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a b s t r a c t 

Although tremendous strides have been made in face detection, one of the remaining open issues is 

to achieve CPU real-time speed as well as maintain high performance, since effective models for face 

detection tend to be computationally prohibitive. To address this issue, we propose a novel face detec- 

tor, named FaceBoxes, with superior performance on both speed and accuracy. Specifically, the proposed 

method has a lightweight yet powerful network that consists of the Rapidly Digested Convolution Layers 

(RDCL) and the Multiple Scale Convolution Layers (MSCL). The former is designed to enable FaceBoxes 

to achieve CPU real-time speed, while the latter aims to enrich the features and discretize anchors over 

different layers to handle faces of various scales. Besides, we propose a new anchor densification strategy 

to make different types of anchors have the same density on the image, which significantly improves the 

recall rate of small faces. Finally, we present a Divide and Conquer Head (DCH) to boost the prediction 

ability of the detection layer using above strategy. As a consequence, the proposed detector runs at 28 

FPS on the CPU and 254 FPS using a GPU for VGA-resolution images. Moreover, the speed of FaceBoxes 

is invariant to the number of faces. We evaluate the proposed method on several face detection bench- 

marks including AFW, PASCAL face, FDDB, WIDER FACE and achieve state-of-the-art performance among 

CPU real-time methods. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Face detection is a long-standing problem in computer vision

nd pattern recognition with extensive applications including face

ecognition, tracking, animation and expression analysis, to name a

ew. With the great progress over the past few decades, especially

he breakthrough of deep convolutional neural network (CNN),

ace detection has been successfully applied in our daily life under

he restricted scenarios. 

However, there are still some challenging issues in uncontrolled

ace detection, especially on the CPU devices. These challenges

ainly come from two requirements for face detectors: (1) The

arge visual variation of faces in the cluttered backgrounds requires

ace detectors to accurately address a complicated face and non-

ace classification problem; (2) the large search space of possible

ace positions and sizes further imposes a time efficiency require-

ent. These two requirements are conflicting, since high-accuracy

ace detectors tend to be computationally expensive. Therefore, it

s one of the remaining open issues for practical face detectors on
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he CPU devices to achieve real-time speed as well as maintain

igh performance. 

In order to meet these two conflicting requirements, face

etection has been studied mainly in two ways. The early way

s based on hand-crafted features and classifiers. Following the

ioneering work of Viola and Jones [1] , most of early face de-

ection methods have focused on designing robust features ( e.g. ,

aar [1] , HOG [2] ) and training effective classifiers ( e.g. , Adaboost

3] ). Besides the cascade structure, the deformable part model

DPM) [4] is introduced into face detection tasks and achieves

emarkable performance. However, these methods highly depend

n non-robust hand-crafted features and optimize each compo-

ent separately, limiting the performance of these methods when

hey are deployed in real life complex scenarios. In brief, these

arly traditional methods are efficient on the CPU devices but not

ccurate enough against the large visual variation of faces. 

The other way is based on the deep convolutional neural

etworks (CNNs), which have significantly improved the state-of-

he-art performance and rapidly become the tool of choice [5–7] .

n the one hand, some methods [8–11] use CNN as a feature

xtractor in traditional face detection framework to improve the

erformance. On the other hand, many works [12,13] regard face

etection as a special case of generic object detection and solve

t via CNN-based object detection algorithm relying on identifying
xes: A CPU real-time and accurate unconstrained face detector, 
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Fig. 1. Architecture of FaceBoxes and information about anchor. The architecture consists of the Rapidly Digested Convolution Layers (RDCL), Multiple Scale Convolution 

Layers (MSCL) and Divide and Conquer Head (DCH). L1/L2/L3 and P1/P2/P3 are intermediate outputs and final outputs of the newly added FPN. 
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anchors in the image [14,15] . Specifically, these anchor-based

algorithms detect objects by classifying and regressing a series of

pre-set anchors, which are generated by regularly tiling a collec-

tion of boxes with different scales and aspect ratios on the image.

These CNN-based face detectors are robust to the large variation of

facial appearances and demonstrate state-of-the-art performance,

but they are too time-consuming to achieve real-time speed,

especially on the CPU devices. 

In this paper, inspired by the anchor-based detectors [14,15] ,

we develop an one-stage face detector with CPU real-time speed,

named FaceBoxes, which only contains a single fully convolutional

neural network and can be trained in an end-to-end way. Specifi-

cally, the proposed method has a lightweight yet powerful network

structure shown in Fig. 1 that consists of the Rapidly Digested Con-

volution Layers (RDCL) and the Multiple Scale Convolution Layers

(MSCL). The RDCL is designed to enable FaceBoxes to achieve real-

time speed on the CPU, and the MSCL aims to enrich the features

and discretize anchors over different layers to handle various scales

of faces. Besides, we propose a new anchor densification strategy

to make different types of anchors have the same density on the

input image, which significantly improves the recall rate of small

faces. Finally, we present a Divide and Conquer Head (DCH) to

boost the prediction ability of the detection layer. Consequently,

for VGA-resolution images, our face detector runs at 28 FPS on

the CPU and 254 FPS using a GPU. More importantly, the speed of

FaceBoxes is invariant to the number of faces on the image. Exten-

sive experiments are conducted on several face detection bench-

mark datasets including AFW, PASCAL face, FDDB, WIDER FACE

and we achieve state-of-the-art performance among CPU real-time

detectors. 

For clarity, the main contributions of this work can be summa-

rized as five-fold: (1) We design the Rapidly Digested Convolution

Layers (RDCL) to enable face detection to achieve real-time speed

on the CPU devices. (2) We introduce the Multiple Scale Convo-

lution Layers (MSCL) to handle various scales of face via enrich-

ing features and discretizing anchors over layers. (3) We propose

a new anchor densification strategy to improve the recall rate of

small faces. (4) We present a Divide and Conquer Head (DCH) to

boost the prediction ability of the detection layer. (5) We achieve

state-of-the-art performance on the AFW, PASCAL face, FDDB and

WIDER FACE datasets among CPU real-time methods. 

Preliminary results of this work have been published in [16] .

The current work has been improved and extended to the con-

ference version in several important aspects. (1) We simplify the
Please cite this article as: S. Zhang, X. Wang and Z. Lei et al., Facebo
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etwork architecture ( i.e. , using smaller convolution kernel size

nd fewer channels) to achieve faster speed and utilize the Feature

yramid Network (FPN) [17] to improve the overall performance.

2) We introduce the Divide and Conquer Head (DCH) for the de-

ection layer with anchor densification strategy to improve its pre-

iction performance. (3) We noticeably improve the speed and ac-

uracy of the detector in our previous work. (4) Some additional

xperiments are conducted to demonstrate the effectiveness of the

roposed method and analyze the effects of different components

n performance. 

. Related work 

.1. Generic object detection 

Early generic object detectors apply the hand-crafted features

nd classifiers in the sliding-window paradigm to find objects of

nterest. After the arrival of deep convolutional neural network, the

bject detection task is quickly dominated by the CNN-based de-

ectors, which can be roughly divided into two categories, i.e. , the

wo-stage approach and one-stage approach. 

The two-stage approach first generates a pool of object pro-

osals by a separate proposal generator ( e.g. , Selective Search [18] ,

dgeBoxes [19] , RPN [14] ), then classifies each proposal to get

he class label and estimate the accurate size and location. With

he step by step development from R-CNN [20] , SPPNet [21] , Fast

-CNN [22] to Faster R-CNN [14] , the two-stage approach achieves

ominated performance on several challenging datasets. Recent

mprovements of the two-stage approach focus on redesigning

rchitecture diagram [23,24] and training strategy [25,26] , using

ontextual reasoning [27–30] and exploiting multiple layers for

rediction [17,31,32] . 

The one-stage approach eliminates the proposal generation step

nd straight predicts class labels and regresses object bounding

oxes from the regularly pre-tiled anchor boxes using deep CNNs.

omparing to the two-stage approach, the main advantage of

he one-stage approach is its high computational efficiency, but

ts detection accuracy is usually inferior to that of the two-stage

pproach. OverFeat [33] is one of the first one-stage detectors

nd after that, several more efficient single-stage object detection

ethods have been proposed, most noticeably, YOLO [34] and

SD [15] . Since the one-stage approach has high running time

fficiency, it has attracted more and more attention including the
xes: A CPU real-time and accurate unconstrained face detector, 
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opics of training detector from scratch [35] , designing different

rchitecture [36,37] and addressing class imbalance issue [38–40] . 

Among them, PVANet [41] has some similarities with our algo-

ithm in architecture design. It designs a thin and light network

ia elaborate adoption and combination of some existing technical

nnovations, such as C.ReLU and Inception, which make it achieve

he state-of-the-art accuracy and minimize the computational cost.

imilar to it, we also adapt and combine some exiting technical in-

ovations. However, our approach is very different from PVANet.

irst, PVANet aims to achieve real-time on the powerful GPU, and

t only runs at 1.3 FPS on the CPU device. In contrast, our Face-

oxes is designed to reach CPU real-time speed. Second, due to

ifferent goals, we only use several convolution layers with few

hannels and suitable kernel sizes, resulting in model size of dif-

erent orders of magnitude ( i.e. , 2.5MB for FaceBoxes vs. 368MB for

VANet). Third, we introduce a novel anchor densification strategy

o improve the recall rate. Final, we present a Divide and Conquer

ead (DCH) to boost the prediction ability of the detection layer

sing above strategy. 

.2. Face detection 

Even as one of the long-standing problems in computer vision

ith an extensive literature, face detection still attracts much

ttention these days for its wide practical applications [42,43] .

revious face detection systems are mostly based on hand-crafted

eatures. The pioneering work of Viola and Jones [1] is the first

ajor breakthrough, which uses Adaboost with Haar features to

rain a series of cascaded classifiers to detect face and achieves

atisfactory accuracy with high efficiency. Since then, several

ethods focus on designing new local features [44–48] , new

oosting algorithms [49–52] and new cascade structures [53–57] .

PM [4] is another popular method in face detection [58–61] by

sing mixtures of multi-scale deformable part models to represent

ulti-view faces. However, the aforementioned methods rely on

and-crafted features and classifiers, making them unreliable in

omplex scenarios. 

Recently, face detection has been dominated by CNN-based

ethods. CascadeCNN [62] improves detection accuracy by train-

ng a serious of interleaved CNN models and the follwing work

5] realizes end-to-end optimization. Faceness [9] formulates

ace detection as scoring facial parts responses to detect faces

nder severe occlusion. MTCNN [63] proposes a joint face de-

ection and alignment method using unified cascaded CNNs

or multi-task learning. UnitBox [64] introduces an IoU loss for

ounding box prediction. SAFD [65] develops a scale proposal stage

hich automatically normalizes face sizes prior to detection. Chu

t al. [66] propose a deep neural network method to do manga

ace detection. S 2 AP [67] pays attention to specific scales in image

yramid and valid locations in each scales layer. PCN [68] proposes

 cascade-style structure to rotate faces in a coarse-to-fine manner.

ai et al. [69] design a novel network to directly generate a clear

uper-resolution face from a blurry small one. 

Other face detection algorithms are inspired by generic object

etection methods. Some works [70–74] use the improved Faster

-CNN [14] and R-FCN [23] to detect faces. CMS-RCNN [12] inte-

rates contextual reasoning based on human body anatomy into

he Faster R-CNN algorithm to help reduce the overall detection

rrors. Conv3D [75] combines a ConvNet model with a 3D mean

ace model into an end-to-end multi-task discriminative learning

ramework, which produces competitive results compared to the

tate-of-the-art methods. To handle the class imbalance issue in

etector training, [76] uses the hard negative mining technique to

mprove the performance. STN [6] designs an end-to-end learning

ased supervised transformer network to deal with the large pose

ariation in face detection, where the supervised transformer layer
Please cite this article as: S. Zhang, X. Wang and Z. Lei et al., Facebo
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nables learning the optimal canonical pose to best differentiate

ace/non-face images. Recent works [40,77–84] focus on tiny faces

n crowd images, which is another remaining open challenge that

eeds to be solved. 

. FaceBoxes 

This section presents four contributions that make FaceBoxes

ccurate and efficient on CPU devices: The Rapidly Digested Convo-

ution Layers (RDCL), the Multiple Scale Convolution Layers (MSCL),

he anchor densification strategy and the Divide and Conquer Head

DCH). Finally, we introduce the associated training methodology. 

.1. Rapidly digested convolution layers 

Most of CNN-based face detection methods are usually limited

y the heavy cost of time, especially on the CPU devices. More

pecifically, the convolution operation for CPU is extremely time-

onsuming when the size of input, kernel and output are large. Our

DCL is designed to fast shrink the input spatial size by suitable

ernel size with reducing the number of output channels, enabling

he FaceBoxes to reach real-time speed on the CPU devices, as

ollows. 

Shrinking the spatial size of input : To rapidly shrink the spa-

ial size of input, our RDCL sets a series of large stride sizes for its

onvolution and pooling layers. As illustrated in Fig. 1 , the stride

ize of Conv1, Pool1, Conv2 and Pool2 are 4, 2, 2 and 2, respec-

ively. The total stride size of RDCL is 32, which means the input

patial size is reduced by 32 times quickly. 

Choosing suitable kernel size : The kernel size of the first few

ayers in one network should not be too large to make the network

orward computation efficient. On the other hand, the kernel size

s also supposed to be large enough to alleviate the information

oss brought by the spatial size reducing. As shown in Fig. 1 , to

eep the network efficient as well as effective, we choose 5 × 5,

 × 3 and 3 × 3 kernel size for Conv1, Conv2 and all Pool layers,

espectively. 

Reducing the number of output channels : We utilize the

.ReLU activation function (illustrated in Fig. 2 (a)) to reduce the

umber of output channels of convolution layers. C.ReLU [85] is

otivated from the observation in CNN that the filters in the lower

ayers form pairs ( i.e. , filters with opposite phase). From this ob-

ervation, C.ReLU can double the number of output channels by

imply concatenating negated outputs before applying ReLU, which

educes the output channels of convolution layers and hence the

omputational efficiency is significantly improved. 

.2. Multiple scale convolution layers 

The proposed detector belongs to the one-stage approach that

traight predicts class labels and regresses face bounding boxes

rom the regularly pre-tiled anchor boxes using deep CNNs. When

e design the MSCL, three key points are taken into consideration.

irstly, we use the Inception [86] module to enrich the receptive

eld, because each detection layer is responsible for detecting faces

ithin a certain size range, so richer receptive field is helpful. Sec-

ndly, we utilize the Feature Pyramid Network (FPN) [17] to fuse

ifferent levels of features, in which both the abstract and detailed

eatures are integrated to improve the detection performance.

hirdly, we follow SSD [15] to discretize different sizes of anchors

ver different layers to handle faces of various scales, because it

s difficult for one-stage methods to use only one layer associated

ith all anchors ( i.e. , RPN [14] ) to detect different scales of faces.

he MSCL is shown in Fig. 1 and here is the details as follows. 

Inception: Enriching the receptive field. To learn visual pat-

erns for different scales of faces, output features of the detection
xes: A CPU real-time and accurate unconstrained face detector, 

https://doi.org/10.1016/j.neucom.2019.07.064
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Fig. 2. (a) C.ReLU module, where Negation simply multiplies −1 to the output. (b) Inception module. (c) Examples of anchor densification. For clarity, we only densify 

anchors at one receptive field centre ( i.e. , the central black cell), and only color the diagonal anchors. 
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layers should correspond to various sizes of receptive fields, which

can be easily fulfilled via Inception modules. As shown in Fig. 1 ,

the first three layers in the MSCL module are based on the Incep-

tion module, which is a cost-effective module to capture different

scales of faces. Fig. 2 (b) illustrates our Inception implementation

that consists of multiple convolution branches with different ker-

nels to enrich the receptive fields. 

FPN: Fusing different levels of features. Inspired by FPN, we

add the high-level feature maps to the low-level layers to improve

the detection accuracy. As shown in Fig. 1 , we expand the spa-

tial resolution of a coarser-resolution feature map by a factor of

2 via the bilinear upsampling. Then, after the corresponding low-

level map undergoes a 1 × 1 convolution layer to reduce channel

dimensions, we use element-wise addition to merge it with the

upsampled map to get the intermediate outputs ( e.g. , {L1, L2, L3}).

This process is iterated until the finest resolution map is gener-

ated. To start the iteration, we simply attach a 1 × 1 convolution

layer on Conv4_2 to produce the coarsest resolution map. Finally,

we append a 3 × 3 convolution on each merged map to generate

the final feature map, which is to reduce the aliasing effect of up-

sampling. This final set of feature maps is called {P1, P2, P3}, cor-

responding to {inception3, Conv3_2, Conv4_2} that are respectively

of the same spatial sizes. 

SSD: Discretizing anchors over different layers. With the In-

ception module and FPN operation, our designed MSCL has several

layers with different spatial sizes that form the multi-scale feature

maps. These layers have rich features and receptive fields to de-

tect various scales of faces. As shown in Fig. 1 , we follow [15] to

associate our default anchors with multi-scale feature maps. These

layers discretize anchors over multiple layers with different reso-

lutions to naturally handle faces of various sizes. 

3.3. Anchor densification strategy 

As illustrated in Fig. 1 , we pre-set only 1:1 aspect ratio for the

default anchors ( i.e. , square anchor), because the face box is ap-

proximately square. The scales of anchor for the P1 layer are 32,

64 and 128 pixels, for the P2 layer and P3 layer are 256 and 512

pixels, respectively. 

The tiling interval of anchor on the image is equal to the stride

size of the corresponding detection layer. For example, the stride

size of P2 is 64 pixels and its anchor is 256 × 256, indicating that

there is a 256 × 256 anchor for every 64 pixels on the input image.
Please cite this article as: S. Zhang, X. Wang and Z. Lei et al., Facebo

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.07.064 
e define the tiling density of anchor A density as follows: 

 density = A scale / A interv al (1)

ere, A scale is the scale of anchor and A interval is the tiling interval

f anchor. The tiling intervals for our 5 default anchors are 32, 32,

2, 64 and 128, respectively. According to Eq. (1) , the correspond-

ng densities are 1 , 2 , 4, 4 and 4, and there is a tiling density im-

alance problem between anchors of different scales. Com paring

ith large anchors ( i.e. , 128 × 128, 256 × 256 and 512 × 512), small

nchors ( i.e. , 32 × 32 and 64 × 64) are too sparse, which results in

ow recall rate of small faces. 

To eliminate this imbalance, we propose a new anchor densifi-

ation strategy. Specifically, to densify one type of anchors n times,

e uniformly tile A number = n 2 anchors around the center of one

eceptive field instead of only tiling one at the center of this recep-

ive field to predict. Some examples are shown in Fig. 2 (c). In this

ork, to improve the tiling density of the small anchor, our strat-

gy is used to densify the 32 × 32 anchor 4 times and the 64 × 64

nchor 2 times, which guarantees that different scales of anchor

ave the same density ( i.e. , 4) on the image, so that different scales

f faces can match almost the same number of anchors. 

.4. Divide and conquer head 

As shown in Fig. 3 , after densifying the 32 × 32 scale anchor

 times and the 64 × 64 scale anchor 2 times, each 1 × 1 cell

n the P1 detection layer will be responsible for a total of 21

nchors, i.e. , 16 anchors for the 32 × 32 scale, 4 anchors for the

4 × 64 scale and 1 anchor for the 128 × 128 scale. It can be

bserved that there is an imbalance problem among different

cales of anchors for each 1 × 1 cell on this detection layer. The

rediction difficulty of one 128 × 128 anchor, four 64 × 64 anchors

nd sixteen 32 × 32 anchors is gradually increasing. In summary,

n imbalance problem among different scales of anchors will be

xisting in each 1 × 1 cell after applying the anchor densification

trategy on corresponding detection layers. 

To solve this issue, we present a Divide and Conquer Head

DCH) based on the “divide and conquer” strategy. As described

bove, predicting 3 different scales of anchors ( i.e. , 32 × 32, 64 × 64

nd 128 × 128) on the P1 detection layer has varying degrees of

ifficulty. More anchors of one scale are associated with a 1 × 1

ell, it is more difficult to classify them. To this end, we divide

he prediction task on the P1 layer into three sub-tasks with dif-
xes: A CPU real-time and accurate unconstrained face detector, 

https://doi.org/10.1016/j.neucom.2019.07.064
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Fig. 3. The Divide and Conquer Head (DCH). 

Fig. 4. Distribution of two error modes of false positives. 
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erent difficulty levels, then use three different sub-heads to sep-

rately conquer them. As shown in Fig. 3 , the DCH consists of

hree detection heads with different number of convolution layers

o predict the corresponding scale of the anchor, i.e. , the heavy-

eight head with three layers for 16 hard 32 × 32 anchors, the

iddleweight head with two layers for 4 medium 64 × 64 anchors

nd the lightweight with one layer for 1 easy 128 × 128 anchor. Be-

ides, the proposed DCH has fewer parameters than ordinary pre-

iction head 

1 , resulting in less model size and faster speed. 

.5. Training details 

Training dataset and data augmentation. Our model is trained

n 12,880 images of the WIDER FACE training subset. To construct

 robust model and prevent overfitting, each training image is

equentially processed by the following data augmentation strate-
1 Each anchor corresponds to 2 + 4 = 6 output channels, so the param- 

ter amount of the ordinary prediction head is 64 × 3 × 3 × (21 × 6) = 

2 , 576 , while the parameter amount of the Divide and Conquer Head is 

64 × 1 × 1 × 32 + 32 × 1 × 1 × 32 + 32 × 3 × 3 × (16 × 6) 
)

+ 

(
64 × 1 × 1 × 32 + 

2 × 3 × 3 × (4 × 6) 
)

+ 

(
64 × 3 × 3 × (1 × 6) 

)
= 43 , 136 . 

[  

l

 

o  

o  

s  
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ies: (1) Color distortion: Applying some photo-metric distortions,

imilar to [87] , to change the brightness, contrast, hue, or satu-

ation of the original training images. (2) Random cropping: We

andomly crop five square patches from the original image and

elect one for training. One patch is with the size of the image’s

horter side and the others are with the size determined by mul-

iplying a random number in the interval [0.3, 1.0] by the image’s

horter side. (3) Scale transformation: After random cropping, we

andomly flip the selected patch with probability of 0.5 and resize

t to 1024 × 1024 to get the final training sample. (4) Face filter-

ng: We keep the overlapped part of the face box if its center is in

he above processed image, then filter out these face boxes whose

eight or width is less than 20 pixels. 

Matching strategy. During the training phase, we need to de-

ermine which anchors correspond to a face bounding box. We first

atch the anchors to the faces with the largest Jaccard overlap

88] , and then match the anchors to any face with Jaccard over-

ap larger than a preset threshold ( i.e. , 0.35). 

Hard negative mining. After the anchor matching step, most

f the anchors are negatives, leading to extremely class imbalance

f the training samples. Using all negative anchors or randomly

electing some of them will make the training process slow and
xes: A CPU real-time and accurate unconstrained face detector, 
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Fig. 5. Top-N scoring false positives on the FDDB and WIDER FACE dataset. Error type is labeled at the left bottom of each image. “face(bg)” represents background confusion 

and “face(loc)” represents inaccurate localization. “v” represents overlap with ground truth bounding boxes, “1-r” represents the percentage of detections whose confidence 

is below the current one’s. 

 

 

 

w  

t  

c  

t  

i  

t  

r  
unstable. To mitigate this issue, we select some negative anchors

with top loss values and make the ratio between the negative and

positive anchors below 7:1. 

Loss function. We use the loss function defined in RPN [14] to

jointly optimize model parameters as, 

L ( p i , t i ) = 

λ

N cls 

∑ 

i 

L cls (p i , p 
∗
i ) + 

1 

N reg 

∑ 

i 

p ∗i · L reg (t i , t 
∗
i ) 
Please cite this article as: S. Zhang, X. Wang and Z. Lei et al., Facebo

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.07.064 
here i is the index of the anchor, p i is the prediction score of

he i -th anchor to be a face, t i is the vector representing the four

oordinates of the predicted face bounding box, t ∗
i 

is the ground

ruth box matched with the i -th anchor, N cls is the number of pos-

tive and negative anchors used to normalize the classification loss

erm, N reg is the number of positive anchors used to normalize the

egression loss term, λ is the hyper-parameter to balance the two
xes: A CPU real-time and accurate unconstrained face detector, 
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Fig. 6. Precision-recall curves. 

Fig. 7. Evaluation on the FDDB dataset. 
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F  
ask losses. 2 The classification loss L cls (p i , p 
∗
i 
) is a two-class ( i.e. ,

ace or non-face) softmax loss, and the regression loss L reg (t i , t 
∗
i 
) is

he smooth L1 loss defined in [22] . 

Optimization. All the parameters are randomly initialized by

he “xavier” method. We fine-tune the final model using the adap-

ive moment estimation (Adam) algorithm with 0.9 momentum,

.0 0 05 weight decay and batch size 32. The maximum number of

terations is 120 k and we use 10 −3 learning rate for the first 80 k

terations, then continue training for 20 k iterations with 10 −4 and

0 −5 , respectively. Our method is implemented in the Caffe [89]

ibrary. 

. Experiments 

We first examine the runtime efficiency of FaceBoxes, then an-

lyze our model in an ablative way and the false positive errors.

inally, we report the performance of FaceBoxes compared with

tate-of-the-art methods on common face detection benchmarks. 
2 Since the ratio between positive and negative anchors is set to 1: 7, we use 

= 8 to balance the classification and regression losses in training. 

1  

a  

t  

s

Please cite this article as: S. Zhang, X. Wang and Z. Lei et al., Facebo
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.1. Runtime efficiency 

CNN-based methods have always been accused of its run-

ime efficiency. Although the existing CNN face detectors can

e accelerated via high-end GPUs, they are not fast enough in

ost practical applications, especially on CPU-based applications.

s described below, our FaceBoxes is efficient enough to meet

ractical requirements. 

At the inference phase, our method outputs a large number of

etection boxes. For example, it produces 6,400 bounding boxes

or a VGA-resolution image of 640 × 480 pixels. We first filter out

ost of the boxes with a confidence threshold 0.05 and only retain

00 boxes with top confidence score. After that, we apply non-

aximum suppression (NMS) with Jaccard overlap of 0.3 to gen-

rate the final 100 high confident detection results per image. We

easure the speed using Titan X (Pascal) and cuDNN v6.0 with In-

el Xeon E 5 − 2660 v3@ 2 . 60 GHz. As listed in Table 1 , comparing

ith recent CPU real-time detectors, our FaceBoxes can run at 26

PS on the CPU with state-of-the-art accuracy. And it can run at

78 FPS using a single GPU and has only 2.5 MB in size. Besides,

ll batch normalization (BN) layers can be merged with convolu-

ion layer at the inference stage, which can further accelerate the

peed to 28 and 254 FPS on the CPU and GPU, respectively. 
xes: A CPU real-time and accurate unconstrained face detector, 
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Fig. 8. Precision-recall curves on the WIDER FACE validation and testing sets. 

Table 1 

CPU speed v.s AP for different methods. The FPS is for VGA-resolution images on 

CPU and the AP means the true positive rate at 1,0 0 0 false positives on the FDDB. 

Approach Resolution CPU GHz AP(%) FPS 

ACF [91] 640 × 480 Intel I7-3770 3.40 85.2 20 

CasCNN [62] 640 × 480 Intel E5-2620 2.00 85.7 14 

FaceCraft [5] 640 × 480 N/A N/A 90.8 10 

STN [90] 640 × 480 Intel I7-4770K 3.50 91.5 10 

MTCNN [63] 640 × 480 N/A 2.60 94.4 16 

ICC-CNN [92] 640 × 480 N/A N/A 96.5 12 

Ours 640 × 480 Intel E5-2660v3 2.60 96.5 26 

Ours ∗ 640 × 480 Intel E5-2660v3 2.60 96.5 28 

∗ indicates that all BN layers are merged with convolution layers at the inference 

stage. Notably, for STN [90] , its AP is the true positive rate at 179 false positives and 

with ROI convolution, its FPS can be accelerated to 30 with 0.6% recall rate drop. 

4

 

d  
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e  

c  

n  

H  

T  

h  

t  

c  

t  

l  

u
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.2. Model analysis 

We carry out extensive ablation experiments on the FDDB

ataset to analyze our model. For all the experiments, we use the

ame settings except for specified changes to the components. 

Ablative setting. To better understand FaceBoxes, we ablate

ach component one after another to examine how each proposed

omponent affects the final performance. Firstly, we use the ordi-

ary prediction head instead of the proposed Divide and Conquer

ead (DCH). Secondly, we ablate the anchor densification strategy.

hirdly, we replace MSCL with three convolution layers, which all

ave 3 × 3 kernel size and whose output number is the same as

he first three Inception modules of MSCL. Meanwhile, we asso-

iate all anchors with the last convolution layer. 4) Finally, we take

he place of C.ReLU with ReLU in RDCL. The ablative results are

isted in Table 2 and some promising conclusions can be summed

p as follows: 
xes: A CPU real-time and accurate unconstrained face detector, 
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Fig. 9. Trade-off on CPU for different methods. The × N in Test Scale means resizing the images N times for testing ( × 1 indicates using original images). The Avg. Size 

is the average size of images with corresponding test scales. The ms and FPS are measured on the Intel E5-2660v3@2.60 GHz CPU with the Caffe library. The AP means 

average precision on WIDER FACE validation Easy subset. 

Table 2 

Ablative results of the FaceBoxes on the FDDB dataset. Accuracy (AP) means the true positive rate at 1,0 0 0 false posi- 

tives. Speed (ms) is for the VGA-resolution images on the CPU. 

Contribution FaceBoxes 

Rapidly Digested Convolution Layers ×
Multiple Scale Convolution Layers × ×
Anchor Densification Strategy × × ×
Divide and Conquer Head × × × ×
Accuracy (AP) 96.5 96.1 95.0 93.7 93.8 

Speed (ms) 38.62 38.73 36.79 34.23 45.43 
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DCH is promising. From the comparison between the first and

econd columns in Table 2 , it can be known that the DCH increases

he AP by 0.4% as well as 0.11 ms faster, owning to using the divide

nd conquer mechanism to deal with the prediction issue raised by

he anchor densification strategy. 

Anchor densification strategy is crucial. Our anchor densifica-

ion strategy is used to increase the density of small anchors ( i.e. ,

2 × 32 and 64 × 64) in order to improve the recall rate of small

aces. From the results listed in Table 2 , we can see that the AP on

he FDDB is reduced from 96.1% to 95.0% after ablating the anchor

ensification strategy. The sharp decline ( i.e. , 1.1%) demonstrates

he effectiveness of the proposed anchor densification strategy. 

MSCL is better. The comparison between the third and fourth

olumns in Table 2 indicates that MSCL effectively increases the AP

y 1.3%, owning to the diverse features resulting from FPN and In-

eption as well as the multi-scale anchor tiling mechanism in SSD.

RDCL is efficient and accuracy-preserving. The design of RDCL

nables our FaceBoxes to achieve CPU real-time speed. As reported

n Table 2 , RDCL leads to a negligible decline on accuracy but a sig-

ificant improvement on speed. Specifically, the FDDB AP decreases

y 0.1% in return for the about 11.2 ms speed improvement. 

.3. Error analysis 

In this part, we utilize the detection analysis tool 3 to analyze
he error of FaceBoxes on the FDDB and WIDER FACE datasets. 

3 http://web.engr.illinois.edu/ ∼dhoiem/projects/detectionAnalysis . 

f  
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here are two error modes of false positives in face detectors, i.e. ,

OC and BG. LOC indicates the localization errors that occurs when

 face is detected with a misaligned bounding box, and BG indi-

ates that a background region is mistakenly detected as a face.

ig. 4 (a) shows the distribution of two types of false positives on

DDB and BG seems the dominating error mode among top-scoring

etection. However, as shown in Fig. 5 (a), 13 out of top 14 scoring

alse positives are in fact due to missed annotation( i.e. , the pre-

icted bounding box encloses a face while “ov” almost equals to

ero in Fig. 5 (a)). Since the FDDB dataset does not label the pro-

le faces and these faces whose width or height are fewer than

0 pixels. The analysis of false positives on WIDER FACE dataset is

hown in Fig. 4 (b), BG is still the dominating error mode. Compar-

ng with FDDB, the percentage of BG error mode on WIDER FACE

as dropped a lot, since WIDER FACE aims to label all the faces,

ut it also has a little unlabelled faces as shown in Fig. 5 (b). 

.4. Evaluation on benchmark 

We evaluate the FaceBoxes on the common face detection

enchmark datasets, including the Annotated Faces in the Wild

AFW) [60] , PASCAL face [59] , Face Detection Data Set and Bench-

ark (FDDB) [93] and WIDER FACE [94] . 

AFW dataset. 4 It has 205 images with 473 faces collected

rom Flickr images, which contain cluttered backgrounds with large
4 http://www.ics.uci.edu/ ∼xzhu/face/ . 

xes: A CPU real-time and accurate unconstrained face detector, 

http://web.engr.illinois.edu/~dhoiem/projects/detectionAnalysis
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Fig. 10. Qualitative results on face detection benchmark datasets. 
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5 
variations in both face viewpoint and appearance ( e.g. , ages, sun-

glasses, make-ups, skin colors, expressions, etc.). We evaluate the

FaceBoxes against 7 well-known works [6,9,59–61,95,96] and 3

commercial face detectors ( i.e. , Face.com, Face++ and Picasa). As

illustrated in Fig. 6 (a), our method outperforms all others by a

large margin. Fig. 10 (a) shows some qualitative results on the AFW

dataset. 
Please cite this article as: S. Zhang, X. Wang and Z. Lei et al., Facebo

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.07.064 
PASCAL face dataset. 5 It is collected from the test set of PASCAL

erson layout dataset, consisting of 1,335 faces with large face ap-

earance and pose variations from 851 images. Fig. 6 (b) shows the

recision-recall curves on this dataset. Our method significantly
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ . 

xes: A CPU real-time and accurate unconstrained face detector, 

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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utperforms all other methods [6,9,59–61,97] and 3 commercial

ace detectors ( i.e. , SkyBiometry, Face++ and Picasa). Fig. 10 (b)

hows some qualitative results on the PASCAL face dataset. 

FDDB dataset. 6 It has 5,171 faces annotated in 2,845 images

aken from news articles on Yahoo websites with a wide range

f difficulties, such as occlusions, large poses, and low image

esolutions. FDDB adopts the bounding ellipse to represent the

aces, while our FaceBoxes outputs rectangle bounding box. This

nconsistency has a great impact on the continuous score for

valuation. For fair comparison, we train an elliptical regressor to

ransform the predicted bounding boxes to ellipses. We evaluate

ur face detector on the FDDB dataset against the other methods

7–9,11,13,40,58,61–64,75,77,90–92,95,98–104] . The discrete and 

ontinuous evaluation results are shown in Fig. 7 (a) and Fig. 7 (b),

espectively. Among all the CPU real-time detectors, our FaceBoxes

chieves the state-of-the-art performance and outperforms all oth-

rs by a large margin on both the discrete and continuous metrics.

esides, our detector performs on-pair with some heavyweight

etectors, such as RSA and HR-ER. These results indicate that

aceBoxes is robust to varying scales, large appearance changes,

eavy occlusions, and severe blur degradations that are prevalent

n detecting face in unconstrained real-life scenarios. Fig. 10 (c)

hows some qualitative results on the FDDB dataset. 

WIDER FACE dataset. 7 It contains 393,703 faces annotated

n 32,203 images with variations in pose, scale, facial expression,

cclusion, and lighting condition. The dataset is divided into the

raining (40%), validation (10%) and testing (50%) sets. Besides,

ased on the detection rate of EdgeBox [19] , it defines three levels

f difficulty: Easy, Medium, Hard . Following the evaluation protocol

n WIDER FACE, our FaceBoxes is trained only on the training set

nd tested on both the validation and the testing sets against state-

f-the-art face detection methods [9,11,12,31,40,63,77,78,81,91,94] .

s shown in Fig. 8 , our FaceBoxes, with CPU real-time speed,

chieves promising AP performance in all subsets of both valida-

ion and testing sets, i.e., 88.5% ( Easy ), 86.2% ( Medium ) and 77.3%

 Hard ) for validation set, and 88.7% ( Easy ), 85.8% ( Medium ) and

7.6% ( Hard ) for testing set. Among CPU real-time detectors ( i.e. ,

CF, MTCNN), our FaceBoxes outperforms them by a large margin

cross the three subsets. Besides, our detector performs better than

ome detectors based on ResNet, such as CMS-RCNN and Scale-

ace. Actually, there are some state-of-the-art heavyweight face

etectors have higher AP than the proposed FaceBoxes including

yramidBox, FAN, Zhu et al., Face R-FCN, SFD, SSH, HR and MSCNN.

owever, we would like to emphasize that they are too heavy-

eight to be used on the CPU devices and the proposed Face-

oxes achieves better trade-off on CPU. To verify this statement,

e measure the CPU speed under different single-scale test size for

hree open source algorithms ( i.e. , SSH [78] , SFD [40] , PyramidBox

82] ). As shown in Fig. 9 , using the original images of WIDER FACE

alidation set for testing on our CPU, SSH achieves 92.5% AP with

5,848 ms/image, SFD obtains 92.5% AP with 25,424 ms/image

nd PyramidBox gets 94.9% AP with 69,362 ms/image. In contrast,

he proposed FaceBoxes achieves 86.5% AP with 98 ms/image,

hich is 6.2 ∼ 8.6 points lower than above methods but 259 ∼ 708

imes faster. Reducing test scale can speed up, but it also re-

uces accuracy. If the aforementioned methods want to reach

he speed of FaceBoxes, then their APs are less than 10%. These

esults demonstrate that FaceBoxes achieves excellent trade-off

etween effectiveness and efficiency on CPU. Fig. 10 (d) shows

ome qualitative results on the WIDER FACE dataset. 
6 http://vis- www.cs.umass.edu/fddb/index.html . 
7 http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/index.html . 
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. Conclusion 

Since highly accurate models for the face detection task tend

o be computationally prohibitive, it is challenging for the CPU de-

ices to achieve real-time speed as well as maintain high perfor-

ance. In this work, we present a novel face detector with a good

rade-off between speed and accuracy. The proposed method has

 lightweight yet powerful network structure, which consists of

DCL and MSCL. The former enables FaceBoxes to achieve real-time

peed, while the latter aims to enrich the features and discretize

nchors over different layers to handle faces of various scales. Be-

ides, a new anchor densification strategy is proposed to improve

he recall rate of small faces. Finally, we present a Divide and Con-

uer Head (DCH) to boost the prediction ability of the detection

ayer using above strategy. The experiments demonstrate that our

ontributions lead FaceBoxes to the state-of-the-art performance

mong the lightweight detectors on the common face detection

enchmarks. The proposed detector is very fast, achieving 28 FPS

or VGA-resolution images on the CPU and can be accelerated to

54 FPS on the GPU. 
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