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Abstract

Benefiting from publicly available databases, face anti-
spoofing has recently gained extensive attention in the aca-
demic community. However, most of the existing databases
focus on the 2D object attacks, including photo and video
attacks. The only two public 3D mask face anti-spoofing
database are very small. In this paper, we release a
multi-modality 3D mask face anti-spoofing database named
3DMA, which contains 920 videos of 67 genuine subjects
wearing 48 kinds of 3D masks, captured in visual (VIS)
and near-infrared (NIR) modalities. To simulate the real
world scenarios, two illumination and four capturing dis-
tance settings are deployed during the collection process.
To the best of our knowledge, the proposed database is cur-
rently the most extensive public database for 3D mask face
anti-spoofing. Furthermore, we build three protocols for
performance evaluation under different illumination con-
ditions and distances. Experimental results with Con-
volutional Neural Network (CNN) and LBP-based meth-
ods reveal that our proposed 3DMA is indeed a chal-
lenge for face anti-spoofing. This database is available at
http://www.cbsr.ia.ac.cn/english/3DMA.html. We hope our
public 3DMA database can help to pave the way for further
research on 3D mask face anti-spoofing.

1. Introduction
Recently, the face recognition [9, 19, 12, 6] research

develops rapidly and has been an extremely reliable tech-
nology in a variety of challenging applications. However,
the various presentation attacks threaten the existing face
recognition systems. Nowadays, the threat from the spoof-
ing attacks, such as face images, videos or 3D masks of le-
gitimate users, has been realized. And the face spoofing de-
tection (also known as presentation attack detection, PAD)
has achieved a lot of attentions [23, 1, 7].
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(a) VIS image of a mask (b) NIR image of a mask

(c) VIS image of a real subject (d) NIR image of a real subject

Figure 1: VIS and NIR images of a mask and a real subject.

Considering the diversity of the fake faces attacks, the
types of presentation attacks and the fake subjects should
become as many as possible in our research of counter-
measures. Meanwhile, the anti-spoofing system should be
robust to environmental variations, such as lighting con-
ditions, distance variation, etc. However, the public face
anti-spoofing databases and the recent work about face anti-
spoofing mostly focus on 2D attacks (photos, video play-
backs). Due to the high cost of 3D mask, most public
databases, such as the CASIA FASD database [23], and
the OULU-NPU database [1], have no concern about the
problem from the mask attack. Meanwhile, the quantity
of the recorded mask subjects in public databases is lim-
ited. The limited number of fake subjects limits the perfor-
mance and application environment of those proposed algo-
rithms. Besides, the anti-spoofing systems which work with
the infrared spectrum are usually invariant to illumination
changes in the environment, and also are naturally resistant



to many 2D spoofing attacks [3]. However, most existing
databases only cover one modality (visual spectrum), there
are just a few databases cover multi-spectrums [5].

We address these problems above and collect a new
3D mask face anti-spoofing database covering visual (VIS)
spectrum and near-infrared (NIR) spectrum. The database
contains 920 video samples collected from 67 genuine sub-
jects and 48 masks. We consider two lighting and four
distance settings to evaluate the generalization of differ-
ent methods. Moreover, we also provide three protocols
for evaluation as follows. All the subjects in the collected
database are divided into the training set, validation set, and
test set. Wherein, the test set contains 18 genuine subjects
and 18 3D masks, the validation set includes 17 genuine
subjects and 17 3D masks, and the training set includes the
others. We mainly use the LBP based method and the end to
end CNN-based method to report the baseline performance.

The rest of this paper is organized as follows. Section
2 introduces the related anti-spoofing algorithms and pub-
licly available anti-spoofing databases. Section 3 gives the
details of our proposed 3D mask database and describes the
testing protocols. We show the baseline experimental re-
sults in Section 4. Section 5 concludes the paper.

2. Related Works
2.1. Publicly Available Anti-spoofing Databases

Existing publicly available databases play an impor-
tant role in finding the best countermeasure for face anti-
spoofing. Zhang et al. [24] released a face anti-spoofing
database named CASIA Face Anti-Spoofing Database. In
[1], the authors introduced a new public face anti-spoofing
database named OULU-NPU. To simulate a real-world sce-
nario, it considers three variations in the capture conditions
including illumination variation, recording devices and pre-
sentation attack instruments.

Benefiting from the new sensors in Microsoft Kinect,
multi-modality data like visual image, infrared image and
depth image can be acquired for face presentation attacks
detection. Hence, the anti-spoofing countermeasures re-
lated to the multimodalities images had also been addressed
in several works. The Msspoof database [3] only includes
print attacks with the modalities of VIS videos and NIR
videos. The CASIA-SURF database collected in [21] is a
large-scale 2D face presentation attacks detection database
with three modalities.

Besides the printed attacks and video attacks detection
appearing in the three above public databases, 3D mask at-
tacks are equally received more attention. The first pub-
lic 3D mask attacks database is 3DMAD presented in [5].
Erdogmus et al. applied Microsoft Kinect to acquire color
and depth modalities samples for creating the 3DMAD
database. In [15], Liu et al. build a 3D mask presentation

attacks detection database, which employs seven cameras to
record videos in six illumination conditions for simulating
the real-world scenario.

However, most of the existing publicly available
databases have only a small number of subjects and videos.
The lack of publicly available data is an apparent reason
hindering the development of face presentation attacks de-
tection technology.

2.2. Anti-spoofing Methods

The texture is a very discriminating hint for distinguish-
ing between genuine faces and fake faces. Many previous
researches used some high-level texture features as a ba-
sis for classification, such as LBP [4], HOG [13] and SIFT
[17]. Although the texture information is effective for face
anti-spoofing, its performance is sensitive to environment
variations, including illumination and distance changes.

In [18], authors propose the image quality analysis based
methods. It shows that the image quality analysis based
methods have good generalization performances for spoof-
ing face detection.

The subtle movements on faces are also a useful cue to
classify genuine and fake faces. In [2], the motion infor-
mation like eye blinking and lips movement is extracted for
spoofing face detection. The motion information can be eas-
ily imitated by video replay presentation.

There are many recent works [16, 11] apply deep learn-
ing based algorithms to resolve the anti-spoofing problem.
Initially, most of the works take the anti-spoofing prob-
lem as a simple classification task and train the classifica-
tion network with the softmax loss. Recently, Liu et al.
[16] indicate the importance of auxiliary supervision. In
[11], Jourabloo et al. treat the face anti-spoofing as a simi-
lar problem to the denoising and deblurring technology. A
CNN model is learned to estimate such spoofing noise from
a fake sample, and then the estimated spoofing noise is used
for classification.

All the above works just utilize the visual spectrum.
However, the multi-spectrum based methods can involve
more texture information than the visual spectrum, which
results in better anti-spoofing performance. Yi et al. [20]
propose a multi-modalities camera system covering VIS
and NIR spectrums to detect printed photo attacks. Zhang
et al. [24] chose 850 nm and 1450 nm as the wavelengths to
be the supplement to VIS. In [14], authors propose a mul-
tispectral imaging approach to more accurately detect 3D
mask attacks. Ranges of CNN-based configurations are in-
vestigated to improve the detection accuracy from such pre-
sentation attacks.

From the related works above, we suppose that deep
learning based methods and LBP based methods are widely
used in face presentation attacks detection methods. So we



Table 1: The comparison of the publicly available anti-spoofing databases (* indicates that Msspoof only contains images).

Database Year # of subjects # of videos Camera Modality types Spoofing attacks
CASIA-MFSD [24] 2012 50 600 VIS VIS Print, Replay

Oulu-NPU [1] 2017 55 5940 Phone VIS 2 Print, 2 Replay
SiW [16] 2018 165 4620 VIS VIS 2 Print, 4 Replay

Msspoof [3] 2016 21 4704* uEye camera VIS/NIR Print
CASIA-SURF [21] 2018 1000 21000 RealSense VIS/Depth/NIR Print, Cut

3DMAD [5] 2013 17 255 Kinect VIS/Depth 3D Mask
HKBU-MARs [15] 2016 12 1008 VIS VIS 3D Mask

3DMA(ours) 2019 67 genuine + 48 masks 920 AuthenMetric binocular camera VIS/NIR 3D Mask

consider face anti-spoofing as a binary classification prob-
lem and apply two methods based on deep learning and LBP
respectively as the benchmark algorithms.

In this work, we collect a novel database containing
multi-spectrum data which focuses on the 3D mask attacks
detection. A series of benchmark experiments are per-
formed using LBP-based method and deep learning based
method. The contributions of this work include: 1) A novel
3D mask anti-spoofing database containing multi-spectrum
data are released. 2) Several experimental protocols related
to the proposed database are provided considering the vari-
ety of subjects, lighting conditions and capture distance. 3)
Benchmark experiments using LBP-based and CNN-based
face anti-spoofing algorithms have been conducted as the
baseline performance of this database.

3. The Collected Database

3.1. Genuine Subjects and 3D Masks

A total of 67 genuine subjects participate in the database
collection, and 48 kinds of 3D face masks are collected. All
of the subjects are Chinese people in the ages between 20
and 40 years old. The 3D face masks used have no intersec-
tions with these 67 subjects. One subject is asked to wear a
3D mask to perform the face anti-spoofing attack.

3.2. Lighting Condition Settings

Due to the different lighting conditions, the texture de-
tails of the subjects imaging might be different. For exam-
ple, when the light intensity of the environment is strong,
the texture details of the acquired samples will be clear. On
the contrary, the weak ambient light intensity will blur the
texture details. The face presentation attacks detection algo-
rithms should be robust to such light intensity change in real
application. Two lighting conditions (i.e., 200 lux and 500
lux) are considered, in which the previous lighting condi-
tion simulates indoor environment with normal brightness,
and the latter lighting condition simulates bright indoor en-
vironment.

3.3. Distance Settings

The distance between the camera and the collecting sub-
jects is another environmental factor affecting the imaging
quality during acquisition. It also has a significant impact
on the face presentation attacks detection algorithm perfor-
mance. There are mainly two reasons. The first one is that
the captured face image size is different at different dis-
tances so that the number of effective pixels in the face re-
gion is different. The second reason is that the near-infrared
imaging relies on active near-infrared light on the camera.
Due to the power of the NIR bulb, the NIR light attenuates
if the distance increases so that the NIR imaging is affected.
Four distance between the camera and the face is consid-
ered: 1) 30 cm; 2) 60 cm; 3) 90 cm; 4) 120 cm. Some
sample images are shown in Figure 2.

3.4. Recording Settings

We use the R0710A binocular camera which is designed
and fabricated by AuthenMetric for acquisition. To ensure
that the light intensity meets the imaging requirements, we
used the photometer to measure the light intensity before
the face region. We collect the database in an indoor envi-
ronment with curtains. The light intensity is between 180
and 230 lux or 470 and 540 lux. In each lighting condition,
four videos of 300 frames with four distance settings are
recorded for each person in about ten seconds. During the
acquisition, subjects are required to face the camera, and
there is no angle deflection. The acquisition image resolu-
tion is set to 640 ×480.

3.5. Data Preprocessing

We first use Faceboxes [22] to detect faces on both the
VIS image and the NIR image from the same frame in the
captured video. Second, we extend the length and the width
of face boxes to 1.3 times for ensuring the extracted im-
age samples containing the whole face area. No face align-
ment operator is adopted. In order to exclude the color bias
between the genuine faces and masks, we convert the ex-
tracted images achieved above into grayscale images and
resize the extracted images to 120× 120. The preprocessed



(a) 30 cm (b) 60 cm (c) 90 cm (d) 120 cm

(e) 30 cm (f) 60 cm (g) 90 cm (h) 120 cm

Figure 2: NIR images of real people under different distance conditions.

(a) VIS image of a mask (b) NIR image of a mask

(c) VIS image of a real subject (d) NIR image of a real subject

Figure 3: Examples of cropped face images.

image from each frame in the video samples contains at
least one detected face. Some of the images of the face area
are shown in Figure 3.

3.6. Evaluation Protocols

All subjects in the database are divided into three dis-
joint sets, which are used as the test set, validation set, and
training set. The test set includes 18 genuine subjects and
18 3D facial masks. The validation set includes 17 genuine
subjects and 17 3D facial masks. There is no intersection
between the test set and the validation set in terms of sub-
jects and images. The training set includes other subjects.

Specifically, all the subjects in the test set and the validation
set are recorded under two lighting conditions. Most of the
subjects in the training set are recorded under two lighting
conditions, while there are a small number of genuine sub-
jects in the training set are recorded under only one lighting
condition.

Three test protocols are provided to evaluate the perfor-
mance of face presentation attacks detection methods from
several aspects. The first test protocol is designed to eval-
uate the generalization capability of face presentation de-
tection methods across different subjects. Therefore, all the
videos captured in each lighting condition and distance con-
dition in training, validation and test set are used.

The second test protocol focuses on the effect of light-
ing variations on the performance of the face presentation
attacks detection algorithm. As the samples are recorded
with two different illumination settings, we construct the
train, validation and evaluation sets using the videos which
are recorded under different lighting conditions.

The third protocol is designed to evaluate the general-
ization capability of the face presentation attacks detection
methods across four different distances. Specifically, in
each experimental group, we choose the samples captured
in one certain distance to build the train set ant the valida-
tion set. The samples captured in the other three distances
are built as the test set. The settings of the three test proto-
cols presented above are detailed in Table 2.

4. Baseline Algorithms

4.1. LBP-based Methods

LBP has been quite successful in face presentation at-
tacks detection tasks [4], so we use it as the benchmark al-
gorithm for evaluating the performance. Each frame of the
video is processed using the LBP operator. Then we calcu-



Table 2: The details about the use of videos in three test protocols.

Protocol Subset Subjects Lighting
Conditions (lux)

Distance
Conditions (cm)

Real
Videos

Mask
Videos

Total
Videos

Protocol I
Test 1∼18 All All 144 144 288
Val 19∼35 All All 136 136 272

Train All the others All All 256 104 360

Protocol II
Test 1∼18 200/500 All 72 72 144
Val 19∼35 500/200 All 68 68 136

Train All the others 500/200 All 128 52 180

Protocol III
Test 1∼18 All

(60,90,120)/(30,90,120)
/(30,60,120)/(30,60,90) 108 108 216

Val 19∼35 All 30/60/90/120 34 34 68
Train All the others All 30/60/90/120 64 26 90

late the statistical histogram of the processed image which
is used as the 256-dimensional feature for the classification.
Finally, we apply SVM with radial basis function (RBF)
kernel as the classifier. In the later experiments, we set the
penalty factor C to 1, and the tolerance for stopping crite-
rion is set to 1e-3.

4.2. CNN-based Methods

In the baseline experiment, we treat the face anti-
spoofing problem as a binary classification problem. Hence
we use an end-to-end method based on the ResNet network
to detect the 3D mask attack. The network structure used
in the experiment is based on ResNet-9 network which con-
sists of two convolution layer, three convolutional blocks,
and a global average pooling layer. For evaluating the base-
line, we first separately use the NIR image and VIS im-
age as the input to the network. Then we propose three fu-
sion methods as baseline methods to fit the NIR+VIS dual-
modalities based anti-spoofing problem.

The first fusion baseline method is the Concatenation
Data Fusion method. In this method, we concatenate the
corresponding pair of the VIS image and the NIR image as a
two-channel input of the classification network. The second
fusion baseline method is the Naive Data Fusion method. In
this method, we use a shared model to learn the data of the
VIS image and the NIR image in one pair. Then the pair of
images from two sources are used separately as one single
channel input of the shared model. The last fusion baseline
method is the Squeeze and Excitation Fusion method which
is inspired by [8, 21]. We design a two-stream network ar-
chitecture. Each sub-network is fed with the image in one
modality. Then the Squeeze-and-Excitation branch [8] is
applied to adjust the weight of different features from each
channel, which is different from [21] because in [21] the
Squeeze-and-Excitation branch is applied for each modality
respectively. The network structure used with the Squeeze
and Excitation Fusion method is shown in Table 3.

Table 3: The network structure of the Squeeze and Excita-
tion Fusion method. Conv means the convolutional layer,
and each convolutional layer is followed by a batch nor-
malization layer and a Rectified Linear Unit (ReLU). GAP
stands for global average pooling. All the convolutional fil-
ters of three convolutional blocks are 3*3.

Layer Kernel Size/Stride Output
Channels Input

Conv1 1 7*7/4 32 NIR img
Conv2 1 3*3/1 64 Conv1 1

Blocks1 1 - 128 Conv2 1
Blocks2 1 - 256 Blocks1 1
Conv1 2 7*7/4 32 VIS img
Conv2 2 3*3/1 64 Conv1 2

Blocks1 2 - 128 Conv2 2
Blocks2 2 - 256 Blocks1 2

Features1 = concatenate(Blocks2 1, Blocks2 2)
SE - 512 Features1

Features2 = Features1 * SE
Blocks3 - 64 Features2

GAP - 64 Blocks3
Fc1 - 2 GAP2

The softmax loss function is adopted as the loss function.
In the training phase, all models are trained in 5 epochs and
optimized by the Stochastic Gradient Descent (SGD) algo-
rithm. We set the momentum factor of the optimizer as 0.9.
The learning rate was initially set to 0.1, and then it decays
by 0.1 in every two epochs. We train all the models with the
batch size 128 on 1 TITAN X (Pascal) GPU. Specifically,
the classification confidence score of the video is the mean
of the classification confidence score for each frame in the
video.



5. Experiments
5.1. Evaluation Metrics

In the following experiments, we adopt four indices, i.e.,
equal error rate (EER), attack presentation classification
error rate (APCER), bona fide presentation classification
(BPCER) and average classification error rate (ACER) [10].
The threshold corresponding to the APCER and BPCER
computation in the test set is set as the one corresponding to
the EER in the validation set.

5.2. Results and Analysis

The experimental results evaluated with Protocol 1 are
shown in Table 4. This result shows that the Squeeze and
Excitation Fusion method performs the best (ACER=2%
and EER@Test=1.8%) when the scene of the training set
and the test set are consistent. The performance of algo-
rithms using only single-mode data is similar, and the CNN-
based algorithms perform better. Because the CNN-based
algorithms generally have a better learning ability, and the
Squeeze and Excitation Fusion method could fully use bi-
modal data.

Then we explore the performance of the baseline algo-
rithms under the influence of illumination changes. From
Table 4 and Table 5, we can see that the ACER and
EER of most baseline methods is getting worse when
illumination changes. From Table 5, we can see that
the Naive Data Fusion method (ACER=5.5%, 2% and
EER@Test=1.4%, 1.3%) and the LBP-based algorithm us-
ing only near-infrared modal data (ACER=5.5%, 2.7% and
EER@Test=5.5%, 4.1%) achieve the best performance.
The algorithms using only NIR samples are better than the
ones only using the VIS samples. It indicates that the visible
lighting imaging is more sensitive to the illumination varia-
tion, while the NIR image is more robust to environmental
illumination changes. Moreover, the deep learning meth-
ods are subject to over-fitting and require a high amount of
data, which perform relatively poor. It is worth noting that
the Naive Data Fusion method increases the amount of data
in disguise, so the over-fitting problem is alleviated and its
evaluation result is relatively better.

Finally, we focus on the impact of distance. From Table
6-9, we can conclude: 1) The CNN-based algorithm using
VIS images has the best generalization across different dis-
tances; 2) When using only NIR images, the LBP-based
method is much better than the CNN-based method; 3) The
Naive Data Fusion method also achieves good results, such
as ACER=9.2% (Table 8), 8.3% (Table 9). Moreover, com-
paring to the NIR images, the VIS image is more robust
to different distances. The generalization across different
distances of all methods is not good enough for real world
applications, more powerful anti-spoofing methods have to
be designed in future.

In summary, several conclusions can be drawn from the
above experiments following three protocols. From the
above experiments we can see that both illumination and
distances can significantly influent the anti-spoofing perfor-
mance. Due to the limitation of training data, CNN-based
methods not always perform better than LBP-based meth-
ods. In general, traditional hand-crafted features have ro-
bust performance when the training data is limited. The
bi-modal fusion methods have outstanding effects in many
aspects indicating that the VIS image and the NIR images
can provide complementary texture and imagery informa-
tion to highlight the difference between the genuine and the
fake samples.

6. Conclusion
In this paper, we release a novel 3D mask anti-spoofing

database containing multi-spectrum data, including the
samples captured in the visible band and the near-infrared
band. Specifically, this collected database contains 920
video samples consisting of 67 genuine subjects and 48 fab-
ricated 3D masks isolated to the genuine persons. The video
samples in the collected database are recorded in two illumi-
nation conditions and four distance conditions, which have
a great impact on the anti-spoofing performance. We also
propose three test protocols to evaluate the generalization
capabilities of the developed face anti-spoofing algorithms
across different acquisition conditions. Benchmark experi-
ments using the convolutional neural network and the LBP-
based face anti-spoofing algorithm have been performed on
the proposed database to inspect the generalization capabil-
ity of the methods. The lack of publicly available data is
still an important reason hindering the development of face
presentation attacks detection technology. We would like
to invite the biometrics research community to collect and
share more face anti-spoofing database.
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