods (human in the loop)
 - POP
 - HVIL

(a) Train-once-and-deploy re-id models

(b) POP: Post rank optimisation [15]

(c) HVIL: Human Verification Incremental Learning

Human-in-

the-loop

rank/re-rank

user feedback

re-id models

optimised incrementally

limited labour budget

Deployable to

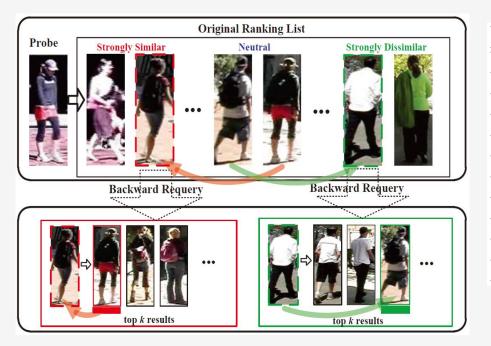
further population

Gallery

population

Probe

population


Model-2

Strong

Model

- Context based methods
 - DCIA
 - Bidirectional ranking
 - DSAR

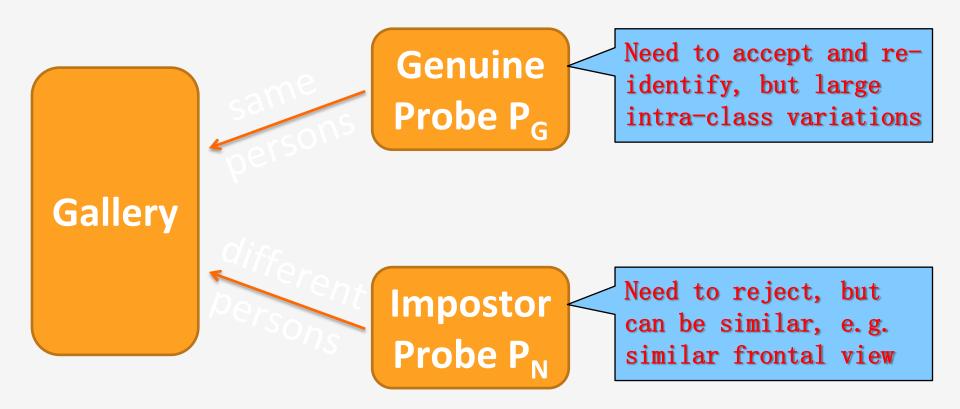
$\textbf{Rank} \rightarrow$	1	5	10	25	50
Euc. Dist.+ DCIA	16.29	33.38	47.46	58.86	72.78
DDC [10]	19	-	52	69	80
KISSME+SB [2]	19.3	50.7	63.3	78.2	90.6
KISSME+CCRR [17]	22	49	69	87	95
RIRO [37] (1 Iteration)	28	30	34	51	64
PRRS [4]	33.29	-	78.35	-	97.53
KISSME+ DCIA	38.87	67.96	82.01	93.62	98.36
IRT [1] (1 Iteration)	43	45	46	53	61
LADF+ DCIA	44.67	71.54	83.56	93.82	98.52
POP [23] (1 Iteration)	59.05	60.95	63.10	72.20	-
KCCA+ DCIA	63.92	78.48	87.50	96.36	99.05

DCIA on VIPeR

Evaluation and Benchmark

- Closed-set scenario
 - Probe: query images to be re-identified
 - Gallery: a set of images from surveillance videos to re-identify probe images
 - Performance measure: Cumulative Matching Characteristic (CMC) curves

Constraint: each probe image must have the same person appearing in the gallery


Open-set scenario

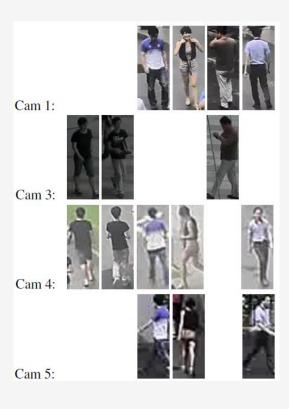
Open-set Person Re-identification

- Task: determine the same person of the probe in the gallery, or reject the probe
- Two subsets of probes

Open-set Person Re-identification

- Performance measures:
 - Detection and Identification Rate (DIR): percentage of images in P_G that correctly accepted and re-identified
 - False Accept Rate (FAR): percentage of images in P_N that falsely accepted

Closed-set Benchmark Datasets


Dataset	#Cameras	#Persons	#Images	#Views
VIPeR	2	632	1,264	2
ETHZ	1	146	8,555	1
i-LIDS	5	119	476	2
QMUL GRID	8	250	1,275	2
PRID2011	2	200	1,134	2
CUHK01	2	971	3,884	2
CUHK02	5 pairs	1,816	7,264	2
CUHK03	6	1,360	13,164	2
CAMPUS-Human	3	74	1,889	3
Market-1501	6	1,501	32,668	-
MARS	6	1,261	1,191,003	-
DUKE	8	1,404	36,411	-

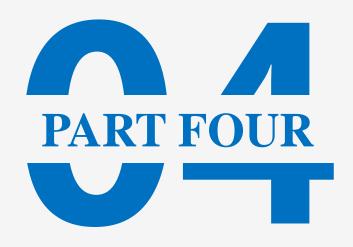
Open-set Benchmark Datasets

Dataset	#Cameras	#Persons	#Images	#Views
Open-world	6	28	4,096	-
OPeRID	6	200	7,413	5

Closed-set Benchmark Results

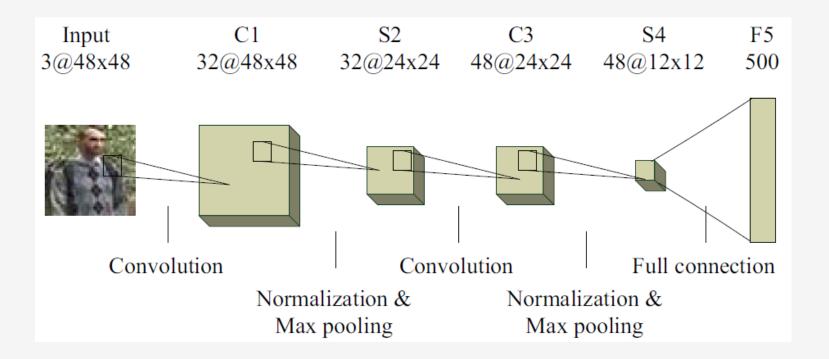
Method	Rank 1	Rank 5	Rank 10
XQDA	46.3	78.9	88.6
MLAPG	51.2		
DNS	54.7	84.8	94.8
LSSCDL	51.2		
Siamese LSTM	57.3	80.1	88.3
IDLA	45.0	76.0	83.5
Gated S-CNN	61.8	80.9	88.3
EDM	52.0		
Joint Learning	52.2		
CAN	63.1	82.9	88.2
CNN Embedding	66.1	90.1	95.5
Deep Transfer	84.1		
Center Loss	82.1	96.2	98.2

Benchmark on CUHK03 (detected)

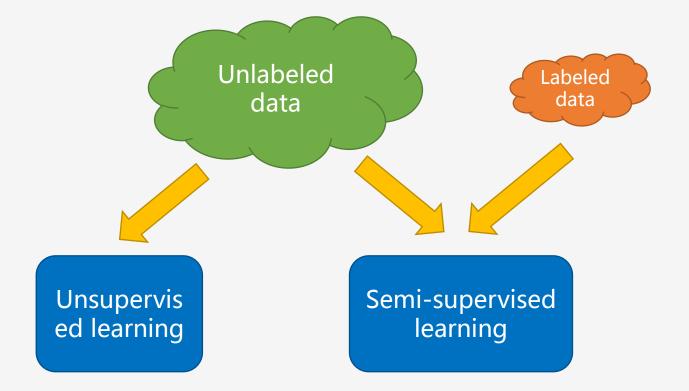


Open-set Benchmark Results

On OPeRID

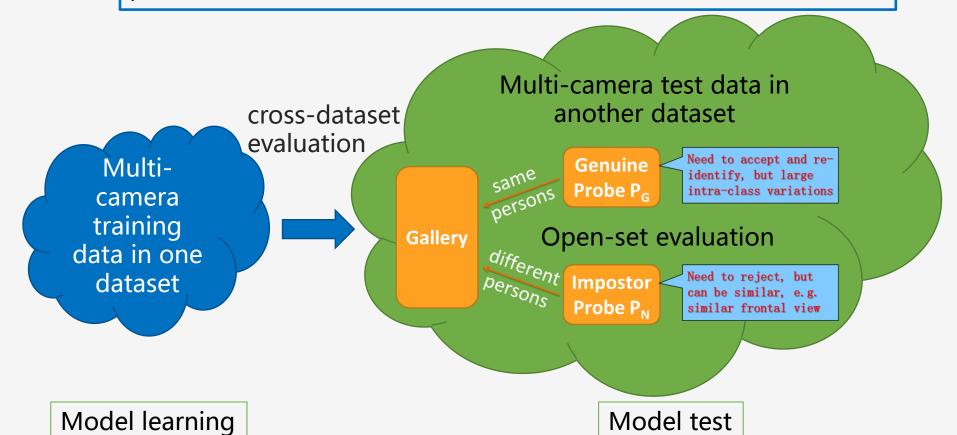

	FAR=1%		FAR=10%		
	Rank=1	Rank=10	Rank=1	Rank=10	
IDENTITY	0.84	0.91	7.36	9.21	
MAHAL [13]	1.89	1.99	10.50	11.97	
KISSME [13]	1.82	1.92	9.99	11.46	
LMNN [29]	0.41	0.41	3.97	4.58	
ITML [6]	1.18	1.21	8.39	9.27	
LADF [19]	1.53	1.74	9.11	10.82	
RRDA	3.99	4.35	14.51	16.72	

Very poor!



With the help of large datasets, deep learning methods have achieved much better performance, and are becoming important for person re-identification.

Due to limited labeled data and large diversity in practical scenarios, semi-supervised learning or unsupervised learning will be potentially useful for practical applications in exploring large amount of unlabeled data.



Performance of cross-dataset evaluation is still very poor. Re-ranking methods may be very useful in improving the performance.

For evaluation, open-set person re-identification and cross-dataset evaluation will be preferred in evaluating practical performance.

Shengcai Liao Institute of Automation Chinese Academy of Sciences

http://www.cbsr.ia.ac.cn/users/scliao/

