Selective Refinement Network for High Performance Face Detection

Cheng Chi, Shifeng Zhang, Zhen Lei, Stan Z. Li University of Chinese Academy of Sciences

Motivation

(a) Low recall efficiency

(b) Low location accuracy

- High performance face detection remains a very challenging problem, especially when there exists many tiny faces.
- Recall efficiency: number of false positives needs to be reduced at the high recall rates.
- Location accuracy: accuracy of the bounding box location needs to be improved.

Contribution

- Presents a novel single-shot face detector, named Selective Refinement Network (SRN), which introduces novel two-step classification and regression operations selectively to reduce false positives and improve location accuracy simultaneously.
- Presents a **Selective Two-step** Classification (STC) module to filter out most simple negative samples to reduce the classification search space.
- Designs a **Selective Two-step** Regression (STR) module to provide better initialization for the subsequent regressor.
- Introduces a Receptive Field Enhancement (RFE) module to provide more diverse receptive fields for detecting extreme-pose faces.
- Achieves state-of-the-art results on AFW, PASCAL face, FDDB, and WIDER FACE datasets.

Structure of RFE module

Sum

Concat

Conv

1×1×256

1×1×64

 $1 \times 1 \times 64$

Component	SRN					
STC		✓		•	•	
STR			•	•	•	
RFE					•	
Easy subset	95.1	95.3	95.9	96.1	96.4	
Medium subset	93.9	94.4	94.8	95.0	95.3	
Hard subset	88.0	89.4	88.8	90.1	90.2	

Effectiveness of various designs on the AP performance

STC	В	P2	P 3	P4	P5	P 6	P7
Easy	95.1	95.2	95.2	95.2	95.0	95.1	95.0
Medium	93.9	94.2	94.3	94.1	93.9	93.7	93.9
Hard	88.0	88.9	88.7	88.5	87.8	88.0	87.7

AP performance of the two-step classification Applied to each pyramid level

STR	В	P2	P 3	P4	P5	P6	P7
Easy	95.1	94.8	94.3	94.8	95.4	95.7	95.6
Medium	93.9	93.4	93.7	93.9	94.2	94.4	94.6
Hard	88.0	87.5	87.7	87.0	88.2	88.2	88.4

AP performance of the two-step regression Applied to each pyramid level

Results on Benchmarks

	Easy	Medium	Hard
WIDER FACE Val	96.4	95.3	90.2
WIDER FACE Test	95.9	94.9	89.7

Model Analysis