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Abstract

Despite that face detection has progressed significantly
in recent years, it is still a challenging task to get a fast
face detector with competitive performance, especially on
CPU based devices. In this paper, we propose a novel loss
function based on knowledge distillation to boost the per-
formance of lightweight face detectors. More specifically, a
student detector learns additional soft label from a teacher
detector by mimicking its classification map. To make the
knowledge transfer more efficient, a threshold function is
designed to assign threshold values adaptively for differ-
ent objectness scores such that only the informative sam-
ples are used for mimicking. Experiments on FDDB and
WIDER FACE show that the proposed method improves the
performance of face detectors consistently. With the help of
the proposed training method, we get a CPU real-time face
detector that runs at 20 FPS while being state-of-the-art on
performance among CPU based detectors.

1. Introduction
Face detection is an essential problem because it is the

preceding task of many computer vision applications such
as face tracking [9], face alignment [36] and face recogni-
tion [37]. Due to the development of convolutional neu-
ral networks (CNNs), the performance of face detection has
been improved significantly in recent years. However, ex-
isting face detectors are usually redundant and computation-
ally inefficient because they utilize large CNNs to maintain
superior performance. Although one-stage based detectors
such as SSD [16] and YOLO [22] have been designed to
accelerate detectors, they are still not fast enough for indus-
trial use, especially for CPU based environments. On the
other hand, the performance of detectors drop quickly when
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Figure 1: Visualization of classification map and regression map
samples of a large and a small detector trained with regular detec-
tion loss. The maps on the same row are from the same anchor.

the channels of CNNs are reduced to meet speed require-
ments. Thus, it is a challenging task to get a lightweight
face detector with satisfactory performance.

This work aims to improve the performance of
lightweight face detectors with knowledge distillation
(KD). Knowledge distillation [1, 6] is a promising method
to improve the performance of small networks by mimick-
ing the outputs of large networks. The effectiveness of KD
has been validated on classification [1, 6] as well as met-
ric learning [4] tasks. For detection task, it is not straight-
forward to transfer knowledge from a teacher network to a
student network because the outputs of detectors have class
imbalance problem. Specifically, the outputs of a detector
usually contain a few samples from foreground class and are
dominated by the samples from background class. There-
fore, simply mimicking all the outputs of the last layer (as
in classification and metric learning tasks) will lead to poor
model performance. Few works have applied KD to de-
tection problems except [12, 3]. The work [12] proposes
to mimic through the feature map right before classifica-
tion and regression modules. Besides regular detection loss,
their student network mimics its region proposal area on the
feature map to transfer knowledge from the teacher network
during training. Another work [3] proposes a weighted
cross-entropy loss to address the class imbalance problem



Figure 2: The overall architecture of our face detection model. Red arrows indicate the paths of backpropagation.

when applying KD to two-stage based detectors such as
Faster-RCNN [23]. Most lightweight face detectors adopt
one-stage approach rather than two-stage approach because
the former is more computationally efficient. The last layer
of a typical one-stage based detector consists of a classifica-
tion map and a regression map, used for predicting object-
ness scores and bounding box coordinates respectively. The
class imbalance problem is even more severe in one-stage
detectors because they do not have region proposal module
to reduce negative samples as in two-stage detectors.

In this paper, we see knowledge distillation (KD) loss
as a complement to regular detection loss. In other words,
the KD method should make full use of the supervisory sig-
nals that differ from ground-truth (GT) labels. We choose
the classification map as the connection module for trans-
ferring knowledge according to the following reasons. (1)
Compared to the feature layers, the classification map gives
outputs with a clear physical meaning which is helpful for
selecting appropriate samples. (2) Compared to the regres-
sion map, the classification map contains much better soft
labels. To be more specific, the outputs of classification map
are real numbers ranging from zero to one, which are more
accurate and smoother than the GT labels marked as either
one or zero. On the other hand, the GT labels of regression
map are real numbers originally, thus the regression map of
teacher network does not give more valuable information.
Figure 1 visualizes some samples of regression maps and
classification maps of a large net and a small net, both of
which are trained with regular detection loss. We can see
from the figure that the two models have a much larger gap
on classification map than regression map, indicating that
the classification map of large net is more worth learning.

To improve the performance of lightweight face detec-
tors, we propose a new loss function based on KD method.
The loss function is a threshold based L2 loss, where the
threshold varies for different objectness scores of teacher,
see Figure 3(a). Among all the objectness scores in a mini-
batch, we only compute L2 loss for the selected ones. A
pair of scores (scores from the same index of teacher and

student) will be selected if the absolute difference between
student objectness score and teacher objectness score ex-
ceeds the corresponding threshold. As can be seen from the
figure, the function is of lower values for the scores closer
to 0.5, giving priority to the scores that differ more from GT
labels. As for the scores close to zero or one, they will also
be included if the difference is relatively significant. It is
worth noting that the proposed loss function naturally han-
dles the class imbalance problem. Simply speaking, imbal-
ance problem is caused by the overwhelming easy negative
samples. An easy negative sample will yield a quite small
objectness score in both teacher and student, which is not
likely to be selected for mimicking by our U-shaped func-
tion. Experiments on popular face detection datasets show
that our proposed KD loss is able to improve the accuracy
of lightweight face detectors considerably.

2. Our Model
2.1. Architecture

Our detection framework is based on SSD [16]. SSD is a
one-stage based detection framework with competitive per-
formance to two-stage based detectors. It splits bounding
boxes into a set of anchors over different scales of feature
maps, which is the key of its success. When equipped with
efficient base networks, SSD can be a CPU real-time face
detector with satisfactory performance [33].

Figure 2 shows the overall architecture of our model.
During training, there are two networks, namely student
and teacher. The teacher network is usually larger than the
student, thus it has better performance. The parameters of
the teacher are frozen while the parameters of the student
are updated through two parts of loss functions: GT de-
tection loss and KD loss. The loss function of our model
is L = LGT + λLKD, where LGT is ground-truth de-
tection loss, LKD is knowledge distillation loss and λ is
a scalar to balance the two losses. Following the region
proposal network in Faster R-CNN [23], the GT loss is
LGT = Lcls+Lreg , where Lcls is a two-class Softmax loss
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Figure 3: Visualization of threshold functions. (a) Threshold func-
tions with different α (i.e., scale) and β. (b) Threshold functions
with different β and fixed γ = 3.2.

for classification and Lreg is smooth L1 loss for regression.
We introduce the KD loss in the next subsection.

2.2. Knowledge Distillation for Face Detection

As mentioned in Section 1, the classification map of a
single stage detector is a proper place to transfer knowl-
edge. Thus, a straightforward way is to mimic the whole
classification map:

LKD =
1

|S|
∑
i∈S

∥pi − qi∥22, (1)

where pi is the ith objectness score in the classification map
of teacher, qi is the ith score in the classification map of
student, S contains all the indices of classification map in
a mini-batch and |S| represents the number of indices in S.
However, classification map is usually overwhelmed by the
samples from background class, and simply mimicking the
whole map leads to high false negative predictions. There-
fore, the core of applying knowledge distillation is to decide
which indices should be included in set S.

A threshold based loss function is proposed in this pa-
per, which acts as a filter of the objectness scores. The new
loss is able to select more informative samples so that the
small network can be better optimized because it gets better
supervisory signals. More concretely, the threshold θ is a
function of teacher objectness score:

θi = f(pi;α, β) = α(|pi − 0.5|)β , pi ∈ [0, 1] (2)

where pi is a objectness score of teacher network, α is a
hyper-parameter that controls the scale of the function and β
is a hyper-parameter that controls the shape of the function.
Then we select indices according to the above function:

S = {i | |pi − qi| > θi}. (3)

Figure 3(a) visualizes the threshold functions for several
values of α and β. From the figure, we can see a property
of the function: when a teacher objectness score is closer to
0.5, its corresponding threshold is relatively lower such that
the score is more likely to be added to set S. The reason be-
hind such design is that, the scores closer to 0.5 are more in-
formative samples because they have larger difference from

Model FB-1-GT FBI-1-GT FBI-1/2-GT
TPR(%) 95.4 96.2 94.1

FPS 20 20 40

Table 1: True positive rate (TPR) of original FB model and our
FBI models on FDDB at 1000 false positives.

GT labels. Therefore, the proposed threshold function is
able to only select informative samples for mimicking to
make the knowledge transfer more efficient. Moreover, the
class imbalance problem is implicitly solved because the
overwhelming easy negative samples will not be considered
as informative samples.

The hyper-parameters α and β smoothly adjust the func-
tion to suit plentiful situations. In practice, we choose β
from a discrete set of values (e.g., 2.0, 3.6 and 6.8) while the
range of α can be [0,∞). It is not difficult to see that cer-
tain combinations of α and β result in unreasonable thresh-
old functions (e.g., a large β with a small α, as the purple
function in Figure 3(a)). In order to avoid such functions
that have too large or too small area, we decide to introduce
a standard function area A1,γ as the normalization term of
scale. Then, Equation 2 can be simplified as follows:

θi = g(pi;β, γ) =
A1,γ

A1,β
(|pi − 0.5|)β , pi ∈ [0, 1] (4)

where A1,β is the area of the function f(pi; 1, β) between
zero and one, and A1,γ is the area of the function f(pi; 1, γ)

between zero and one. Now the term A1,γ

A1,β
replaces α, and it

chooses the scale adaptively according to β and γ so that the
area of the function between zero and one is always equal to
A1,γ . The candidate values of γ can be just the same as the
discrete set of β. As long as γ is properly selected, the new
scale will always be reasonable for specific β. For example,
if γ is set to be 2.0 and β = 4.0, then the scale will be
A1,2.0

A1,4.0
= 6.67. Intuitively, it just means that the scale should

increase as β increases (compared to γ), or vice versa.

2.3. Implementation Details

We adopt an improved version of FaceBoxes (FB) [33] as
the primary base network in this paper. FaceBoxes achieves
superior performance on face detection while being efficient
on CPU based devices. Compared to the standard SSD,
FaceBoxes further designs rapidly digested convolutional
layers, multiple scale convolutional layers and anchor den-
sification strategy to boost the performance of a lightweight
network. Building upon the architecture, our version re-
places the first two C.ReLU convolutional layers with five
thinner standard convolutional layers to make it deeper. We

The statement applies to most cases. Although there are exceptional
samples that are not close to 0.5 but have large difference from GT labels
(i.e., the prediction of teacher is incorrect), the number is negligible.



Figure 4: Differences between original FB model and our FBI model. Red blocks are the feature maps associated with prediction module.

FBI-1/2-KD FBI-1/2-GT
Scale 0.31 0.46 0.69 1.00 1.45 2.07 2.95 4.19 5.90 8.29 11.6 16.2 22.5

N/A
β 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8

TPR(%) 95.0 95.0 94.8 94.8 94.9 94.7 95.0 95.0 94.7 95.0 95.0 95.1 94.7 94.1

Table 2: Results of FBI-1/2-KD with different β and fixed γ = 3.2. The corresponding scale value of each β is also given when γ = 3.2.

also utlize a lightweight version of Feature Pyramid Net-
work (FPN) [15] module to enrich the semantic informa-
tion of lower feature layers. We name the modified version
FaceBoxesImproved (FBI). Figure 4 shows the difference
between the two networks. Table 1 gives the performance
of the two versions on FDDB. As can be seen, our improved
version promotes the true positive rate (TPR) by 0.8% while
being as fast as the original model.

The models are trained with SGD, in which the momen-
tum is set to 0.9. The parameters are randomly initialized
with “Xavier” method. We use 0.0005 weight decay and 32
batch size. The number of total training iterations is 160k,
where the learning rate is 10−3 for the first 120k, 10−4 for
120k to 140k, and 10−5 for the last 20k. We fix the balance
parameter λ to 50 so that the value of KD loss is comparable
to that of GT loss. The code is implemented in Caffe.

3. Experiments
In this section, we first comprehensively analyze the pro-

posed KD method from several perspectives, then we report
the performance of our model on two popular face detection
datasets FDDB and WIDER FACE, respectively.

3.1. Model Analysis

The experiments of model analysis are carried out on
FDDB dataset because it is a representative face detection
benchmark dataset. We denote the models with format
Network-N-method. For example, FBI-4-GT refers to a FBI
network that has 4 times of channels on each layer of a stan-
dard FBI trained with GT loss; FBI-1-KD refers to standard
FBI network trained with the proposed KD method.

3.1.1 The Hyper-parameters

Table 1 gives the performance of two FBI models trained
with only GT loss. When the number of channels of stan-

dard FBI is reduced to a half, its performance drops 2.1%,
which is a large gap on FDDB. Training with the proposed
KD method can narrow the gap from cutting channels. Af-
ter simplification, β and γ are two hyper-parameters of the
proposed method. Empirically, we find that γ = 3.2 works
the best, although some other choices (e.g., 2.4, 2.8, and
3.6) also work almost as well. Figure 3(b) visualizes the
thereshold functions of different β when γ = 3.2, and Ta-
ble 2 shows the corresponding results. From the table, we
see that the performance of the proposed KD model has sta-
ble improvements across a wide range of β when compared
to the GT version. Since β = 6.4 works the best in Table 2,
we set β = 6.4 and γ = 3.2 for the rest experiments, unless
otherwise stated.

Moreover, by setting β = 0 and changing the values of
α, we get a series of functions giving the same thresholds
for all the scores, which means that no priority is given to
middle scores. Table 3 shows the results of such functions.
As can be seen, none of them outperforms the results in Ta-
ble 2, indicating that more attention shoud be paid to the
scores in the middle. When α = 0 and β = 0, it actu-
ally mimics all the scores, and its result tells us that such
straightforward method does not work.

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6
β 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TPR(%) 88.4 94.5 94.4 94.4 94.2 94.2 94.1

Table 3: Results of FBI-1/2-KD with different α and β = 0.

3.1.2 Teacher Network

Intuitively, a better teacher network should learn better soft
labels and give larger improvement to a student with KD
method. In this part, we use a set of teacher networks with
various model capacities, namely FBI models with 1/2/4
times the number of channels. Table 4 shows the perfor-
mance of the teacher networks. Compared to FBI-1-GT,



Teacher TPR(%) of Teacher TPR(%) of Student
FBI-1-GT 96.2 95.1
FBI-2-GT 97.3 95.4
FBI-4-GT 97.3 95.4

Table 4: Results of teacher networks and the student FBI-1/2-KD
trained with different teachers.

FBI-2-GT achieves a better result as its number of channels
is doubled. However, the performance does not increase
any more when the number of channels is further doubled.
We then use these teachers to do KD training for a 1/2 FBI
network, and the results can be seen in Table 4. As we can
see, a better teacher does give a larger improvement. Since
FBI-2-GT already gives the best result, we use FBI-2-GT as
the teacher network in the rest experiments.

3.1.3 Visualization

To better understand how KD method helps student learn
from teacher, we visualize the classification map of the
teacher FBI-2-GT, the student FBI-1/2-KD as well as FBI-
1/2-GT in Figure 5. The first column displays the original
image, and the second to the fourth column display a fore-
ground class classification map sample of the teacher, the
student without KD and the student with KD, respectively.
It is easy to see that the student without KD cannot learn
the classification map well by itself, and its maps have sig-
nificant difference from that of teacher. Also, we find that
smaller networks tend to have more false positives. After
applying KD method, the visual quality of the maps of the
student has been greatly improved, and the maps are quite
similar to the ones of the teacher. The sample images in Fig-
ure 5 are from the validation set of WIDER FACE, which
are not included in the training data. Therefore, it indicates
that the distilled knowledge also generalizes to unseen data.

Figure 5: Visualization of classification map samples of teacher
network, student without KD and student with KD. The maps on
the same row are from the same anchor.

Method TPR(%) FPS
ACF [26] 85.2 20
CasCNN [11] 85.7 14
FaceCraft [21] 90.8 10
STN [2] 91.5 10
MTCNN [31] 94.4 16
FaceBoxes [33] 95.4 20
ICC-CNN [32] 96.5 12
FBI-1-KD (ours) 96.8 20
FBI-1/2-KD (ours) 95.4 40

Table 5: Accuracy and efficiency of our models and state-of-the-
art CPU based face detectors. The TPR is measured on FDDB at
1000 false positives. Note that the original FB [33] reports 96.0%
based on multi-scale testing while we use single scale testing (3×
of the input) for FDDB.

3.2. Results on FDDB

FDDB [8] dataset consists of 5,171 faces from 2,845 im-
ages, which are collected from Yahoo news. In this part,
we report the performance of our model on FDDB. Since
the focus of this work is lightweight face detectors, we first
compare our models with the state-of-the-art CPU based
face detectors on both accuracy and efficiency in Table 5.
Our measurements are based on VGA-resolution image.
We use Intel Xeon E5-2660v3@2.60GHz as CPU during
testing. Following FaceBoxes [33], we filter the predicted
bounding boxes with confidence threshold 0.05, and keep
top 400 of them. After applying NMS with jaccard overlap
0.3, we keep the top 200 boxes. We also use the standard
FBI as student besides the half-channel FBI. From the table,
we can see that our FBI-1-KD model achieves the best per-
formance among the existing CPU based face detectors and
it still runs at 20 FPS on CPU. Our faster model FBI-1/2-
KD runs at 40 FPS while its performance beats most other
slower detectors. It is worth noting that the performance
of FBI-1/2-KD even catches up with the original FB model
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Figure 6: Discrete ROC curves of our FBI-1-KD and the state-of-
the-art models on FDDB.
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Figure 7: Precision-recall curves on WIDER FACE validation and testing sets.

while being two times faster.
We compare our FBI-1-KD model to state-of-the-art

methods [34, 7, 17, 32, 33, 31, 20, 28, 13, 18, 10, 2, 27, 11,
26, 25, 5, 14, 24] on FDDB and the discrete ROC curves can
be seen in Figure 6. The performance of our model is still
competitive among the existing best models, where most of
them are too heavy to run on CPU.

3.3. Results on WIDER FACE

WIDER FACE [29] dataset consists of 393,703 faces
from 32,203 images, with large variations on pose, occlu-
sion, scale and illumination. According to the difficulty
of detection, the images are divided into three levels: easy,
medium and hard. The dataset is randomly split into three
parts, namely training set (40%), validation set (10%) and
testing set (50%). Among the three sets, the bounding box
ground truth of the testing set is not released, and the users
are required to submit the final predictions to the authors to
get evaluation result. In this paper, we train the models only
on WIDER FACE training set, so we evaluate our models
on both WIDER FACE validation and testing set. We use
single scale testing (2× of the input) for WIDER FACE.

To show the effectiveness of the proposed KD method,
we first evaluate our KD models against the corresponding
GT models on WIDER FACE validation set. From Table 6,
it can be seen that the models with KD outperform the cor-
responding GT versions consistently on all the three levels.

We compare our FBI-1-KD model with state-of-the-art
models [34, 19, 7, 35, 30, 31, 20, 28, 29, 26] on WIDER
FACE validation and testing sets in Figure 7. Our CPU
based model is still competitive among the best models,
and it even outperforms several GPU based methods such
as ScaleFace and Faceness.

Method Easy Medium Hard
FBI-1/2-GT 84.1 81.4 58.0
FBI-1/2-KD 86.2 (+2.1) 83.2 (+1.8) 58.6 (+0.6)
FBI-1-GT 88.5 86.8 65.1
FBI-1-KD 89.6 (+1.1) 87.8 (+1.0) 65.4 (+0.3)

Table 6: Comparison of the GT method and the proposed KD
method on WIDER FACE validation set.

4. Conclusion

In this work, we propose a novel training method based
on KD to improve the performance of lightweight face de-
tectors. The proposed method is carefully designed to trans-
fer knowledge from teacher to student through the classifi-
cation map of single stage detectors. The experiments on
FDDB and WIDER FACE show that our method improves
the performance of face detectors consistently compared to
several baselines. Notably, a face detector trained with our
method achieves 96.8% TPR (at 1000 false positives) on
FDDB while it still runs at 20 FPS on CPU.
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