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Decomposed Meta Batch Normalization for Fast
Domain Adaptation in Face Recognition

Jianzhu Guo , Xiangyu Zhu , Member, IEEE, Zhen Lei , Senior Member, IEEE, and Stan Z. Li, Fellow, IEEE

Abstract— Face recognition systems are sometimes deployed
to a target domain with limited unlabeled samples available.
For instance, a model trained on the large-scale webfaces
may be required to adapt to a NIR-VIS scenario via very
limited unlabeled faces. This situation poses a great challenge
to Unsupervised Domain Adaptation with Limited samples for
Face Recognition (UDAL-FR), which is less studied in previous
works. In this paper, with deep learning methods, we propose
a novel training remedy by decomposing the model into the
weight parameters and the BN statistics in the training phase.
Based on decomposing, we design a novel framework via meta-
learning, called Decomposed Meta Batch Normalization (DMBN)
for fast domain adaptation in face recognition. DMBN trains
the network such that domain-invariant information is prone to
store in the weight parameters and domain-specific knowledge
tends to be represented by the BN statistics. Specifically, DMBN
constructs distribution-shifted tasks via domain-aware sampling,
on which several meta-gradients are obtained by optimizing
discriminative representations across different BNs. Finally,
the weight parameters are updated with these meta-gradients
for better consistency across different BNs. With the learned
weight parameters, the adaptation is very fast since only the BN
updating on limited data is needed. We propose two UDAL-FR
benchmarks to evaluate the domain-adaptive ability of a model
with limited unlabeled samples. Extensive experiments validate
the efficacy of our proposed DMBN.

Index Terms— Face recognition, unsupervised domain adapta-
tion, meta-learning, batch normalization.

I. INTRODUCTION

FACE recognition has been widely applied in real-world
scenarios. Recent works [1]–[6] have achieved remark-
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Fig. 1. An illustration of our DMBN for UDAL-FR. The model trained
on source domains DS is required to fast adapt to a new target domain DT
with limited unlabeled samples. DT

1 , DT
2 and DT

3 in the figure indicate three
new target domains, respectively. By meta-learning the weight parameters θ
on source domains DS with DMBN, our model only needs updating BN
statistics BN T

i with limited unlabeled samples from the target domain DT
i

to perform the adaptation, which is very fast.

able performances on common benchmarks, e.g., LFW [7],
YTF [8], IJB-C [9] and MegaFace [10], thanks to the
deep learning advances based on large-scale training datasets
like CASIA-Webface [11], VGGFace2 [12] and MS-Celeb-
1M [13]. These methods rely on the underlying assumption
that the training and testing sets share similar data distri-
butions. However, in the deployment of face recognition,
the trained model sometimes faces a new scenario and is
required to adapt to it with limited unlabeled samples avail-
able. Such a situation poses a great challenge to the problem
of Unsupervised Domain Adaptation with Limited samples for
Face Recognition (UDAL-FR), illustrated in Fig. 1.

In comparison with Unsupervised Domain Adaptation for
Face Recognition (UDA-FR), UDAL-FR additionally con-
strains the number of samples from the target domain and is
thus more challenging. Among recent works on UDA-FR, one
line of works [14], [15] aims at minimizing the discrepancy
between the source and target domains, where the domain
discrepancy is measured by Maximum Mean Discrepancy
(MMD) [16]. Another line of works [17], [18] tries to assign
pseudo-labels to samples from the target domain for fine-
tuning. Despite the effectiveness on UDA-FR, these methods
rely on a large number of samples from the target domain,
thus being inappropriate for the UDAL-FR problem.
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In this paper, we propose to address the UDAL-FR prob-
lem. Once the model is trained, it can fast adapt to a new
target domain with limited unlabeled samples. Inspired by
AdaBN [19] and MAML [20], we propose a meta-learning
based framework by decomposing the model into the weight
parameters θ and the BN statistics BN , called Decomposed
Meta Batch Normalization (DMBN). Based on decomposing,
the network is trained such that domain-invariant information
is prone to store in θ and domain-specific knowledge tends
to be represented by BN . DMBN first constructs a batch
of distribution-shifted tasks via domain-aware sampling. Each
task consists of two meta batches with distribution shift:
meta-train and meta-test batches. Then, DMBN decomposes
the weight parameters θ and the BN statistics BN for each
distribution-shifted task. Finally, we conduct the optimiza-
tion on these tasks to learn discriminative representations
across BNs. The back-propagated meta-gradients from both
meta-train and meta-test batches are aggregated to update θ to
improve its domain-adaptive ability. In the deployment phase,
we only need to update BN with limited unlabeled samples,
which can be very fast.

Compared to traditional meta-learning methods, DMBN
is BN agnostic and performs adaptation without gradient
updating of the weight parameters. DMBN also outperforms
AdaBN [19], which optimizes all the parameters in a regular
way during training, leading to the coupling of parameters
and BN. The main contributions include: (i) We propose a
training strategy by decomposing the network into weight
parameters and BN statistics to address the UDAL-FR prob-
lem. (ii) A novel meta-learning based optimization framework
accompanied with the decomposition strategy, called decom-
posed meta batch normalization (DMBN) is proposed, so that
the learned model is able to adapt to a new target domain
efficiently. (iii) To evaluate the performance of different meth-
ods on the UDAL-FR problem, two benchmarks are designed
and constructed. Extensive experiments on these benchmarks
validate the effectiveness of DMBN.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III gives a detailed
description of our proposed method. Section IV evaluates the
efficacy of DMBN by conducting extensive experiments on
two proposed benchmarks. We draw a conclusion in Section V.

II. RELATED WORK

This section reviews previous works in four aspects: deep
face recognition, unsupervised domain adaptation, unsuper-
vised domain adaptation for face recognition and meta-
learning.

A. Deep Face Recognition

Since pioneering works DeepFace [1] and DeepID [2],
which adopt deep convolutional neural network (CNN) for face
recognition, and achieve the performance close to humans on
LFW [7] for the first time, then, CNN-based models dominate
face recognition. Many powerful loss functions are proposed
to learn discriminative representations, so as to improve the
performance of deep models. DeepID series [2], [21] use

both the identification of softmax loss and the verification of
contrastive loss to train the model. FaceNet [3] uses triplet loss
to push negative pairs far way from positive pairs by a specific
margin and achieves good performance on LFW using 2.6M
images. Wen et al. [22] develop a center loss to reduce the
intra-class variations. Recently, several margin-based softmax
loss functions [4], [5], [23]–[25] are proposed to increase
the feature margin between different classes. Liu et al. [23]
encourage larger inter-class variance by introducing an angu-
lar margin between the ground-truth class and other classes
(A-Softmax). Liang et al. [26] and Want et al. [25] propose
the additive margin (AM-Softmax) to further stabilize the
training of A-Softmax. Deng et al. [5] design an additive
angular margin (Arc-Softmax) loss with a clear geometric
interpretation. Although achieving remarkable performances
on standard benchmarks like LFW [7], YTF [8], IJB-C [9]
and MegaFace [10], these CNN-based methods rely on a
large-scale labeled face set and the distribution between the
training and testing sets is similar. If the model is deployed
on a target domain with distribution bias, its performance may
be degraded dramatically.

B. Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) aims at trans-
ferring knowledge learned from source domains to new
domains with unlabeled data only. The main challenge is the
domain discrepancy between the source and target domains.
In closed-set domain adaptation (DA), many UDA methods
are proposed to learn domain-invariant representations with
statistic loss [16], [27]–[30] or adversarial loss [27], [31]–[35].
A commonly used statistic loss for UDA is maximum mean
discrepancy (MMD). Deep domain confusion (DDC) [27]
simultaneously optimizes the classification loss in the source
domain and the MMD metric with an adaptation layer. Deep
adaptation network (DAN) [16] utilizes multiple adaptation
layers and explores various kernel functions to reduce the
shifts in marginal distributions across domains. Adversarial
loss is also commonly used to align the distributions of
feature space spanned by source and target domains. Domain-
adversarial neural network (DANN) [31], [36] introduces a
gradient reversal layer to maximize the domain classifier loss
and minimize the classification loss adversarially. Li et al. [19]
propose a simple strategy named adaptive batch normaliza-
tion (AdaBN) to perform domain adaptation by only modu-
lating the statistics of BN layers from source domain to the
target domain. Closed-set DA assumes that the source and
target domains share the same label space. Recently, open-set
DA [37]–[40] is proposed to extend closed-set DA and has a
relax constraint that different domains share partial classes.
The key challenge of open-set DA is to separate samples
correctly into shared and specific classes. Cao et al. [37]
propose a selective adversarial network (SAN) to split the
domain discriminator into many class-wise domain discrim-
inators. Zhang et al. [38] propose to identify the importance
score of source samples with a two-domain classifier strategy.
However, in unsupervised domain adaptation of face recogni-
tion, source and target domains do not share the label space,
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which is a more challenging setting compared to closed-set
and open-set DA.

C. Unsupervised Domain Adaptation for Face Recognition

Although deep-learning based methods dominate the recent
researches of face recognition, there is only a few studies con-
centrating on unsupervised domain adaptation. Luo et al. [14]
use the Maximum Mean Discrepancy (MMD) loss to decrease
domain bias. Sohn et al. [15] synthesize video frames using a
series of transformations and utilize still images, synthesized
video frames, and unlabeled videos for domain-adversarial
training. While achieving promising results, these methods
cannot be fast deployed since the computation budget is
massive. Moreover, these methods rely on a large number
of samples from the target domain, thus being infeasible for
the problem of unsupervised domain adaptation with limited
samples for face recognition.

D. Meta-Learning

The goal of meta-learning is to learn a new task from
few samples quickly. Recent studies mainly include three
categories: (i) model based [41], [42], (ii) metric-learning
based [43]–[46] and (iii) optimization based [20], [47]–[49]
methods. In model based ones, MANN [41] trains
a memory-augmented neural network to learn how to
store and retrieve memories for each classification task.
Munkhdalai et al. [42] propose a meta-learning architecture
that learns meta-level knowledge across tasks and changes
its inductive bias via fast parametrization. Metric learning
based methods focus on learning embeddings that can be
recognized with a fixed nearest-neighbor, linear, or CNN
classifier. As the foundational work of optimization based
methods, MAML [20] learns a good weight initialization
for fast adaptation on a new task. The following works
Reptile [47], meta-transfer learning [48] and iMAML [49]
inherit MAML. Our approach is mostly related to MAML
that tries to learn a transferable weight initialization. However,
MAML relies on the assumption that new tasks share similar
distributions with the training tasks and the tasks are limited
to closed-set classification, thus being inappropriate to address
the unsupervised domain adaptation problem of open-set face
recognition.

III. METHODOLOGY

This section details the DMBN framework, which aims to
address the UDAL-FR problem.

A. Problem Description

For the UDAL-FR problem, we have two datasets: XS is the
source dataset with several mixed domains DS and XT is the
unlabeled dataset from the target domain DT . The label sets
of DS and DT are disjoint, and the data distributions between
DS and DT are different. For the target domain DT , we can
only access a limited number of unlabeled samples. The goal
is to enable the model trained on DS to fast adapt to DT with
limited unlabeled samples.

B. Preliminary of Batch Normalization

We first briefly review Batch Normalization (BN) [50],
which is originally proposed to reduce the internal covariate
shift by normalizing layer inputs. BN first normalizes each
feature independently within a mini-batch and then learns a
scale and shift for linear transformation. Formally, given an
input X ∈ R

N×C , where N is the batch size, the BN serves
as a function φB N to transform the input X into:

x̂k = xk − E [X·k]√
Var [X·k]+ �

,

yk = γk x̂k + βk, (1)

where k ∈ {1, . . . , n}, xk and yk are the input and output
of the BN layer respectively, X·k is the k-th column of the
input X , and γk , βk are the learnable affine parameters of
scale and bias. Note that we use the notation BN to represent
only the mean and variance statistics. The affine parameters are
not considered. BN guarantees that the distributions of layers’
input are fixed across different mini-batches. In optimization
like SGD, fixing the input distribution can greatly accelerate
the model convergence [50]. In the conventional testing phase,
the BN statistics obtained in training are fixed and used to
whiten inputs. Nevertheless, sharing BN statistics for both
source and target domains are inappropriate if domain shift
exists.

C. Decomposing

We decompose the dependency between the weight parame-
ters θ and the BN statistics BN in the training phase. A model
� can be defined as a parametrized function with θ and BN :
f (θ,BN ). Our goal is learning θ and BN independently
such that domain-invariant information is prone to store in
θ and domain-specific information tends to be represented by
BN . Given an input mini-batch Xi , the BN statistics BN i is
determined by θ and Xi : BN i = (φB N ◦ f )(Xi ; θ), where φB N

is the normalization function of BN. In vanilla training, θ and
BN i are tightly coupled since BN i relies on θ . This coupled
relation does not meet our requirement. We design to make
the weight parameters θ (i) robust across different BN , and
(ii) ready for fast adaptation to a target domain via generating
BN with limited samples from the target domain. To achieve
this, we propose to decompose θ and BN in the training phase.
Specifically, when fed with a mini-batch Xi , the corresponding
BN is not directly derived from θ and Xi . The decomposing
is formally represented by f (Xi ; θ,BN i )→ f (Xi ; θ,BN j ),
where BN j is from another input X j . The detailed illustration
is shown in Fig. 2.

D. Distribution-Shifted Task Sampling

Decomposing exactly cuts off the deterministic relation
between the input, weight parameters and the BN statis-
tics: (X , θ) → BN . To make the weight parameters θ
domain-invariant, we construct distribution-shifted tasks by
domain-aware sampling to synthesize the distribution shift
for training. The overview is shown in Fig. 3. Specifically,
in each training iteration, we first sample a batch of tasks
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Fig. 2. In vanilla training, the BN statistic Bi is determined by the input
mini-batch Xi , weight parameters θ and the BN function φB N . In our setting,
after calculating each Bi , we decompose Xi and Bi , and then compose the
mini-batch Xi with another B j . In other words, the decomposing operation

cuts off the deterministic relation between Xi
θ−→ Bi , and compose B j derived

from another input with Xi : (Xi ; θ,BN j ).

{Ti |i = 1, 2, 3 · · · } from source mixed domains DS . Each
task Ti consists of a meta-train batch X i

mtr a meta-test batch
X i

mte, sampled from the same domain Di ∈ DS . For each
meta-train or meta-test batch, we randomly sample B indi-
viduals. For each individual, we randomly sample two face
images, in which one as the gallery image and another one as
the probe. Note that X i

mtr and X i
mte are without overlapped

individuals. Since the meta-train and meta-test batches are
sampled from the same domain, the distribution shift between
them is limited. To enlarge the gap, we randomly shuffle
the meta-train batches across different tasks. By doing so,
the meta-train batch X i

mtr of the domain Di corresponds to a
random meta-test batch X j

mte of D j , shown in Fig. 3 (c). Once
a batch of distribution-shifted tasks are built, we decompose
the deterministic relation between the meta-train batch and its
BN statistics: X i

mtr → Bi
mtr , and then compose the weight

parameters, BN statistics and the input: {X i
mte; θ,B j

mtr}.

E. Learning Representation Across BNs by Hard-Pair Loss

To learn discriminative representations/features for each
task, we adapt the hard-pair attention loss in MFR [51]
to fit our setting. The hard-pair attention loss focuses on
optimizing hard positive and negative pairs to enforce the
feature (the activations of the last global average pooling
layer) more discriminative. Since we decompose the weight
parameters θ and the BN statistics BN , the face features of
the meta-test batch Xmte cannot be extracted directly. We first
calculate BNmtr = (φB N ◦ f )(Xmtr ; θ) using the meta-train
batch Xmtr , then extract the gallery and probe feature of
the meta-test batch: Fmte

g = f (Xmte
g ; θ,BNmtr ) ∈ RB×C ,

Fmte
p = f (Xmte

p ; θ,BNmtr ) ∈ RB×C , where C is the dimen-
sion of the extracted feature. l2 normalization is performed on
each row of the features. The similarity matrix of the meta-test
batch is next constructed by Mmte = Fmte

g Fmte
p

T . For the
meta-train batch, the similarity matrix Mmtr is constructed
regularly. Different from [51], we use two proportion factors
δp and δn to filter hard positive and negative pairs. δp and
δn can directly reflect the degree of difficulty of positive and
negative pairs, and also guarantee the number of hard pairs is
balanced. Then, we sort the positive and negative pairs by the

similarity score and optimize the hardest pairs. The loss on
the meta-train or meta-test batch is thus formulated as:

Lhp= 1

2|P |
∑

i∈P
‖Fgi−Fpi‖22 −

1

2|N |
∑

(i, j )∈N
‖Fgi − Fp j ‖22,

(2)

where P is the indices of top hardest δp · B positive pairs and
N is the indices of top hardest δn · (B2 − B) negative pairs.

F. Domain Labels by Balanced k-Means

Distribution-shifted task sampling in Section III-D relies
on domain labels of training datasets. However, in many
real-world applications, the domain label is not always avail-
able or is difficult to label. As we know, the domain is
affected by many factors like age, race, expression, external
environmental variations [53] etc. To address this problem,
we propose to divide domains based on the similarity of
visual features automatically. A straightforward method is k-
means. However, in vanilla k-means, the size of each cluster is
random, which is harmful to the hard pair mining. In training,
the hard-pair loss (see Section III-E) relies on the size B and
two difficulty factors δp and δn to filter and balance the hard
pairs. For each cluster with size B , δn · (B2 − B) negative
pairs and δp · B positive pairs are selected out for training.
The randomness of size B brought by vanilla k-means will
make the number of hard pairs inconsistent across different
clusters, thus making the optimization unstable. To alleviate
it, we improve the vanilla k-means by ensuring cluster size
to be similar in the whole clustering procedure. We name it
balanced k-means. The core of the balanced k-means includes:
(i) Initialization. Initialize centers by k-means++ [52], sort
the features by the absolute value of the distance to their
farthest center minus the distance to their closest candidate
center in descending order, and then assign each feature to
its closest candidate center/cluster until the cluster is full.
(ii) Adjustment. During each iteration, the feature prefers to be
exchanged if the absolute value of the distance to its current
assigned center minus the distance to its best candidate center
is large. Specifically, we sort the features based on the absolute
difference value in descending order, then exchange two fea-
tures if the exchange brings improvement, while keeping the
same cluster size via maintaining a candidate list. The detailed
algorithm is described in Algorithm 1. Balanced k-means is
directly incorporated into the DMBN framework to assign
pseudo-domain labels within each batch. Note that the objec-
tive of balanced k-means is to cluster the samples into visually
discriminative groups evenly for building distribution-shifted
tasks, not to predict the specific domain labels. In several
unbalanced conditions, the domain labels by balanced k-means
may not correspond to some manually defined ones (e.g., race
labels in source domains), but may be clustered by other
semantic attributes. For example, Caucasians may dominate
the dataset distribution, but the Caucasian faces can be further
clustered into different groups by the pose or age attribute,
which is sound for constructing distribution-shifted tasks.
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Fig. 3. The overview of distribution-shifted task sampling. Given N source mixed domains {Di |i = 1, 2, 3, · · · }, we first sample a batch of tasks {Ti |i =
1, 2, 3, · · · }, and each task consists of a meta-train X i

mtr and meta-test batch X i
mte from the same domain (or pseudo-domain generated by balanced k-means).

We then randomly shuffle the meta-train batches across tasks to enlarge the distribution bias between meta-train and meta-test. Note that after shuffling,
the meta-train and meta-test batches may be still from the same domain (e.g., the second task T2 in the figure). Finally, we decompose the weight parameters
θ and BN statistics BN for training.

G. Meta-Optimization

This section details the optimization procedure to improve
the domain-adaptive ability of the model. The whole optimiza-
tion procedure can be referred in Algorithm 2.

1) Meta-Train: In each task, the meta-train batch Xmtr

contains B paired images Xmtr . We conduct the adapted
hard-pair attention loss as follows:

Lmtr = Lhp(Xmtr ; θ,BNmtr ), (3)

where θ is the weight model parameters, and the BN statistics
BNmtr is derived with θ and Xmtr . The back-propagated
gradient is denoted as ∇θLmtr . This step is similar to the con-
ventional training since BNmtr corresponds to the input Xmtr .

2) Meta-Test: In each task, the model is also tested on
the meta-test batch, which has a distribution shift with the
meta-train batch. It simulates the real-world adaptation so
as to make the learned weight parameters more adaptive to
an unknown domain. Specifically, the meta-train batch with
limited samples represents the local distribution of a domain,
while the meta-test simulates the unseen distribution to be
evaluated. Since we decompose the weight parameters θ and
the BN statistics BNmte, the meta-test loss is conducted with
another BNmtr :

Lmte = Lhp(Xmte; θ,BNmtr ), (4)

3) Overall Objective: To combine the optimization on the
meta-train and meta-test, we build the final objective as:

arg min
θ

γLmtr (θ)+ (1− γ )Lmte(θ), (5)

where γ weights the meta-train and meta-test losses. This
objective can be understood as: optimize the weight para-
meters θ , not only to fit the meta-train domain, but also
learn to fast adapt to the distribution-shifted meta-test domain
with limited samples. From another view, the second term of
Eqn. 5 can be regarded as an extra regularization to encourage
θ more robust across domains. Finally, the learned weight
parameters θ can well adapt to a target domain, via only
updating BN with limited samples. The overview of DMBN
is described in Algorithm 2.

H. Fast Adaptation to Target Domain

To adapt to a new target domain, the model trained by
DMBN only needs to update the BN statistics with limited

unlabeled samples from the target domain. In the adaptation
phase, given a batch of m unlabeled samples, the global mean
μi and variance σ 2

i of the BN statistics can be estimated as
follows:

ni = ni−1 + m,

δ = μ̂− μi−1,

μi ← ni−1 · μi−1 + m · μ̂
ni

,

σ 2
i ←

σ̂ 2 + σ 2
i−1 + δ2 · ni−1 · m

ni
, (6)

where û and σ̂ 2 are the mean and variance estimation of
the current input mini-batch, ni is the aggregated number
of samples from the past iterations. Note that when i = 0,
ni , μi and σ 2

i are initialized to 0, 0 and 1, respectively.
The estimation follows the online parallel algorithm proposed
in [54]. This implementation is numerically stable and can
fast estimate the global mean and variance with limited GPU
memory.

IV. EXPERIMENTS

To demonstrate the efficacy of DMBN, we design two
UDAL-FR benchmarks for evaluation and conduct several
experiments on the proposed benchmarks.

A. UDAL-FR Benchmarks and Protocols

The first UDAL-FR-I benchmark assumes that domain
labels of source mixed domains are accessible, while the sec-
ond UDAL-FR-II benchmark assumes not. The setting of
UDAL-FR-II is more challenging than UDAL-FR-I.

1) Training Datasets: In real-world scenarios, a large base
dataset is usually used to pre-train a model. The pre-trained
model may generalize poorly on target scenarios, thus being
required to perform adaptation. To build such a benchmark,
we use Ms-Celeb-1M-NR as the base dataset and RFW [55]
as our source training domains following [51]. Ms-Celeb-1M-
NR indicates Ms-Celeb-1M without RFW, since RFW overlaps
Ms-Celeb-1M [13] with a few individuals. In Ms-Celeb-
1M-NR, the overlapped individuals with RFW are removed
according to the individual keyword. Ms-Celeb-1M-NR is
thus independent of source training domains. Specifically,
the source training domain RFW [55] consists of four sub-
sets, namely Caucasian, Asian, African and Indian. For each
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Algorithm 1 The Algorithm Overview of Balanced k-
Means

1 Function BalancedKMeans (F , k) :
2 Let {ci |i = 1, · · · , k} be initialized cluster centers by

k-means++ [52];
// Initialization

3 Let N be the total number of features in F and M be the
desired size of each cluster: M = N/k;

4 Sort {Fi |i = 1, · · · , N} by the absolute value of the
distance to the farthest center minus the distance to the
closest candidate center in descending order:∣∣‖Fi − c j‖2 − ‖Fi − cl‖2

∣∣, where
j = arg max j ‖Fi − c j‖2, l = arg min l ‖Fi − cl‖2;

5 for each Fi ∈ F do
6 If cluster cl is not full, assigning Fi to cluster cl ;
7 Otherwise, assigning Fi to the first not-full cluster

sorted by the absolute difference;
8 end
// Adjustment

9 Update centers by the current assignment;
10 while ite ≤ max_iterations do
11 Re-calculate the assignment by current centers;
12 Sort {Fi |i = 1, · · · , N} by the absolute difference

between the distance to the current and best assigned
center in descending order;

13 Initialize an empty list: candidate;
14 for each Fi ∈ F do
15 Let moved_ f lag be false;
16 for Fj ∈ candidate do
17 if exchange the center assignment between Fi

and Fj gives smaller inertia then
18 Exchange and set moved_ f lag true, break;
19 end
20 end
21 Append Fj to candidate if moved_ f lag is false;
22 end
23 Update centers by the current assignment;
24 end
25 Output: k balanced domains

subset, we select about 2K individuals as a source domain
for training following [51]. Detailed statistics of the source
training domain are shown in Table I.

1) Training Datasets: CASIA NIR-VIS 2.0 [56] is a large
and challenging face dataset across NIR and VIS spectrum.
We follow the standard protocol defined by [56] to use
6,566 images of 358 individuals for testing. 8,749 samples of
the training set are made unlabeled for the sampling and fast
adaptation. Note that there are 10 folds and we only show the
number of individuals and images of the first fold in Table II.
Other folds have similar statistics and we report the average
value of 10 folds. HFB [57] is an older but also widely used
dataset across NIR and VIS spectrum. Following [58], we use
2,918 images of 102 subjects for testing. 2,157 samples of the
training set are made unlabeled for the sampling and fast adap-
tation. Oulu-CASIA NIR-VIS [59] consists of 80 subjects

Algorithm 2 The Algorithm Overview of DMBN
Input: Source mixed domains: DS .
Init: A pre-trained model f (θ) with the weight

parameters θ , the meta-train and meta-test
batch-size of B , and hyper-parameters β, γ .

1 for ite in max_iterations do
2 Init the gradient gθ as 0;

// Sample a batch of tasks
3 if the domain labels are known then
4 Init N as the number of source domains DS ;
5 for each Di ∈ DS do

// Sampling a task
6 Sample B paired images from B individuals of

Di for meta-train batch X i
mtr ;

7 Sample B paired images from other B
individuals of Di for meta-test batch X i

mte;
8 end
9 else

10 Init N as the cluster number k of balanced
k-means;

11 Sample 2k · B samples X from DS and extract
features F ;

12 Split X by domain labels returned from
BalancedKMeans (F , k) into meta-train X i

mtr and
meta-test batches X i

mte;
13 end

// Construct distribution-shifted
tasks

14 Shuffle the indices of the sampled meta-train batches:
y = shuffle({1, 2, · · · , N});

15 for i = 1→ N do
16 Calculate BN statistics of each meta-train batch:

BN i
mtr = (φB N ◦ f )(X i

mtr ; θ);
17 end

// Decomposing and composing
18 for i = 1→ N do
19 Meta-train:
20 Lmtr = Lhp(X i

mtr ; θ,BN i
mtr );

21 Meta-test:
22 j = y(i);

23 Lmte = Lhp(X i
mte; θ,BN j

mt r);
24 Gradient aggregation:
25 gθ ← gθ + γ∇θLmtr + (1− γ )∇θLmte;
26 end
27 Meta-optimization:
28 Update θ ← θ − β

N gθ by SG D;
29 end

with six expression variations (anger, disgust, fear, happiness,
sadness and surprise). Following [60], we adopt 1,920 images
of 20 subjects for testing. 5,760 samples of the training set
are made unlabeled for the sampling and fast adaptation.
MultiPIE is adopted for cross-pose evaluation following [51].
1,690 images of 237 individuals are selected for testing.
18,704 unlabeled samples without overlapped individuals
are for the sampling and fast adaptation. MeGlass [61] is
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TABLE I

THE STATISTICS OF SOURCE DOMAINS DS IN UDAL-FR-I AND
UDAL-FR-II BENCHMARKS. Dm. INDICATES DOMAIN LABEL

TABLE II

THE STATISTICS OF TARGET DOMAINS DT . WE RE-ORGANIZE THE
DATASETS TO ENSURE THE UNLABELED IMAGES AND TESTING

IMAGES ARE DISJOINTED WITHOUT OVERLAPPED INDIVIDUALS

used for evaluating eyeglass-robust face recognition. We split
the original 1,710 individuals into two parts: 6,040 images
of 1,510 individuals for testing, and the remaining 19,660 unla-
beled samples of 200 individuals for the sampling and fast
adaptation. Public-IvS [62] considers the ID vs. Spot face
recognition. We select 4,241 images of 1,012 individuals for
testing and the remaining 1,159 unlabeled samples of 200 indi-
viduals for the sampling and fast adaptation. WebCarica-
ture [63] is originally proposed for caricature face recognition.
We follow the unrestricted face verification protocol in [63]
for testing. Specifically, 1,094 images of 26 individuals are for
testing and 10,924 unlabeled samples of 226 individuals are
for the sampling and fast adaptation. The testing protocols
of CASIA NIR-VIS 2.0, HFB, Oulu-CASIA NIR-VIS and
WebCaricature are the same as the original ones. The testing
protocols of MultiPIE, MeGlass and Public-IvS are slightly
different from [51] since a portion of samples from target
domains are made unlabeled for fast adaptation. Detailed
statistics of testing datasets are shown in Table II.

3) Benchmark Protocol: UDAL-FR-I consists of the source
domain dataset RFW with known domain labels for Caucasian,
Asian, African and Indian and seven target datasets. While in
UDAL-FR-II, the domain information in the source domain
dataset is unknown. This is the only difference between
UDAl-FR-I and UDAl-FR-II. UDAL-FR-II is more consistent
with real-world scenarios and also more challenging than
UDAL-FR-I.

4) Evaluation Method: During testing, we extract each
face image’s feature and its flipped one, then concatenate
them to construct the final representation. Cosine similarity
is used as the measured score. We use the receiver operating
characteristic (ROC) curve and Rank-1 accuracy to evaluate
the performance. For ROC, we report the verification rate (VR)
at low false acceptance rates (FAR) e.g., 1%, 0.1%, 0.01%, and

0.001%. For Rank-1 accuracy, each probe image is matched
to all gallery images. If the top-1 return is the same indi-
vidual, the matching is correct. For WebCaricature, we only
report VRs at FAR = 1% and 0.01% following the original
verification protocol [63].

5) Adaptation Setting: For each target domain DT
i , we ran-

domly sample a limited number of samples, e.g., 16, 32,
64 or 1,000 samples from unlabeled images in DT

i for the
unsupervised domain adaptation. We repeat the sampling ten
times independently and report the mean value. In adaptation,
the mini-batch size is set to 64. If the number of target samples
is less than 64, we directly estimate the BN statistics BN com-
posing of the mean and variance within a batch. Otherwise,
we adopt the online algorithm in Section III-H to estimate
BN . Once we acquire BN , we use the weight parameters θ
and BN to extract face representations and perform testing.

B. Implementation Details

Our experiments are based on PyTorch [64]. The random
seed on CPU and GPU is fixed as 2,020 in all comparative
experiments for fair comparisons. We use a 28-layer ResNet as
the backbone, with about 129M MACs and 4.6M parameters.
The feature/representation dimension is 256. We pre-train
our model on Ms-Celeb-1M-NR using CosFace [24]. The
input face image is aligned, then cropped and resized to
120 × 120. The input batches are normalized by subtracting
127.5 and being divided by 128. The optimization step-size β
is initialized to 0.0001. The weight γ balancing the meta-train
and meta-test losses is set to 0.5. The batch-size B is 64.
During training, the step-size β is decayed by 0.5 every 1K
steps, and the total iterations are 8K. The whole training time
is about 8 hours on a TITAN Xp GPU. δp is set to 0.4 and
δn is 0.01. k is set to 4 for the balanced k-means. In meta-
optimization, we choose SGD to optimize the network. The
weight decay is 0.0005, and the momentum is 0.9.

C. Comparative Experiments With Different Numbers of
Samples and Baselines

1) Settings: We evaluate our method DMBN with different
numbers of unlabeled samples and compare it to two baselines.
The numbers contain four options: 16, 32, 64 and 1,000.
The baselines include: (i) Agg: the model pre-trained on the
aggregation of MS-Celeb-1M-NR and source domains using
CosFace [24]. We use the Agg model as a simple baseline
for comparison. (ii) Base: the model fine-tuned on source
domains by the hard-pair attention loss. We use Base as a
strong baseline for comparison. We report the VRs at low FAR
1%, 0.1%, 0.01%, 0.001% and the Rank-1 accuracy. Except
for the Agg and Base model, we repeat the experiments ten
times independently and report the mean value.

2) Results: The comparative results are shown in Table III.
From the results, we can make the following observations:
(i) The baseline models of Agg and Base are strong in general,
but do not perform well at some low FARs. For example,
the Agg or Base model only achieves 47.55% or 66.31%
VR on HFB at FAR = 0.001% and 47.13% or 55.62% VR on
WebCaricature at FAR=1%. This is possibly because the bias
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TABLE III

COMPARISON RESULTS WITH DIFFERENT NUMBERS OF UNLABELED SAMPLES AND TWO BASELINES ON UDAL-FR-I. EXCEPT FOR Agg AND Base,
WE REPORT THE MEAN VALUE OF TEN INDEPENDENT EXPERIMENTS. #TARGET SAMPLES INDICATE THE NUMBER OF UNLABELED SAMPLES

FROM THE TARGET DOMAIN. WE HIGHLIGHT THE BEST RESULT OF EACH TARGET DATASET/DOMAIN

between source and target domains is too large. In compar-
ison, our method DMBN surpasses these two baselines by
a significant margin among all seven target domains with
only a limited number of unlabeled samples. Specifically, our
DMBN improves the VR over 10% compared to baselines on
the most challenging domain of WebCaricature. (ii) Generally,
our method DMBN is robust to different numbers of samples.
When the number of target samples reduces from 1,000 to
32 or 16, the performance drop is little, and the performance
improvement over Base is still apparent. For example, when
the number reduces from 1,000 to 16 on CASIA NIR-VIS 2.0,
the VR drops less than 1% at FAR = 0.01%, but still improves
5.72% over the Base model.

D. Comparative Experiments to UDA Competitors With Very
Limited Target Samples

1) Settings: To evaluate the effectiveness of DMBN,
we compare DMBN to other competitors of UDA methods
with a very limited number of target samples, e.g., 16 samples
on all target domains, which is a very challenging setting.
The UDA competitors include: (i) AdaBN (Agg) and AdaBN
(Base): the Agg and Base models adapted to target domain
via AdaBN [19]. (ii) MMD (Base): the Base model trained
with the Maximum Mean Discrepancy (MMD) regularization.
We adopt two MMD kernels for comparisons: the linear kernel
MMD-Linear (Base) and the multiple (five) gaussian kernels
MMD-Gaussian (Base) following [14]. (iii) Pseudo labeling
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Fig. 4. Comparative results with other UDA competitors on CASIA NIR-VIS
2.0, under the UDAL-FR-I benchmark. From left to right, we show the
VRs at FAR = 0.01% with different numbers of target samples, e.g., 32,
64 and 1,000 samples. Our DMBN shows better performance than competitors
obviously.

+ Imp.: the model trained with pseudo-labeled samples of
the target domain. NANN [17] is first adapted to assign
pseudo-labels to unlabeled target samples, then the model is
fine-tuned by weight-imprinted method [65]. Note that we
cannot generate enough hard pairs with limited target samples,
thus fine-tuning with the hard-pair attention loss is infeasible.

2) Results: From the comparative results in Table IV and
Table III, we can conclude: (i) Overall, our method DMBN
achieves the best results on seven target domains compared to
all other UDA competitors. (ii) The improvement of AdaBN
is limited for the Agg and Base models. On HFB, the AdaBN
(Agg) or AdaBN (Base) model even brings negative adapta-
tion when FAR is 0.001%. Generally, AdaBN improves the
adaptation performance, but is unstable and seems not very
effective with very limited samples. (iii) The multi-gaussian
kernels of MMD perform better than the linear kernel, but the
performance gain is small on all target domains. (iv) Pseudo
labeling based methods perform badly when the target num-
ber is 16. It is possibly because fine-tuning on the small
scale of noised data leads to overfitting. (v) On the most
challenging domain of WebCaricature, the performance of
DMBN surpasses other UDA competitors over 6.8% at
FAR = 1% and 2.2% at FAR = 0.1%.

E. Comparative Experiments to UDA Competitors With
Sufficient Samples

Our method DMBN beats other UDA competitors by a large
margin when the target number is only 16 (Section IV-D).
To further demonstrate the efficacy of DMBN, we perform a
comparison on CASIA NIR-VIS 2.0 across different numbers
of target samples. The results in Fig. 4 and Table IV show:
(i) Other UDA methods improve the performance benefiting
from the increased number of samples, e.g., MMD-Gaussian
(Base) improves the VR from 80.69% (16 samples) to 83.8%
(1,000 samples). (ii) DMBN still performs better than other
UDA competitors obviously. For example, DMBN is 4%
higher than the best MMD-Gaussian (Base) model.

F. Comparison Between UDAL-FR-I and UDAL-FR-II

The UDAL-FR-II benchmark assumes the domain labels
of source domains are unavailable, which is more consistent
with the real-world scenarios and is thus more challeng-
ing than UDAL-FR-I. For UDAL-FR-II, our DMBN incor-
porates the proposed balanced k-means module to assign
pseudo-domain labels within each mini-batch to perform
the distribution-shifted task sampling. We compare DMBN
under UDAL-FR-I and UDAL-FR-II benchmarks with dif-
ferent numbers of target samples in Table V. The results
demonstrate that the overall performance of UDAL-FR-II
only drops slightly compared to UDAL-FR-I. For example,
on CASIA NIR-VIS 2.0, the VR gaps are less than one percent
across different numbers of target samples when FAR =
0.01%: 85.81% vs. 84.9% (16 samples), 85.93% vs. 85.05%
(32 samples), 86.01% vs. 85.46% (64 samples) and 86.8%
vs. 85.97% (1,000 samples). It is worth noting that DMBN
with balanced k-means (UDAL-FR-II) even performs better
than DMBN with source domain labels (UDAL-FR-I) on
WebCaricature. It is likely that balanced k-means produces
more varieties of distribution shifts than source domain labels
and such varieties help improve the adaptation on the target
domain. The overall results demonstrate that our DMBN is
robust even without the domain information, and the balanced
k-means is effective for DMBN.

G. Comparative Experiments With Supervised Competitors

We compare our unsupervised DMBN to other supervised
competitors on Oulu-CASIA NIR-VIS, which has a larger
illumination and expression gap to source domains. The super-
vised competitors, e.g., WCNN [66], DVR [67], use labeled
samples from the target domain for training. The results are
shown in Table VI. We find our results are competitive to
supervised methods. Our performance even surpasses most of
other supervised methods, e.g., Light CNN [68], IDR [69],
DVR [67], ADFL [70] and WCNN [66], which use all
5,760 target labeled samples for training. The results show
that our unsupervised DMBN is a potential alternative for
supervised methods.

H. Ablation Study

1) Domain-Shuffling: During training, we randomly shuffle
the meta-train batches across tasks to enlarge the distribu-
tion shift between meta-train and meta-test. To evaluate its
contribution, we perform ablation experiments on CASAI
NIR-VIS 2.0 with five settings: (i) Randomly sampling without
using source domain labels or estimated domain labels by
balanced k-means. It means the samples are all randomly
sampled. (ii) Using estimated domain labels by balanced
k-means without domain shuffling. (iii) Using source domain
labels without domain shuffling. (iv) Using estimated domain
labels by balanced k-means with domain shuffling. (v) Using
source domain labels with domain shuffling. The results
in Fig. 5 show: with different numbers of target samples
as input, domain shuffling improves the performance with
source domain labels or estimated domain labels by balanced
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TABLE IV

COMPARISON RESULTS WITH OTHER UDA COMPETITORS WITH 16 TARGET SAMPLES, UNDER THE UDAL-FR-I BENCHMARK. WE REPORT THE
MEAN VALUE OF TEN INDEPENDENT EXPERIMENTS. #TARGET SAMPLES INDICATE THE NUMBER OF UNLABELED SAMPLES FROM THE TARGET

DOMAIN. WE HIGHLIGHT THE BEST RESULT OF EACH TARGET DATASET/DOMAIN EXCEPT FOR 100% VR AND RANK1 ACCURACY

k-means. For example, when the number of target samples
is 32, the verification rate at FAR=0.001% improves 2.7%
with source domain labels and 3% with estimated domain
labels by balanced k-means. Besides, the performance of
domain shuffling with source or estimated domain labels
surpasses the random sampling.

2) The Impact of γ : In Eqn. 5, the hyper-parameter γ
weights the meta-train and meta-test losses. To analyze the
impact of γ , we conduct ablative experiments in Fig. 6. The
results indicate that the gradients from the meta-train and
meta-test should be roughly equally weighted in optimization.
A proper value, e.g., 0.4, 0.5, or 0.6, gives satisfied results.

3) Comparison Between Vanilla and Balanced k-Means:
When domain labels are unavailable in UDAL-FR-II, DMBN
adopts the balanced k-means to assign pseudo-domain labels
within batches for training. Compared to the vanilla k-means,
the balanced k-means can produce k clusters with the same

size. As shown in Fig 8, the vanilla k-means tends to group
the “Asian” and “Caucasian” domains together, making the
clustering results unbalanced. The balanced k-means shows
a good separation and balances the outputted cluster size
simultaneously. Besides, we compare the quantitative results
in Table VII. The results show that the balanced k-means
performs better than the vanilla one for DMBN. For example,
when FAR = 0.01% and the number of target samples is 32,
the VR of the balanced k-means is 85.05%, surpassing the
vanilla one 82.55% by a large margin.

Balanced k-means on unbalanced source domains. To fur-
ther verify the effectiveness of balanced k-means with the
unbalanced distribution, we conduct comparative experiments
on unbalanced source domains D′S in Fig. 7. D′S is built by
adjusting the race distribution of source datasets to be consis-
tent with the distribution of Ms-Celeb-1M given by [55]. After
the adjustment, the training ids/images of each dataset from
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TABLE V

COMPARISON RESULTS OF DMBN BETWEEN UDAL-FR-I AND
UDAL-FR-II BENCHMARKS AT FAR = 0.01%. Dm. INDICATES

DOMAIN INFORMATION. THE METHOD DMBN w/ Dm.
CORRESPONDS TO UDAL-FR-I AND DMBN w/o Dm.

(k = 4) CORRESPONDS TO UDAL-FR-II. k IS THE
CLUSTER NUMBER OF BALANCED k-MEANS

AND SET 4 HERE

TABLE VI

COMPARATIVE RESULTS WITH OTHER SUPERVISED METHODS ON

OULU-CASIA NIR-VIS, UNDER THE UDAL-FR-II BENCHMARK.
DOMAIN LABELS OF TRAINING DOMAINS ARE UNAVAILABLE IN
UDAL-FR-II.k IS THE CLUSTER SIZE AND IS SET 4 HERE. #Ts.

INDICATES THE NUMBER OF TARGET SAMPLES. NOTE THAT

OTHER COMPETITORS ARE ALL SUPERVISED METHODS
AND ARE TRAINED WITH ABOUT 5,760 LABELED

SAMPLES. Lr. INDICATES LOW-RANK

the unbalanced D′S are: 2,958 ids/10,185 images (Caucasian),
256 ids/1,867 images (Asian), 562 ids/3,748 images (African)
and 101 ids/666 images (Indian). Obviously, Caucasians domi-
nate the distribution of D′S . In training, the domain information
is unknown following the UDAL-FR-II protocol. The compar-
ative results in Fig. 7 show that the balanced k-means outper-
forms vanilla k-means even on unbalanced source domains.

4) Impact of k: k is a hyper-parameter of the balanced
k-means, which represents the desired number of clusters.
Once set, k is fixed during training. The ablation results are
shown in Fig. 9. When k becomes larger, e.g., greater than 6,
the performance drops rapidly on CASIA NIR-VIS 2.0. This
is possibly because the distribution shifts across clustered

Fig. 5. The ablation results of domain shuffling on CASIA NIR-VIS 2.0 at the
low FAR = 0.001% with different target samples. ds. is the domain shuffling
operation. Five settings are compared: (i) random sampling means sampling
without using source or estimated domain labels. (ii) w/o ds. (balanced k-
means) means not using domain shuffling with the estimated domain labels by
balanced k-means. (iii) w/o ds. means not using the domain shuffling. (iv) w/
ds. (balanced k-means) indicates the domain labels are estimated by balanced
k-means. (v) w/ ds. uses the source domain labels for domain shuffling.

Fig. 6. The ablation results on CASIA NIR-VIS 2.0, under the UDAL-FR-I
benchmark, with different γ . The number of target samples is 64.

TABLE VII

THE COMPARATIVE RESULTS ON CASIA NIR-VIS 2.0 BETWEEN THE

VANILLA K-MEANS AND BALANCED K-MEANS. #Ts. INDICATES THE

NUMBER OF AVAILABLE SAMPLES IN THE TARGET DOMAIN

domains get smaller when k gets larger. In Fig. 9, when
considering the overall performance (the mean performance
of all FARs), we set k = 4.

I. Discussions

1) Sampling of Target Samples: In the adaptation phase,
the sampling of target samples is completely random, which
may sample an unbalanced distribution from the target domain.
In comparison, by-individual sampling is balanced to some
degree. For example, when sampling 1,000 samples from
CASIA NIR-VIS 2.0, the by-individual sampling evenly sam-
ples about three samples from each individual. The compar-
ative results in Fig. 10 show that the balanced by-individual
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Fig. 7. The comparative results of CASIA NIR-VIS 2.0 on unbalanced source
domains D′S . The vanilla k-means and balanced k-means are compared.

Fig. 8. The t-SNE visualizations of the clustering results by the vanilla
k-means and balanced k-means. The left one is with ground-truth labels,
the middle one is vanilla k-means and the right is balanced k-means.

Fig. 9. Ablation results on CASIA NIR-VIS 2.0, with different k for balanced
k-means, at FAR = 1%, 0.1%, 0.01% and 0.001%, under the UDAL-FR-II
benchmark. The number of target samples is 64.

Fig. 10. The comparative results on CASIA NIR-VIS 2.0, under the
UDAL-FR-I benchmark, with different sampling of the target samples.

sampling is slightly better than by-sample. In other words, our
DMBN is robust to unbalanced sampling.

2) Updating Momentum of BN : In the adaptation phase,
we directly use target samples to estimate the BN statistics
BN , ignoring the original BN of the trained model. In other
words, the momentum is equivalent to 0 in our setting.
Fig. 11 compares the effect of different momentums on the

Fig. 11. The performance on HFB, under the UDAL-FR-I benchmark, with
different momentums to update BN .

TABLE VIII

COMPARISON OF DG AND UDA METHODS ON CASIA NIR-VIS 2.0

verification rate (VR) of HFB. We can observe that when the
momentum gets larger, the performance gets worse, and the
zero momentum performs best. These results indicate that
the BN of the original model hampers the adaptation.

3) Computation Cost of Balanced k-Means: The time com-
plexity of vanilla k-means is O(T dn2) if considering the
distance matrix calculation, where T is the number of iteration,
d is the feature dimension and n is the number of input
samples. In comparison, the time complexity of balanced
k-means is also O(T dn2). The extra computation complexity
brought by balanced k-means is O(T n2) in the adjustment
phase, which has the same magnitude as the overall com-
plexity. Theoretically, our balanced k-means imposes only a
small computation overhead over vanilla k-means. Comparing
vanilla and balanced k-means when the whole batch size
is set 1,024, the time is 0.156s vs. 0.185s, respectively.
The practical results also show the computation overhead of
balanced k-means is small.

4) Adaptation Efficiency: To perform adaptation, the model
learned by DMBN only needs to update the BN with limited
samples from the target domain. The speed of adaptation is
thus very fast. For example, the adaptation only spends 7.67ms
(217ms) on GPU or 0.21s (16s) on CPU with 16 (1,000) sam-
ples as input. In comparison, other UDA methods, e.g., MMD
or pseudo labeling based methods, need gradient updating and
take up at least several minutes or hours to perform adaptation.

5) Comparison Between UDA and DG Methods: As a
highly related direction to unsupervised domain adaptation
(UDA), domain generalization (DG) assumes that the data
of target domain is inaccessible during training. The UDA
and DG methods are rarely compared before. We compare
our unsupervised DMBN with the other two DG methods on
CASIA NIR-VIS 2.0 in Table VIII. From the results, we can
see that DMBN outperforms DG methods, especially at the
low FAR = 0.01%.
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V. CONCLUSION

In this paper, we highlight the challenging problem
of Unsupervised Domain Adaptation for Face Recognition
with Limited samples (UDAL-FR), which usually exists in
real-world scenarios. To address it, we propose a novel
meta-learning based framework by decomposing the model
into the weight parameters θ and the BN statistics BN , named
Decomposed Meta Batch Normalization (DMBN). DMBN
trains the network such that domain-invariant information is
prone to store in θ and domain-specific knowledge tends to be
represented by BN . Once trained, the model can fast adapt to
the target domain via only updating BN with limited samples
from the target domain. Extensive experiments on two newly
defined UDAL-FR benchmarks validate the efficacy of our
proposed DMBN. We believe the UDAL-FR problem is of
great importance for real-world face recognition applications,
and hope our method paves an avenue for future works.
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