
JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

RefineDet++: Single-Shot Refinement Neural
Network for Object Detection

Shifeng Zhang, Longyin Wen, Zhen Lei∗, Senior Member, IEEE, and Stan Z. Li, Fellow, IEEE

Abstract—Convolutional neural network based methods have
dominated object detection in recent years, which can be divided
into the one-stage approach and the two-stage approach. In
general, the two-stage approach (e.g., Faster R-CNN) achieves
high accuracy, while the one-stage approach (e.g., SSD) has
the advantage of high efficiency. To inherit the merits of both
while overcoming their disadvantages, we propose a novel single-
shot based detector, namely RefineDet++, which achieves better
accuracy than two-stage methods and maintains comparable effi-
ciency of one-stage methods. The proposed RefineDet++ consists
of two inter-connected modules: the anchor refinement module
and the alignment detection module. Specifically, the former
module aims to (1) filter out negative anchors to reduce search
space for the subsequent classifier, and (2) coarsely adjust the
locations and sizes of anchors to provide better initialization for
the subsequent regressor. The latter module takes (1) the refined
anchors as the input from the former module with (2) a newly
designed alignment convolution operation to further improve the
regression accuracy and predict multi-class label. Meanwhile, we
design a transfer connection block to transfer the features in the
anchor refinement module to predict locations, sizes and class
labels of objects in the object detection module. The multi-task
loss function enables us to train the whole network in an end-
to-end way. Extensive experiments on PASCAL VOC and MS
COCO demonstrate that RefineDet++ achieves state-of-the-art
detection accuracy with high efficiency.

Index Terms—Object detection, one-stage, refinement network.

I. INTRODUCTION

OBJECT detection is a hot topic with a long history
[1]–[5], which aims to detect object instances of the

predefined categories. Accurate object detection would have
far reaching impact on various applications, such as image
understanding, image retrieval and video surveillance. In re-
cent years, object detection has achieved significant advances
with the deep Convolutional Neural Network (CNN), which is
generally divided into two categories: the two-stage approach
[2], [4], [6]–[9] and the one-stage approach [3], [10]–[13].

The two-stage approach relies on two steps: (1) generating a
sparse set of candidate object proposals, and then (2) regress-
ing and classifying the object proposals for detection, which
achieves state-of-the-art performances on some challenging

Shifeng Zhang and Zhen Lei are with the Center for Biometric and Security
Research (CBSR), National Laboratory of Pattern Recognition (NLPR), Insti-
tute of Automation Chinese Academy of Sciences (CASIA) and the School of
Artificial Intelligence, University of Chinese Academy of Sciences (UCAS),
Beijing, China (e-mail: {shifeng.zhang, zlei}@nlpr.ia.ac.cn).

Longyin Wen is with the JD Digits, Mountain View, CA, USA (e-mail:
lywen.cv.workbox@gmail.com).

Stan Z. Li is with the Westlake University, Hangzhou, China (e-mail:
Stan.ZQ.Li@westlake.edu.cn).

∗ Corresponding author.

datasets (e.g., PASCAL VOC [14] and MS COCO [15]). The
one-stage approach, also called single-shot approach, directly
uses convolution layers to predict objects based on preset
anchors of different scales and aspect ratios over the input
images, whose main advantage is the fast detection speed.
However, the detection accuracy of the one-stage method
usually lags behind that of the two-stage method, and one
of the main reasons is the problem of class imbalance [10].
Some of recent works in the one-stage approach aim to solve
the class imbalance problem to improve detection accuracy.
RON [12] significantly reduces the search space of objects via
using the objectness prior constraint on convolutional feature
maps. RetinaNet [10] reshapes the standard cross entropy
loss to focus training on a sparse set of hard examples and
down-weights the loss assigned to well-classified examples to
address the class imbalance issue. S3FD [16] reduces false
positives resulting from class imbalance by designing a max-
out labeling mechanism.

According to our view, the existing state-of-the-art two-
stage methods, such as FPN [8], R-FCN [7] and Faster R-CNN
[4], have the following four advantages over the one-stage
methods: (1) using two-step structure with sampling heuristics
to handle the class imbalance problem; (2) using two-step
regression to predict the locations and sizes of the object
boxes; (3) using two-step features to describe the objects;
(4) using the RoI-wise operation (e.g., RoIPooling [6] and
RoIAlign [17]) to align features used for detection. In this
paper, we present a novel object detection method namely
RefineDet++ to inherit the advantages of the aforementioned
two approaches (i.e., two-stage and one-stage approaches)
and overcome their shortcomings. It improves the architecture
of the one-stage approach via designing two inter-connected
modules, called the Anchor Refinement Module (ARM) and
the Alignment Detection Module (ADM), as shown in Fig.
1. To be specific, the former ARM aims to (1) reduce the
search space for the subsequent classifier by removing easy
negative anchors, and (2) provide better initialization for
the subsequent regressor via roughly adjusting the locations
and sizes of anchors. The latter ADM uses (1) the refined
anchors from the former module as the input with (2) a
newly designed alignment convolution (AlignConv) operation
instead of the vanilla convolution layer to predict multi-class
labels and further improve the regression. As illustrated in Fig.
1, these two inter-connected modules emulate the two-stage
structure so as to inherit the aforementioned four advantages
to efficiently produce accurate detection results. Moreover, we
introduce a Transfer Connection Block (TCB) to transfer the
features in the ARM to predict multi-class labels, locations



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2

and sizes of objects in the ADM. The multi-task loss function
allows us to train the whole network in an end-to-end manner.

Extensive experiments conducted on PASCAL VOC 2007,
PASCAL VOC 2012 and MS COCO datasets demonstrate
that the proposed RefineDet++ achieves remarkable results
in comparison to the state-of-the-art methods. In particular, it
obtains 84.2% mAP on VOC 2007 and 83.8% mAP on VOC
2012 based on the VGG-16 network, and obtains 47.2% AP on
MS COCO test-dev based on the ResNeXt-152 network.
These results advance the state-of-the-arts with 0.2% and 2.0%
mAPs on VOC 2007 and 2012, and outperform all previously
published one-stage and two-stage methods on MS COCO.
Notably, our RefineDet++ can run 27.8 FPS with the 320×320
input size and VGG-16 in inference on a NVIDIA Titan X
(Maxwell) GPU. To summarize, the main contributions of this
work are in three-fold as follows: 1) Introducing a novel one-
stage framework for object detection, consisting of two inter-
connected modules: the ARM and the ADM. This makes it
to outperform the two-stage approach while maintaining high
efficiency of the one-stage approach. 2) Designing the TCB to
transfer the features in the ARM to handle more challenging
tasks, i.e., predict accurate object locations, sizes and class
labels, in the ADM. 3) Achieving the state-of-the-art results
on generic object detection benchmarks.

Preliminary results of this work have been published in [18].
The current work has been improved and extended from the
conference version in several important aspects. (1) We design
a new alignment convolution (AlignConv) operation instead
of the vanilla convolution layer with the fixed kernel size
to extract features for accurate detection. (2) We noticeably
improve the accuracy of the detector in our previous work with
slightly additional overhead. (3) All sections are rewritten with
more details, more references and more experiments to have
a more elaborate presentation.

II. RELATED WORK

A. Classical Object Detectors

Early object detectors are based on the sliding-window
paradigm with hand-crafted features and classifiers. Viola
and Jones [1] use Haar feature and AdaBoost to train a
series of cascaded classifiers for face detection, achieving
satisfactory accuracy with high efficiency. DPM [19] uses
mixtures of multi-scale deformable part models to represent
highly variable object classes. However, with the advent of
CNN, the object detection task is soon dominated by the
CNN-based detectors, which can be broadly divided into two
categories: the one-stage approach and two-stage approach.

B. One-Stage Approach

Due to the high efficiency, the one-stage approach has
attracted much more attention in recent years. OverFeat [20]
performs detection from raw pixels using a ConvNet trained
end-to-end. YOLO [11], [21] directly detects objects using
a single feed-forward network and achieves extremely fast
detection speed. SSD [3] spreads out default boxes on multi-
scale layers within a ConvNet to predict object category and
box offsets. RON [12] and DSSD [22] introduce additional

large-scale context in object detection to improve detection
accuracy by using deconvolution/upsampling layers. DSOD
[23] and ScratchDet [24] point out several principles to train
object detectors from scratch based on SSD. RetinaNet [10]
addresses the class imbalance problem by the focal loss
that focuses learning on hard examples and down-weight the
numerous easy negatives. STDN [25] designs the scale-transfer
layer to explicitly explore the inter-scale consistency nature
across multiple detection scales. DES [26] uses a semantic
segmentation branch and a location-agnostic module to enrich
the semantics of object detection features. DFP [27] introduces
an architecture comprised of global attention and local recon-
figurations to reformulate the feature pyramid construction as
feature reconfiguration process. RFB [28] proposes a recep-
tive field block to enhance the feature discriminability and
robustness. PFPNet [29] propose a parallel feature pyramid by
widening the network width instead of increasing the network
depth to improve the detection performance.

C. Two-Stage Approach

The two-stage approach is composed by a proposal gen-
erator (e.g., Selective Search [30], EdgeBoxes [31], Deep-
Mask [32], [33]) and a region-wise prediction subnetwork.
The former one generates a sparse set of candidate object
proposals, and the latter one uses a separate convolutional
network to determine the corresponding class labels and the
accurate object regions. It is worth noting that the two-stage
approach (e.g., R-CNN [2], SPPnet [34], Fast R-CNN [6]
to Faster R-CNN [4]) achieves dominated performance on
several challenging benchmarks including PASCAL VOC [14]
and MS COCO [15]. Since then, many effective techniques
have been proposed to further improve performance, such
as architecture diagrams [7], [35]–[38], training strategies
[39]–[42], contextual reasoning [43]–[46] and multiple layers
exploiting [8], [47]–[49].

D. Anchor-Free Approach

Recent anchor-free detectors have attracted much more
attention. It directly finds objects without preset anchors in two
different ways. One way [50]–[54] is to first locate several pre-
defined or self-learned keypoints and then bound the spatial
extent of objects. Another way [55]–[57] is to use the center
point or region of objects to define positives and then predict
the four distances from positives to the object boundary.
Without anchors’ hyperparameters, these methods are more
potential in terms of generalization ability.

E. Related Topic

There are some related topics to fully-supervised object
detection, such as weakly-supervised object detection [58],
[59] that uses only image-level annotations to train object
detectors via a three step pipeline, instance segmentation [17],
[60], [61] that requires the correct detection of all objects in
an image while also precisely segmenting each instance. All
of them are of growing importance and deserve further study.



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

Fig. 1: Structure of RefineDet++. We only draw the layers used for detection for better visualization. The 3 × 3 AlignConv
for one refined anchor is presented on the right side, which takes the guided offsets to complete the convolution operation.

III. REFINEDET++

The overall network structure of RefineDet++ is shown in
Fig. 1. Similar to SSD [3], our RefineDet++ is composed of
a feed-forward convolutional network, which first generates a
fixed number of detection bounding boxes with the predicted
scores to indicate the presence of different classes of objects
in those boxes, then applies the Non-Maximum Suppression
(NMS) to output the final results. The proposed RefineDet++
consists of two inter-connected modules namely the ARM and
the ADM. The former one is designed to reduce search space
for the subsequent classifier via removing negative anchors and
also provide better initialization for the subsequent regressor
via coarsely adjusting anchors’ locations and sizes. While the
latter one predictes multi-class labels and further regresses
accurate object locations based on the refined anchors from
the ARM and the aligned features from the AlignConv. To
meet our needs, the ARM is built by removing the classi-
fication layers of the backbone networks (such as VGG-16
[62], ResNet [63] and ResNeXt [64] pretrained on ImageNet
[65]) and then adding some auxiliary structures. The ADM is
formed by the outputs of TCBs and the AlignConv operation
to generate the offsets relative to the refined anchor box
coordinates and the scores for object classes. The four core
components in RefineDet++ are elaborated as follows: (1)
transfer connection block: converting the features from the
ARM to the ADM for detection; (2) negative anchor filtering:
early rejecting easy negative anchors so as to mitigate the
imbalance issue; (3) two-step cascaded regression: regressing
more accurate locations and sizes of objects; (4) feature
alignment convolution: aligning features used for the second
stage detection based on refined anchors.

A. Transfer Connection Block

As shown in Fig. 1, several TCBs are introduced to convert
features of different layers in the ARM into the form required
by the ADM. In this way, the ADM can share features from the
ARM. It’s worth noting that only the feature maps associated
with anchors are applied the TCBs in the ARM. Another role
of the TCBs is to integrate large-scale context [8], [22] from

Conv
3x3-s1, 256

Conv
3x3-s1, 256

Conv
3x3-s1, 256

Transfer 
Connection 

Block

Relu

Relu

Relu

Deconv
2x2-s2, 256

Eltw sum

Fig. 2: Detailed structure of TCB. We intend to make TCB
have the same structure as the module in FPN [8]. However,
due to the incompleteness of Caffe and the unreleased imple-
mentation details of FPN, we design TCB according to our
own understanding. After the official FPN implementation is
released, we find that TCB has three differences: 1) TCB uses
one more Conv layer; 2) TCB uses ReLU after Conv; 3) TCB
uses DeConv instead of the bilinear upsampling. Comparing to
the module in FPN, our TCB improves the mAP improvement
by about 0.2% with slight speed drop from 28.9 FPS to 27.8
FPS, we still use TCB in this work.

the high-level features to the transferred features for better
detection accuracy. Fig. 2 shows the architecture of the TCB.
We use the deconvolution operation to enlarge the high-level
feature maps to match the dimensions, and then sum them in
the element-wise way. After that, we add a convolution layer
after the summation to ensure the discriminability of features
used for detection.



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

B. Negative Anchor Filtering

The negative anchor filtering mechanism is designed in
the proposed RefineDet++, which aims to early reject well-
classified negative anchors in order to alleviate the imbalance
problem. To be specific, during the training phase, if the
negative confidence of a refined anchor is larger than the
empirically preset threshold θ = 0.99, we will discard it when
training the subsequent ADM. In other words, only refined
hard negative anchors and refined positive anchors are passed
to train the subsequent ADM. Besides, in the inference phase,
these refined anchors with a predicted negative confidence
larger than θ will be discarded in the subsequent ADM.

C. Two-Step Cascaded Regression

Current one-stage methods [3], [12], [22] depend on one-
step regression to predict the locations and sizes of objects
on various feature layers with different scales, which is quite
inaccurate in some challenging situations, especially for the
small objects. To this end, we propose a two-step cascaded
regression strategy to regress the locations and sizes of objects.
Specifically, the ARM is designed to provide better initializa-
tion for the regression in the ADM by adjusting the locations
and sizes of anchors. That is, we associate N anchor boxes
with each regularly divided cell on the feature map. The initial
position of each anchor box relative to its corresponding cell is
fixed. At each feature map cell, we predict four offsets of the
refined anchor boxes relative to the original tiled anchors and
two confidence scores indicating the presence of foreground
objects in those boxes. Thus, we can yield N refined anchor
boxes at each feature map cell.

After obtaining the refined anchor boxes, we pass them
to the corresponding feature maps in the ADM to further
generate accurate object locations and sizes and predict object
categories. The corresponding feature maps in the ARM and
the ADM have the same dimension. We calculate C class
scores and the four accurate offsets of objects relative to the
refined anchor boxes, yielding C + 4 outputs for each refined
anchor boxes to complete the detection task. This process is
similar to the default boxes used in SSD [3]. However, in
contrast to SSD [3] directly uses the regularly tiled default
boxes for detection, our proposed RefineDet++ detector uses
two-step strategy, i.e., the ARM first generates the refined
anchor boxes and then the ADM takes the refined anchor
boxes as input for further detection, leading to more accurate
detection results, especially for the small objects.

D. Feature Alignment Convolution

As shown in Fig. 3(a), the ARM uses regularly tiled initial
anchors with the corresponding initial features to generate
refined anchors. If the ADM utilizes the vanilla convolution
operation, the features extracted for the second stage detection
are misaligned. This means the refined anchors are predicted
still based on the initial features (see Fig. 3(b)), which fails to
extract accurate features to the regions of refined anchors and
prevents further improvements in performance.

To this end, we design an alignment convolution operation
(AlignConv), which uses the aligned feature from the refined

Fig. 3: Illustration of anchor refinement and feature alignment.
(a) Initial anchor with the corresponding initial features. (b)
Refined anchor still with the initial features. (c) Refined anchor
with the aligned features.

anchors to predict multi-class labels and regress accurate
object locations, as shown in Fig. 3(c). Specifically, the newly
designed AlignConv operation conducts convolution operation
based on computed offsets from the refined anchors. Denoting
each refined anchor with a four-tuple (x, y, h, w) that specifies
the top-left corner (x, y) and height and width (h, w), the
AlignConv is conducted as follows. First, after taking the re-
fined anchors from ARM, we equally divide the regions of the
refined anchors into K ×K parts, where K is the kernel size
of convolution operation. The center of each part is computed
as: for the part at i-th row and j-th column, the center location
is (x+ (2i−1)·w

2K , y+ (2j−1)·h
2K ). Second, we multiply the feature

values at the K ×K part centers in refined anchors with the
corresponding parameters of the convolution filter, see Fig. 1.
In this way, we successfully extract more accurate features
that are aligned to the refined anchors for object detection.
In contrast to existing deformable convolution methods [66]–
[68] that learn the offsets by convolution operation with extra
parameters, our AlignConv conducts the convolution with the
guidance from the refined anchors of the ARM, which is more
suitable for RefineDet++ and produces better performance.

IV. IMPLEMENTATION DETAIL

A. Data Augmentation

To construct a robust model to various objects, a series of
data augmentation strategies introduced in SSD [3] are applied.
Specifically, we randomly crop, expand and flip the original
training images with additional random photometric distortion
[69] to output the final training images. For more details,
please refer to the original work [3].

B. Backbone Network

Any popular networks can be applied as the backbone for
RefineDet++, such as Inception [70], [71], MobileNet [72] and
ShuffleNet [73]. For fair comparison, we use VGG-16 [62],
ResNet [63] and ResNeXt [64] as the backbones, which are
pretrained on the ILSVRC CLS-LOC dataset [65]. Following
DeepLab-LargeFOV [74], we use the reduced version of VGG-
16 that converts the fc6 and fc7 layers to the convolution
layers conv fc6 and conv fc7 by subsampling parameters.
Similar to SSD [3], L2 normalization [75] is used to initially
scale the feature norms in conv4 3 and conv5 3 to 10 and 8,



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

which will be updated during back-propagation in the training
phase. These scales of the feature norms are critical to balance
the feature scales between different detection layers. Besides,
two extra convolution layers namely conv6 1 and conv6 2
are added to the end of the truncated VGG-16, while one
extra residual block namely res6 is appended to the end of
the truncated ResNet and ResNeXt. These newly added layers
are used to capture high-level information and drive object
detection at multiple scales.

C. Anchor Design

In our RefineDet++, four convolution layers with the total
stride sizes 8, 16, 32 and 64 pixels are selected as the detection
layers to handle different scales of objects. Specifically, the de-
tection layers in the VGG-16 backbone are conv4 3, conv5 3,
conv fc7 and conv6 2, while in the ResNet backbone and the
ResNeXt backbone are the final layer of each block. Each
detection layer is associated with several different anchors
to detect different objects. To ensure that different scales of
anchors are tiled with the same density [76]–[79] on image, we
use the anchor scale design strategy in [16], [80]. Specifically,
we only associate one specific scale of anchors (i.e., 4S, where
S represents the downsampling factor of the detection layer)
and three aspect ratios (i.e., 0.5, 1.0 and 2.0) at each location
of the detection layer.

D. Anchor Matching

During the training phase, we divide the tiled anchors into
positive and negative samples based on the Jaccard overlap
[81]. To be specific, we first associate each ground-truth
bounding box to an anchor with the best intersection-over-
union (IoU), and then associate the anchors to other ground-
truth boxes with the overlap larger than θp. Finally, we
associate the anchor boxes to background if their IoU with any
ground truth box are smaller than θn1. These anchors whose
IoU with any ground truth box falls in [θn, θp) are ignored
during training. Empirically, we set θn = 0.5 and θp = 0.5
for the ARM and the ADM in our experiments.

E. Hard Negative Mining

As most of the anchors are assigned as negative examples
after the above matching step, even for the ADM where some
easy negative anchors are rejected by the ARM. This leads
to extremely class imbalance of the training samples. Using
all negative anchors or randomly selecting some of them will
make the training process slow and unstable. To mitigate this
issue, we apply hard negative mining in SSD [3] to select
some negative anchors with top loss values and make the ratio
between the negative and positive anchors below 3 : 1.

F. Loss Function

There are two parts in the loss function of RefineDet++,
i.e., the loss from the ARM and the loss from the ADM. For
the ARM, we regress the size and location as well as assign a

1In general, we set θn ≤ θp in training.

binary class label (being an object or not) for each anchor
to obtain the refined anchors. Then, we pass these refined
anchors with the negative confidence less than the threshold
to the ADM to further predict accurate object locations, sizes
and categories. The loss function can be defined with these
definitions as following:

L =
1

Narm

(∑
i

Lb(pi, [l
∗
i ≥ 1]) +

∑
i

[l∗i ≥ 1]Lr(xi, g
∗
i )
)

+
1

Nadm

(∑
i

Lm(ci, l
∗
i ) +

∑
i

[l∗i ≥ 1]Lr(ti, g
∗
i )
) (1)

where i is the index of anchor in a mini-batch, pi and xi are the
predicted score for being an object and the refined coordinates
of the anchor i in the ARM, ci and ti are the predicted object
class and coordinates of the bounding box in the ADM, l∗i and
g∗i are the ground truth class label and regression location and
size of anchor i, Narm and Nadm are the numbers of positive
anchors in the ARM and the ADM. The binary classification
loss Lb is the cross-entropy/log loss over two classes (object
vs. not object), and the multi-class classification loss Lm is
the softmax loss over multiple classes. Following Fast R-CNN
[6], the smooth L1 loss is used as the regression loss Lr. The
Iverson bracket indicator function [l∗i ≥ 1] outputs 1 when the
condition is true, i.e., l∗i ≥ 1 (the anchor is not the negative),
otherwise 0. Hence [l∗i ≥ 1]Lr means that the regression loss
is ignored for negative anchors. Notably, if Narm = 0, we set
Lb(pi, [l

∗
i ≥ 1]) = 0 and Lr(xi, g

∗
i ) = 0; and if Nadm = 0, we

set Lm(ci, l
∗
i ) = 0 and Lr(ti, g

∗
i ) = 0 accordingly.

G. Optimization
For the backbones used in our RefineDet++ method, such

as VGG-16, ResNet and ResNeXt, we use the ILSVRC CLS-
LOC pretrained models [65] to initialize them. The parameters
in the newly added layers of VGG-16 are randomly initialized
using the “xavier” method [82]. The newly added blocks of
ResNet and ResNeXt are initialized by the parameters from a
zero-mean Gaussian distribution with standard deviation 0.01.
The whole network is fine-tuned using the Stochastic Gradient
Descent algorithm (SGD) with 0.9 momentum, 0.0005 weight
decay and 32 batch size. We use the warmup strategy [83]
to gradually ramp up the learning rate from 3.125 × 10−4

to 4 × 10−3 at the first epoch. After that, it switches to the
regular learning rate schedule. Different datasets have slightly
different policies of the learning rate decay, which will be
described later in the corresponding subsection.

H. Inference
During the inference phase, the ARM first filters out a

large number of easy negative anchors whose background
confidence are larger than 0.99 and then refines the locations
and sizes of remaining anchors. After that, the following ADM
takes the refined anchors and computes the guided offsets
for the AlignConv operation to complete the next stage of
detection, which produces top 400 confident detections per
image. Finally, we apply NMS with the Jaccard overlap 0.45
for each class to generate the final top 200 detection results
for each image.



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

TABLE I: Performance of different methods on PASCAL VOC. For evaluation on VOC 2007 test set, all methods are trained
on VOC 2007 and VOC 2012 trainval sets. For evaluation on VOC 2012 test set, all methods are trained on VOC 2007
trainval and test sets plus VOC 2012 trainval set. Our best mAP are indicated with bold fonts.

Method Backbone Input size #Boxes FPS mAP (%)
VOC 2007 VOC 2012

two-stage:
Fast R-CNN [6] VGG-16 ∼1000× 600 ∼2000 0.5 70.0 68.4

Faster R-CNN [4] VGG-16 ∼1000× 600 300 7 73.2 70.4
OHEM [40] VGG-16 ∼1000× 600 300 7 74.6 71.9

SIN [84] VGG-16 ∼1000× 600 128 - 76.0 73.1
HyperNet [48] VGG-16 ∼1000× 600 100 0.88 76.3 71.4

Faster R-CNN [4] ResNet-101 ∼1000× 600 300 2.4 76.4 73.8
ION [43] VGG-16 ∼1000× 600 4000 1.25 76.5 76.4

MLKP [85] VGG-16 ∼1000× 600 300 10 78.1 75.5
MR-CNN [44] VGG-16 ∼1000× 600 250 0.03 78.2 73.9

R-FCN [7] ResNet-101 ∼1000× 600 300 9 80.5 77.6
C-FRCNN [86] ResNet-101 ∼1000× 600 300 - 82.2 -
CoupleNet [36] ResNet-101 ∼1000× 600 300 8.2 82.7 80.4
Zhai et al. [87] ResNet-101 ∼1000× 600 300 5.3 82.9 80.5

Revisiting RCNN [88] ResNet-101+ResNet-152 ∼1000× 600 - - 84.0 81.2
one-stage:

YOLO [21] GoogleNet [89] 448× 448 98 45 63.4 57.9
RON384 [12] VGG-16 384× 384 30600 15 75.4 73.0
SSD321 [22] ResNet-101 321× 321 17080 11.2 77.1 75.4
SSD300 [3] VGG-16 300× 300 8732 46 77.2 75.8

DSOD300 [23] DS/64-192-48-1 300× 300 8732 17.4 77.7 76.3
YOLOv2 [11] Darknet-19 544× 544 1445 40 78.6 73.4
DSSD321 [22] ResNet-101 321× 321 17080 9.5 78.6 76.3
STDN321 [25] DenseNet-169 321× 321 17080 40.1 79.3 -

SSD512 [3] VGG-16 512× 512 24564 19 79.8 78.5
DES300 [26] VGG-16 300× 300 8732 67.8† 79.5 77.0
DFP300 [27] VGG-16 300× 300 8732 39.5 79.6 77.5
RFB300 [28] VGG-16 300× 300 11620 83‡ 80.5 -
SSD513 [22] ResNet-101 513× 513 43688 6.8 80.6 79.4

STDN513 [25] DenseNet-169 513× 513 43680 28.6 80.9 -
PFPNet-R320 [29] VGG-16 320× 320 6375 33 80.7 77.7

DSSD513 [22] ResNet-101 513× 513 43688 5.5 81.5 80.0
DES512 [26] VGG-16 512× 512 24564 27.2† 81.6 80.2
RFB512 [28] VGG-16 512× 512 32756 38‡ 82.2 -

PFPNet-R512 [29] VGG-16 512× 512 16320 24 82.3 80.3
DFP512 [27] ResNet-101 512× 512 24564 - 82.4 81.1

RefineDet320++ VGG-16 320× 320 6375 27.8 81.1 79.0
RefineDet512++ VGG-16 512× 512 16320 16.1 82.5 80.9

RefineDet320++∗ VGG-16 - - - 83.6 83.0
RefineDet512++∗ VGG-16 - - - 84.2 83.8

∗ The performance is evaluated with the multi-scale testing strategy.
† The speed is evaluated with batch size 4 or 8 on an NVIDIA Titan X (Pascal) GPU.
‡ The speed is evaluated with PyTorch-0.3.0 and cuDNN V6, which is 2.6 times faster than the configuration in SSD [3].

V. EXPERIMENT

We conduct experiments on three standard datasets, namely
PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO,
to validate the performance of the proposed method. The
PASCAL VOC and MS COCO datasets include 20 and 80
object classes, respectively, where the 20 classes in PASCAL
VOC are the subset of the 80 classes in MS COCO.

A. PASCAL VOC 2007

For PASCAL VOC 2007, we train all models on the union
set of the VOC 2007 and 2012 trainval sets, and evaluate
them on the VOC 2007 test set. After one warmup epoch,
we train the model with the learning rate 4 × 10−3 for 160
epochs and then decay it to 4×10−4 and 4×10−5 for training
another 40 and 40 epochs, respectively. We only use VGG-16
as the backbone network with the default batch size 32 for all
experiments on the PASCAL VOC 2007 and 2012 datasets.

We compare the proposed RefineDet++ with the state-of-
the-art detectors in Table I. It can be observed that with
small input image, RefineDet320++ produces 81.1% mAP
without bells and whistles, which is much better than all
one-stage detectors with similar input size. It even performs
better than some one-stage and two-stage detectors with larger
input size, e.g., STDN513 (80.9% mAP), SSD512 (79.8%
mAP) and R-FCN (80.5% mAP). With the 512 × 512 image
size, RefineDet512++ achieves 82.5% mAP that surpasses all
one-stage methods, including DFP512 (82.4% mAP), PFPNet-
R512 (82.3% mAP), RFB512 (82.2% mAP). Although some
two-stage detectors (CoupleNet [36], Zhai et al. [87], Deep-
Regionlets [90] and Revisiting RCNN [88]) have better per-
formance, they use larger input size (∼ 1000 × 600) than
our RefineDet512++. To reduce the impact of input size, we
evaluate RefineDet++ with the multi-scale testing strategy,
achieving 84.2% mAP that outperforms all other state-of-the-
art methods.



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

TABLE II: Effectiveness of various designs.

Component RefineDet320++
Feature Alignment Convolution? !

Negative Anchor Filtering? ! !

Two-step Cascaded Regression? ! ! !

Transfer Connection Block? ! ! ! !
mAP (%) 81.1 80.0 79.5 77.3 76.2

1) Inference Time: For a comprehensive understanding, we
also report the inference time in the fifth column of Table
I. The speed of RefineDet++ is evaluated on a NVIDIA
Titan X (Maxwell) GPU with batch size 1, CUDA 9.1 and
cuDNN v7. The frame-per-second (FPS) is used to evaluate
the running speed. With the input sizes 320 × 320 and
512 × 512, RefineDet++ achieves 27.8 FPS (35.9ms) and
16.1 FPS (62.1ms), respectively. Among the high efficiency
detectors, RefineDet512++ is the most accurate one (82.5%
mAP) and RefineDet320++ achieves a faster speed of 27.8
FPS with a little drop in the accuracy (81.1% mAP). As
shown in Table I, all two-stage detectors are not able to run in
real-time, because they rely on the region-wise subnetwork to
perform the second-step prediction that is effective but time-
consuming. In contrast, our RefineDet++ discards the region-
wise subnetwork but rely on the fully convolution network
and the efficient AlignConv to extract accurate features for
detection, making it achieve the state-of-the-art results with
high efficiency.

2) Ablation Study: We construct five variants to validate the
effectiveness of different components of RefineDet++ on the
VOC 2007 test set shown in Table II. For a fair comparison,
all experiments are conducted with the same settings except
for the specific declaration. All models are trained on VOC
2007 and VOC 2012 trainval sets, and tested on VOC
2007 test set.

Feature Alignment Convolution. The proposed AlignConv
in ADM is designed to align the features based on the
refined anchors accordingly. As shown in Table II, using
aligned features for detection can boost the mAP from 80.0%
to 81.1%, demonstrating the effectiveness of the proposed
alignment convolution. We also replace AlignConv with the
deformable convolution and obtain a worse result (80.5%
mAP), indicating that the AlignConv is more appropriate
than the deformable convolution in our RefineDet++ method.
Besides, replacing the vanilla convolution with the alignment
convolution reduces the speed from 40 FPS to 27.8 FPS,
because the alignment convolution makes the convolution
operation inconsistent. Specifically, for vanilla convolution
with 3× 3 kernel size, the convolution offset of each location
is exactly the same, which can be used for acceleration at
both hardware and software levels. However, for alignment
convolution with 3 × 3 kernel size, the convolution offset of
each location is completely different, and the software and
hardware support for this inconsistent operation is not friendly
enough. As shown in Table III, using larger 5× 5 kernel size
slightly improves the mAP by 0.2% but significantly reduces
the speed from 27.8 FPS to 22.1 FPS. Moreover, using too
large kernel size (e.g., 7 × 7) even slightly decreases the

TABLE III: Analysis of different kernel sizes of feature
alignment convolution. mAP is evaluated on VOC 2007.

Kernel Size 3× 3 5× 5 7× 7
mAP (%) 81.1 81.3 81.2

FPS 27.8 22.1 16.3

TABLE IV: Analysis of different θ for negative anchor filter-
ing. mAP is evaluated on VOC 2007.

θ 1 0.99 0.98 0.95 0.9 0.8
mAP (%) 79.5 80.0 80.0 79.6 78.1 75.2

mAP performance because too much contextual information
is introduced. Thus, we select the common 3 × 3 kernel size
as default in the introduced alignment convolution.

Negative Anchor Filtering. To verify the effectiveness of
the negative anchor filtering, we set the confidence threshold
θ of the anchors to be negative to 1.0 in both training
and testing. In this case, all refined anchors will be sent to
the ADM for detection. Other parts of RefineDet++ remain
unchanged. Removing negative anchor filtering leads to 0.5%
drop in mAP (i.e., 80.0% vs. 79.5%). The reason is that
most of these well-classified negative anchors will be filtered
out during training, which solves the class imbalance issue
to some extent. Besides, we conduct some experiments with
different θ = 1, 0.99, 0.98, 0.95, 0.9, 0.8 to analyze this hyper-
parameter. As shown in Table IV, large values of θ (e.g., 0.99
and 0.98) improve the performance, while small values of θ
(e.g., 0.9 and 0.8) decrease the performance. The reason is
that too small values of θ make the first step ARM filter out
too many negative anchors (even positive anchors), causing
the second step ADM to fail to be trained sufficiently. We
also only filter negative anchors in the training phase using
θ = 0.99, the performance slightly decreases from 81.1% to
80.8%, because the first step ARM can filter out some false
positives that cannot be filtered by the second step ADM. If
the first step does not perform the filtering operation during the
inference phase, some false positives will be output, causing
slight performance degradation.

Two-Step Cascaded Regression. To validate the effective-
ness of the two-step cascaded regression, we redesign the
network structure by directly using the regularly paved anchors
instead of the refined ones from the ARM (see the fourth
column in Table II). As shown in Table II, we find that
mAP is reduced from 79.5% to 77.3%. This sharp decline
(i.e., 2.2%) demonstrates that the two-step anchor cascaded
regression significantly help promote the performance.

Transfer Connection Block. We construct a network by
cutting the TCBs in RefineDet++ and redefining the loss
function in the ARM to directly detect multi-class of objects,
just like SSD, to demonstrate the effect of the TCB. The
detection accuracy of the model is presented in the fifth
column in Table II. We compare the results in the fourth and
fifth columns in Table II (77.3% vs. 76.2%) and find that the
TCB improves the mAP by 1.1%. The main reason is that the
model can inherit the discriminative features from the ARM,
and integrate large-scale context information to improve the
detection accuracy by using the TCB.



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 8

TABLE V: Performance of different methods on MS COCO test-dev subset. Our best results are indicated with bold fonts.

Method Data Backbone Resolution AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

two-stage:
SIN [84] train VGG-16 ∼600×1000 23.2 44.5 22.0 7.3 24.5 36.3 22.6 31.6 32.0 10.5 34.7 51.3
ION [43] train VGG-16 ∼600×1000 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6

OHEM++ [40] trainval VGG-16 ∼600×1000 25.5 45.9 26.1 7.4 27.7 40.3 - - - - - -
MLKP [85] trainval35 ResNet-101 ∼600×1000 28.6 52.4 31.6 10.8 33.4 45.1 27.0 40.9 41.4 15.8 47.8 62.2
R-FCN [7] trainval ResNet-101 ∼800×1333 29.9 51.9 - 10.8 32.8 45.0 - - - - - -

CoupleNet [36] trainval ResNet-101 ∼600×1000 34.4 54.8 37.2 13.4 38.1 50.8 30.0 45.0 46.4 20.7 53.1 68.5
Faster R-CNN [63] trainval ResNet-101-C4 ∼600×1000 34.9 55.7 37.4 15.6 38.7 50.9 - - - - - -

FPN [8] trainval35k ResNet-101-FPN ∼600×1000 36.2 59.1 39.0 18.2 39.0 48.2 - - - - - -
TDM [49] trainval Inception-ResNet-v2 ∼600×1000 36.8 57.7 39.2 16.2 39.8 52.1 31.6 49.3 51.9 28.1 56.6 71.1

Deform R-FCN [66] trainval Aligned-Inception-ResNet ∼600×1000 37.5 58.0 40.8 19.4 40.1 52.5 - - - - - -
Hu et al. [91] trainval35k ResNet-101 ∼800×1333 39.0 58.6 42.9 - - - - - - - - -

DeepRegionlets [90] trainval35k ResNet-101 ∼600×1000 39.3 59.8 - 21.7 43.7 50.9 - - - - - -
FitnessNMS [92] trainval DeNet-101 ∼800×1333 39.5 58.0 42.6 18.9 43.5 54.1 - - - - - -

GA-RPN [93] trainval35k ResNet-50 ∼800×1333 39.8 59.2 43.5 21.8 42.6 50.7 - - - - - -
Gu et al. [94] trainval35k ResNet-101 ∼800×1333 39.9 63.1 43.1 22.2 43.4 51.6 - - - - - -
DetNet [95] trainval35k DetNet-59 ∼800×1333 40.3 62.1 43.8 23.6 42.6 50.0 - - - - - -

Soft-NMS [96] trainval ResNet-101 ∼800×1333 40.9 62.8 - 23.3 43.6 53.3 - 54.7 60.4 - - -
SOD-MTGAN [97] trainval35k ResNet-101 ∼800×1333 41.4 63.2 45.4 24.7 44.2 52.6 - - - - - -

G-RMI [98] trainval35k Ensemble of Five Models ∼600×1000 41.6 61.9 45.4 23.9 43.5 54.9 - - - - - -
C-Mask RCNN [86] trainval35k ResNet-101 ∼800×1333 42.0 62.9 46.4 23.4 44.7 53.8 - - - - - -
Cascade R-CNN [37] trainval35k ResNet-101 ∼800×1333 42.8 62.1 46.3 23.7 45.5 55.2 - - - - - -
Revisiting RCNN [88] trainval35k ResNet-101+ResNet-152 - 43.1 66.1 47.3 25.8 45.9 55.3 - - - - - -

Grid R-CNN [99] trainval35k ResNeXt-101 ∼800×1333 43.2 63.0 46.6 25.1 46.5 55.2 - - - - - -
SNIP [100] trainval35k DPN-98 ∼1200×2000 45.7 67.3 51.1 29.3 48.8 57.1 - - - - - -
one-stage:

YOLOv2 [11] trainval35k DarkNet-19 [11] 544×544 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4
SSD300 [3] trainval35k VGG-16 300×300 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4

RON384++ [12] trainval VGG-16 384×384 27.4 49.5 27.1 - - - - - - - - -
DSSD321 [22] trainval35k ResNet-101 321×321 28.0 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42.0 62.6
STDN300 [25] trainval DenseNet-169 300×300 28.0 45.6 29.4 7.9 29.7 45.1 24.4 36.1 38.7 12.5 42.7 60.1
DES300 [26] trainval35k VGG-16 300×300 28.3 47.3 29.4 8.5 29.9 45.2 25.6 38.3 40.7 14.1 44.7 62.0
SSD512 [3] trainval35k VGG-16 512×512 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42.0 16.5 46.6 60.8

RFB300 [28] trainval35k VGG-16 300×300 29.9 49.9 31.1 11.9 31.8 44.7 - - - - - -
DFP300 [27] trainval ResNet-101 300×300 31.3 50.5 32.0 - - - - - - - - -

PFPNet-R320 [29] trainval35k VGG-16 320×320 31.8 52.9 33.6 12.0 35.5 46.1 - - - - - -
STDN513 [25] trainval DenseNet-169 513×513 31.8 51.0 33.6 14.4 36.1 43.4 27.0 40.1 41.9 18.3 48.3 57.2
DES512 [26] trainval35k VGG-16 512×512 32.8 53.2 34.6 13.9 36.0 47.6 28.4 43.5 46.2 21.6 50.7 64.6

DSSD513 [22] trainval35k ResNet-101 513×513 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4
RFB512-E [28] trainval35k VGG-16 512×512 34.4 55.7 36.4 17.6 37.0 47.6 - - - - - -

DFP512 [27] trainval ResNet-101 512×512 34.6 54.3 37.3 - - - - - - - - -
PFPNet-R512 [29] trainval35k VGG-16 512×512 35.2 57.6 37.9 18.7 38.6 45.9 - - - - - -

RetinaNet [10] trainval35k ResNet-101 ∼800×1333 39.1 59.1 42.3 21.8 42.7 50.2 - - - - - -
ExtremeNet [52] trainval35k Hourglass-104 511×511 40.2 55.5 43.2 20.4 43.2 53.1 - - - - - -

CornerNet511 [50] trainval35k Hourglass-104 511×511 40.5 56.5 43.1 19.4 42.7 53.9 35.3 54.3 59.1 37.4 61.9 76.9
CenterNet-HG [53] trainval35k Hourglass-104 512×512 42.1 61.1 45.9 24.1 45.5 52.8 - - - - - -

FoveaBox [57] trainval35k ResNeXt-101 ∼800×1333 42.1 61.9 45.2 24.9 46.8 55.6 - - - - - -
FSAF [55] trainval35k ResNeXt-64x4d-101 ∼800×1333 42.9 63.8 46.3 26.6 46.2 52.7 - - - - - -
FCOS [56] trainval35k ResNeXt-64x4d-101 ∼800×1333 43.2 62.8 46.6 26.5 46.2 53.3 - - - - - -

CenterNet511 [51] trainval35k Hourglass-104 511×511 44.9 62.4 48.1 25.6 47.4 57.4 36.1 58.4 63.3 41.3 67.1 80.2
RepPoints [54] trainval35k ResNet-101-DCN ∼800×1333 45.0 66.1 49.0 26.6 48.6 57.5 - - - - - -

RefineDet320++∗ trainval35k ResNet-101 320×320 33.2 53.4 35.1 13.1 35.5 51.0 28.3 44.5 47.8 20.9 53.1 70.1
RefineDet512++∗ trainval35k ResNet-101 512×512 37.7 57.9 40.3 18.8 42.4 54.2 31.7 49.4 52.3 30.3 58.1 70.4

RefineDet1024++† trainval35k ResNet-101 1024×1024 42.1 62.8 45.8 26.0 47.3 53.1 34.3 53.9 56.2 39.5 61.0 70.7
RefineDet1024++ trainval35k ResNet-152 1024×1024 43.2 63.3 46.8 26.3 49.3 54.5 34.4 54.9 57.3 39.6 61.9 71.2
RefineDet1024++ trainval35k ResNeXt-152 32×4d 1024×1024 43.8 64.1 47.7 27.3 50.0 55.2 34.8 54.9 57.4 40.5 62.0 71.3
RefineDet1024++‡ trainval35k ResNeXt-152 32×4d 1024×1024 47.2 67.8 51.4 29.3 51.1 58.6 36.7 58.9 63.8 45.2 68.4 80.7

∗ The inference speed of RefineDet320++ and RefineDet512++ based on ResNet-101 are 12.4 FPS and 6.9 FPS, respectively.
† For the 1024× 1024 training size, we add one more residual block to generate a feature map with total stride size 128 as another detection layer.
‡ The performance is evaluated using the multi-scale testing strategy.

B. PASCAL VOC 2012

Comparing to the VOC 2007 test set, the annotations
in the VOC 2012 test set are held-out and researchers are
required to submit the detection results to an online evaluation
server to evaluate the performance of their detectors. Follow-
ing the training and testing protocol, we use all the images
in the VOC 2007 and the trainval images in VOC 2012
(21, 503 images) to train RefineDet++, and test it on the VOC

2012 test set with 10, 991 images. The same learning rate
policy as PASCAL VOC 2007 is used for training.

We report the mAP scores of the proposed RefineDet++
and compare it to the state-of-the-art detectors. As shown in
Table I, it can be found that RefineDet320++ achieves the top
accuracy (79.0% mAP) among the detectors with the similar
input size 320× 320, which produces 1.3% higher mAP than
the second best algorithm (77.7% of PFPNet-R320). This



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

result is even better than the majority of the one-stage and
two-stage methods with the larger input size, such as SSD512
(78.5%) and R-FCN (77.6%). Zooming in the input size to
512 × 512, the proposed method can produce 80.9% mAP
that is only slightly lower than 81.1% mAP of DFP512 [27].
Comparing to the two-stage detectors, only DeepRegionlets
[90] and Revisiting RCNN [88] produce better performance
than our detector. However, these two detectors use bells
and whistles during training and inference with 1000 × 600
input size. To have a more fair comparison, we also evaluate
RefineDet++ with the multi-scale testing strategy and achieve
83.0% mAP with the input size 320 × 320 and 83.8% mAP
with 512 × 512, surpassing all published two-stage and one-
stage approaches.

C. MS COCO

We also evaluate RefineDet++ on the very challenging MS
COCO dataset [15], which includes 80 object classes. MS
COCO contains 80k+ images for training, 40k+ for validation,
and 20k+ for testing. Following the evaluation protocol [43],
we use all images in the training set and 35k+ images
in the validation set to train our RefineDet++ model,
denoted as the trainval35k set. The remaining 5, 000
images in the validation set are used for hyper-parameter
searching. The average precision (AP) over different IoU
threshold of all object categories is used as the primary
evaluation metric. The ResNet and ResNeXt are used as
the backbone network in our RefineDet++. We submit the
detection results of RefineDet++ on the test-dev set to the
evaluation server for evaluation. After one warmup epoch, we
start the regular training with the initial learning rate 4×10−3

and divide it by 10 at 80 and 100 epochs. The total number
of training epochs is 110.

We report the detection results on the MS COCO
test-dev set in Table V. RefineDet320++ achieves 33.2%
AP that is better than numerous methods, including PFPNet-
R320 (31.8% AP), DFP300 (31.3% AP), STDN513 (28.0%
AP), DES512 (32.8% AP) and R-FCN (29.9% AP). We
can further improve the detection accuracy of RefineDet++
to 37.7% by using large input image size 512 × 512. It
surpasses all the one-stage detectors except CornerNet511
[50] (40.5% AP), which detects an object bounding box as
a pair of keypoints. Comparing to the two-stage detectors,
RefineDet512++ performs better than several methods, such
as Faster R-CNN [4], CoupleNet [36] and Deformable R-
FCN [66]. However, it still falls behind the top two-stage
algorithms regarding to the detection accuracy. Comparing to
our RefineDet512++ based on ResNet-101, all of these two-
stage algorithms use much larger training and testing images
(∼ 1333×800), some of them apply much stronger backbones
(e.g., ResNet-152, DPN-98 and Inception-ResNet) and some of
them utlize extra training and testing strategies (e.g., auxiliary
filter and model ensemble). For a fair comparison, we also
explore the larger input size and stronger backbones. As shown
in Table V, using 1024 × 1024 input image size improves
the AP performance from 37.7% to 42.1% and applying
stronger backbone further increases the AP result by 1.1% for

ResNet-152 and by 1.7% for ResNeXt-152 32×4d. Finally,
with the multi-scale testing strategy, RefineDet1024++ based
on ResNeXt-152 32×4d achieves 47.2% AP, which performs
better than all the one-stage and two-stage detectors.

D. Discussion

One-Stage vs. Two-Stage Approach. The two-stage detec-
tors use the second stage to classify and refine each candidate
box via a region-wise subnetwork, which is effective but time-
consuming. The one-stage detectors do not have this region-
wise stage so they can run fast. In our opinion, the key
aspect to distinguish the one-stage and two-stage detector
is whether it has the region-wise operation. Our real-time
method achieves state-of-the-art performance via the two-step
classification and regression, mainly due to without the time-
consuming region-wise operation (e.g., RoIPooling). Thus, we
consider it as one-stage approach.

Multi-Scale Testing Strategy. We use several scales with
horizontal flipping to test the trained model, and then merge
all these results via different NMS (e.g., vanilla NMS, soft-
NMS [96], bounding box voting [44]). We have released
all the related multi-scale testing codes at https://github.com/
sfzhang15/RefineDet/blob/master/test/lib/fast rcnn/test.py.

VI. CONCLUSION

This paper presents a single-shot object detector based
on the refinement neural network with two inter-connected
modules. The first module namely ARM is designed to (1)
provide better initialization for the subsequent regressor via
coarsely adjusting anchors’ locations and sizes, and (2) re-
duce search space for the subsequent classifier by filtering
out the negative anchors. The second module namely ADM
takes the refined anchors from the former ARM as the input
with a newly designed alignment convolution operation to
predict the corresponding multi-class labels and regress more
accurate locations and sizes. As a consequence, the proposed
RefineDet++ method achieves the state-of-the-art detection
accuracy with high efficiency on several object detection
benchmark datasets including PASCAL VOC 2007, PASCAL
VOC 2012 and MS COCO. In the future, we plan to design
a lightweight architecture with the help of automatic machine
learning (AutoML) methods to make RefineDet++ run in real-
time not only on the GPU devices but also on the CPU and
embedded devices.

ACKNOWLEDGMENTS

This work has been partially supported by the Chinese
National Natural Science Foundation Projects #61872367,
#61876178, #61806196, #61806203, #61976229. Zhen Lei
is the corresponding author.

REFERENCES

[1] P. A. Viola and M. J. Jones, “Rapid object detection using a boosted
cascade of simple features,” in CVPR, 2001, pp. 511–518.

[2] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014.



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and
A. C. Berg, “SSD: single shot multibox detector,” in ECCV, 2016.

[4] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-
time object detection with region proposal networks,” TPAMI, 2017.

[5] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang,
Z. Wang, R. Wang, X. Wang, and W. Ouyang, “T-CNN: tubelets
with convolutional neural networks for object detection from videos,”
TCSVT, vol. 28, no. 10, pp. 2896–2907, 2018.

[6] R. B. Girshick, “Fast R-CNN,” in ICCV, 2015.
[7] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-

based fully convolutional networks,” in NIPS, 2016.
[8] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.

Belongie, “Feature pyramid networks for object detection,” in CVPR,
2017.

[9] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Occlusion-aware R-
CNN: detecting pedestrians in a crowd,” in ECCV, 2018, pp. 657–674.

[10] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in ICCV, 2017.

[11] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
CVPR, 2017.

[12] T. Kong, F. Sun, A. Yao, H. Liu, M. Lu, and Y. Chen, “RON: reverse
connection with objectness prior networks for object detection,” in
CVPR, 2017.

[13] K. Song, H. Yang, and Z. Yin, “Multi-scale attention deep neural
network for fast accurate object detection,” TCSVT, vol. 29, no. 10,
pp. 2972–2985, 2019.

[14] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,”
IJCV, vol. 88, no. 2, pp. 303–338, 2010.

[15] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in ECCV, 2014.

[16] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “S3FD:
Single shot scale-invariant face detector,” in ICCV, 2017.

[17] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” in
ICCV, 2017.

[18] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot refinement
neural network for object detection,” in CVPR, 2018.

[19] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
TPAMI, vol. 32, no. 9, pp. 1627–1645, 2010.

[20] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using
convolutional networks,” in ICLR, 2014.

[21] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in CVPR, 2016.

[22] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD :
Deconvolutional single shot detector,” CoRR, 2017.

[23] Z. Shen, Z. Liu, J. Li, Y. Jiang, Y. Chen, and X. Xue, “DSOD: learning
deeply supervised object detectors from scratch,” in ICCV, 2017.

[24] R. Zhu, S. Zhang, X. Wang, L. Wen, H. Shi, L. Bo, and T. Mei,
“Scratchdet: Exploring to train single-shot object detectors from
scratch,” in CVPR, 2019.

[25] P. Zhou, B. Ni, C. Geng, J. Hu, and Y. Xu, “Scale-transferrable object
detection,” in CVPR, 2018.

[26] Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, and A. L. Yuille, “Single-
shot object detection with enriched semantics,” in CVPR, 2018.

[27] T. Kong, F. Sun, W. Huang, and H. Liu, “Deep feature pyramid
reconfiguration for object detection,” in ECCV, 2018.

[28] S. Liu, D. Huang, and Y. Wang, “Receptive field block net for accurate
and fast object detection,” in ECCV, 2018.

[29] S. Kim, H. Kook, J. Sun, M. Kang, and S. Ko, “Parallel feature pyramid
network for object detection,” in ECCV, 2018.

[30] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders, “Selective search for object recognition,” IJCV, vol. 104,
no. 2, pp. 154–171, 2013.

[31] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in ECCV, 2014, pp. 391–405.

[32] P. H. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment
object candidates,” in NIPS, 2015, pp. 1990–1998.

[33] P. O. Pinheiro, T. Lin, R. Collobert, and P. Dollár, “Learning to refine
object segments,” in ECCV, 2016, pp. 75–91.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” in ECCV, 2014.

[35] H. Lee, S. Eum, and H. Kwon, “ME R-CNN: multi-expert region-based
CNN for object detection,” in ICCV, 2017.

[36] Y. Zhu, C. Zhao, J. Wang, X. Zhao, Y. Wu, and H. Lu, “Couplenet:
Coupling global structure with local parts for object detection,” in
ICCV, 2017.

[37] Z. Cai and N. Vasconcelos, “Cascade R-CNN: delving into high quality
object detection,” in CVPR, 2018.

[38] K. Cheng, Y. Chen, and W. Fang, “Improved object detection with
iterative localization refinement in convolutional neural networks,”
TCSVT, vol. 28, no. 9, pp. 2261–2275, 2018.

[39] M. Najibi, M. Rastegari, and L. S. Davis, “G-CNN: an iterative grid
based object detector,” in CVPR, 2016, pp. 2369–2377.

[40] A. Shrivastava, A. Gupta, and R. B. Girshick, “Training region-based
object detectors with online hard example mining,” in CVPR, 2016.

[41] X. Wang, A. Shrivastava, and A. Gupta, “A-fast-rcnn: Hard positive
generation via adversary for object detection,” in CVPR, 2017.

[42] D. Yoo, S. Park, J. Lee, A. S. Paek, and I. Kweon, “Attentionnet:
Aggregating weak directions for accurate object detection,” in ICCV,
2015, pp. 2659–2667.

[43] S. Bell, C. L. Zitnick, K. Bala, and R. B. Girshick, “Inside-outside
net: Detecting objects in context with skip pooling and recurrent neural
networks,” in CVPR, 2016.

[44] S. Gidaris and N. Komodakis, “Object detection via a multi-region and
semantic segmentation-aware CNN model,” in ICCV, 2015.

[45] A. Shrivastava and A. Gupta, “Contextual priming and feedback for
faster R-CNN,” in ECCV, 2016, pp. 330–348.

[46] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang, “Gated bi-
directional CNN for object detection,” in ECCV, 2016, pp. 354–369.

[47] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale
deep convolutional neural network for fast object detection,” in ECCV,
2016, pp. 354–370.

[48] T. Kong, A. Yao, Y. Chen, and F. Sun, “Hypernet: Towards accurate
region proposal generation and joint object detection,” in CVPR, 2016.

[49] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta, “Beyond skip
connections: Top-down modulation for object detection,” CoRR, 2016.

[50] H. Law and J. Deng, “Cornernet: Detecting objects as paired key-
points,” in ECCV, 2018.

[51] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” in ICCV, 2019.

[52] X. Zhou, J. Zhuo, and P. Krähenbühl, “Bottom-up object detection by
grouping extreme and center points,” in CVPR, 2019, pp. 850–859.

[53] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” CoRR,
2019.

[54] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “Reppoints: Point set
representation for object detection,” in ICCV, 2019.

[55] C. Zhu, Y. He, and M. Savvides, “Feature selective anchor-free module
for single-shot object detection,” in CVPR, 2019, pp. 840–849.

[56] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: fully convolutional
one-stage object detection,” in ICCV, 2019.

[57] T. Kong, F. Sun, H. Liu, Y. Jiang, and J. Shi, “Foveabox: Beyond
anchor-based object detector,” CoRR, 2019.

[58] P. Tang, X. Wang, A. Wang, Y. Yan, W. Liu, J. Huang, and A. L. Yuille,
“Weakly supervised region proposal network and object detection,” in
ECCV, 2018, pp. 370–386.

[59] P. Tang, X. Wang, S. Bai, W. Shen, X. Bai, W. Liu, and A. L.
Yuille, “PCL: proposal cluster learning for weakly supervised object
detection,” TPAMI, vol. 42, no. 1, pp. 176–191, 2020.

[60] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring
R-CNN,” in CVPR, 2019, pp. 6409–6418.

[61] J. Yao, Z. Yu, J. Yu, and D. Tao, “Single pixel reconstruction for one-
stage instance segmentation,” CoRR, 2019.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, 2014.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[64] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in CVPR, 2017.

[65] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
F. Li, “Imagenet large scale visual recognition challenge,” IJCV, vol.
115, no. 3, pp. 211–252, 2015.

[66] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in ICCV, 2017.

[67] X. Chen, Z. Wu, and J. Yu, “Dual refinement network for single-shot
object detection,” CoRR, 2018.

[68] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets V2: more
deformable, better results,” in CVPR, 2019, pp. 9308–9316.

[69] A. G. Howard, “Some improvements on deep convolutional neural
network based image classification,” CoRR, 2013.



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

[70] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015.

[71] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in AAAI, 2017, pp. 4278–4284.

[72] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” CoRR, 2017.

[73] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2: practical
guidelines for efficient CNN architecture design,” in ECCV, 2018.

[74] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” in ICLR, 2015.

[75] W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to
see better,” in ICLR workshop, 2016.

[76] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “Detecting
face with densely connected face proposal network,” in CCBR, 2017.

[77] S. Zhang, X. Zhu, Z. Lei, X. Wang, H. Shi, and S. Z. Li, “Detecting
face with densely connected face proposal network,” Neurocomputing,
vol. 284, pp. 119–127, 2018.

[78] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “Faceboxes:
A CPU real-time face detector with high accuracy,” in IJCB, 2017.

[79] S. Zhang, X. Wang, Z. Lei, and S. Z. Li, “Faceboxes: A CPU real-time
and accurate unconstrained face detector,” Neurocomputing, vol. 364,
pp. 297–309, 2019.

[80] S. Zhang, L. Wen, H. Shi, Z. Lei, S. Lyu, and S. Z. Li, “Single-shot
scale-aware network for real-time face detection,” Int. J. Comput. Vis.,
vol. 127, no. 6-7, pp. 537–559, 2019.

[81] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” in CVPR, 2014, pp. 2155–2162.

[82] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS, 2010, pp. 249–256.

[83] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, 2017.

[84] Y. Liu, R. Wang, S. Shan, and X. Chen, “Structure inference net: Object
detection using scene-level context and instance-level relationships,” in
CVPR, 2018.

[85] H. Wang, Q. Wang, M. Gao, P. Li, and W. Zuo, “Multi-scale location-
aware kernel representation for object detection,” in CVPR, 2018.

[86] Z. Chen, S. Huang, and D. Tao, “Context refinement for object
detection,” in ECCV, 2018, pp. 74–89.

[87] Y. Zhai, J. Fu, Y. Lu, and H. Li, “Feature selective networks for object
detection,” in CVPR, 2018.

[88] B. Cheng, Y. Wei, H. Shi, R. S. Feris, J. Xiong, and T. S. Huang,
“Revisiting RCNN: on awakening the classification power of faster
RCNN,” in ECCV, 2018.

[89] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015, pp. 1–9.

[90] H. Xu, X. Lv, X. Wang, Z. Ren, N. Bodla, and R. Chellappa, “Deep
regionlets for object detection,” in ECCV, 2018.

[91] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for
object detection,” in CVPR, 2018.

[92] L. Tychsen-Smith and L. Petersson, “Improving object localization with
fitness NMS and bounded iou loss,” in CVPR, 2018.

[93] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, “Region proposal
by guided anchoring,” in CVPR, 2019, pp. 2965–2974.

[94] J. Gu, H. Hu, L. Wang, Y. Wei, and J. Dai, “Learning region features
for object detection,” in ECCV, 2018, pp. 392–406.

[95] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, “Detnet: A
backbone network for object detection,” in ECCV, 2018.

[96] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-nms -
improving object detection with one line of code,” in ICCV, 2017.

[97] Y. Bai, Y. Zhang, M. Ding, and B. Ghanem, “SOD-MTGAN: small
object detection via multi-task generative adversarial network,” in
ECCV, 2018, pp. 210–226.

[98] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/accuracy trade-offs for modern convolutional object detectors,”
in CVPR, 2017.

[99] X. Lu, B. Li, Y. Yue, Q. Li, and J. Yan, “Grid R-CNN,” in CVPR,
2019.

[100] B. Singh and L. S. Davis, “An analysis of scale invariance in object
detection - SNIP,” in CVPR, 2018.

Shifeng Zhang received the B.S. degree from the
University of Electronic Science and Technology of
China (UESTC), in 2015. Since September 2015,
he has been a Ph.D. candidate at the National
Laboratory of Pattern Recognition (NLPR), Institute
of Automation, Chinese Academy of Science (CA-
SIA). His research interests include computer vision,
pattern recognition, especially with a focus on object
detection, face detection, pedestrian detection, video
detection.

Longyin Wen received the B.Eng. degree in automa-
tion from the University of Electronic Science and
Technology of China, Chengdu, China, in 2010, and
the Ph.D. degree from the Institute of Automation,
Chinese Academy of Sciences, Beijing, China, in
2015. He is currently a staff scientist in JD Digits,
Mountain View, CA. Before that, He was a computer
vision scientist in GE Global Research, Niskayuna,
NY. He was a Post-Doctoral Researcher with Uni-
versity at Albany, State University of New York,
Albany, NY, USA, from 2015 to 2016. His current

research interests include computer vision, pattern recognition, and video
analysis.

Zhen Lei received the BS degree in automation from
the University of Science and Technology of China,
in 2005, and the PhD degree from the Institute of
Automation, Chinese Academy of Sciences, in 2010,
where he is currently a professor. He has published
more than 160 papers in international journals and
conferences. His research interests are in computer
vision, pattern recognition, image processing, and
face recognition in particular. He served as an
area chair of the International Joint Conference on
Biometrics in 2014, the IAPR/IEEE International

Conference on Biometric in 2015, 2016, 2018, and the IEEE International
Conference on Automatic Face and Gesture Recognition in 2015. He is the
winner of 2019 IAPR YOUNG BIOMETRICS INVESTIGATOR AWARD.
He is a senior member of the IEEE.

Stan Z. Li received the BEng degree from Hunan
University, China, the MEng degree from National
University of Defense Technology, China, and the
PhD degree from Surrey University, United King-
dom. He is currently a chair professor in Westlake
University and a guest professor of Center for Bio-
metrics and Security Research (CBSR), Institute of
Automation, Chinese Academy of Sciences (CA-
SIA). He was with Microsoft Research Asia as a
researcher from 2000 to 2004. Prior to that, he was
an associate professor in the Nanyang Technological

University, Singapore. His research interests include pattern recognition and
machine learning, image and vision processing, face recognition, biometrics,
and intelligent video surveillance. He has published more than 300 papers
in international journals and conferences, and authored and edited eight
books. He was an associate editor of the IEEE Transactions on Pattern
Analysis and Machine Intelligence and is acting as the editor-in-chief for
the Encyclopedia of Biometrics. He served as a program co-chair for the
International Conference on Biometrics 2007, 2009, 2013, 2014, 2015, 2016
and 2018, and has been involved in organizing other international conferences
and workshops in the fields of his research interest. He was elevated to IEEE
fellow for his contributions to the fields of face recognition, pattern recognition
and computer vision and he is a member of the IEEE Computer Society.


