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Abstract

Deep neural networks usually benefit from unsupervised
pre-training, e.g. auto-encoders. However, the classifier
further needs supervised fine-tuning methods for good dis-
crimination. Besides, due to the limits of full-connection,
the application of auto-encoders is usually limited to small,
well aligned images. In this paper, we incorporate the su-
pervised information to propose a novel formulation, name-
ly class-encoder, whose training objective is to reconstruct
a sample from another one of which the labels are identical.
Class-encoder aims to minimize the intra-class variation-
s in the feature space, and to learn a good discriminative
manifolds on a class scale. We impose the class-encoder
as a constraint into the softmax for better supervised train-
ing, and extend the reconstruction on feature-level to tackle
the parameter size issue and translation issue. The experi-
ments show that the class-encoder helps to improve the per-
formance on benchmarks of classification and face recog-
nition. This could also be a promising direction for fast
training of face recognition models.

1. Introduction
In recent years, many learning algorithms, e.g. Restrict-

ed Boltzmann Machine (RBM) [6] and auto-encoder (AE)
[2], proposed to pre-train the neural network by auto-
reconstruction in a layer-wise way and achieved break-
throughs on training problems. This sort of algorithms, to
which we refer as reconstructive methods, constitute an im-
portant subset of deep learning approaches nowadays. More
recently, along this direction, certain variants of AE, such
as denoising auto-encoder (DAE) [22, 23] and contractive
auto-encoder (CAE) [16], referred to as regularized AEs
[1], are proposed to estimate data-generating distribution on
a local scale and learn compact low-dimensional manifolds,
in which better discrimination power can be expected.

On the other hand, convolutional neural networks (CN-
N) [12] is also a widely-used approach of deep learning to-

wards computer vision. In recent years, the computation-
al resources have been massively improved by GPU im-
plementations [11, 10] and distributed computing clusters
[4], and various large-scale data sets have been collected to
satisfy the training. Due to these benefits, CNNs demon-
strated the power of hierarchical representation by beating
the hand-craft features, and won many contests in this field
[11, 17, 5, 20].

Problems. Firstly, RBM, AE and their variants are unsu-
pervised methods. To bring about good discrimination, the
classifier needs supervised training. In other words, good
representation from reconstruction does not guarantee good
classification [1]. This suggests to find an objective with
both reconstructive and discriminative aspects to improve
the training.

Secondly, the auto-encoders are not robust to image
translation; in addition, they often keep a large number of
parameters that increase explosively according to the data
size. As a result, the application of AE is usually limited to
small, well aligned images.

Contribution. Firstly, we propose a supervised recon-
structive model, referred to as class-encoder, whose objec-
tive is the reconstruction of one sample from another within
the same class. The model minimizes the intra-class vari-
ations and learns compact low-dimensional manifolds on a
class scale. Although class-encoder method is similar to
AE, its application is not in the pre-training. Class-encoder
is directly used in the supervised training of network, as it is
a supervised method. We further imposed the class-encoder
as a constraint into the softmax classifier (namely Class-
Encoding Classifier, CEC) and achieve better performance
than the pure softmax.

Secondly, we propose a deep hybrid neural network that
combines the CNN and the CEC, so to let them benefit from
each other. The convolutional layers extract features from
data at the bottom level, and the CEC is disposed at the top
level. Different from former reconstructive models which
directly reconstructs data, in this framework, the intra-class
reconstruction is performed on the feature-level. So, the



CEC is robust to translation due to the CNN, and CNN has
better generalization thanks to the CEC. Besides, the size
of fully-connected (FC) layer and its parameter number are
limited in an acceptable range, because the reconstructive
target is not images but feature vectors. We use this network
to learn robust and discriminative features for face recogni-
tion.

2. Related work
Regularized auto-encoders. DAE and CAE locally es-

timates data-generating distribution and captures local man-
ifold structure. Their pre-training is based on unsupervised
method. By contrast, class-encoder extends them to a su-
pervised style.

FIP feature. Zhu et al. [26] proposed to learn
face identity-preserving (FIP) features through recovering
frontal face images from other views. Another work [27]
employed a similar method which trained multiple deep net-
works on the facial components of recovered frontal face.
Comparing with class-encoder, their training objective is
strictly fixed by canonical view. Therefore, the selection of
canonical view is indispensable. Besides, their reconstruc-
tion is performed on data-level, not feature-level. Thus, the
performance is very limited by data condition, i.e. facial ex-
pression, image cropping (background interference), align-
ment etc. The feature-level reconstruction of class-encoder
is crucial for the elimination of nuisance factors.

3. The proposed method
In this section, we begin with class-encoder. Then, we

introduce the CEC model. Finally, we describe the Deep
CEC.

3.1. Class-encoder

Class-encoder and auto-encoder share the same architec-
ture (Fig. 1) which includes an input layer, a hidden layer
(encoder) and an output layer (decoder) of full-connection.
The training objective is the main difference between class-
encoder and auto-encoder. Auto-encoder aims to recon-
struct a data sample from itself, while class-encoder per-
forms the reconstruction of one sample from another one
with the same label.

Figure 1. Class-encoder network with single layer of encoder and
decoder.

Formulation. Let x be an input data, h be the activa-
tion of the hidden layer, x̃ be the reconstruction, W1 and
W2 be the weight matrices of the FC layers. W1 and W2

often take form of tied weights, i.e. WT
1 = W2, which is

usually employed as an implicit regularization for prevent-
ing extremely large and small entries. For the simplicity, we
merge the bias term into the weight matrices in this paper.
Then, the reconstruction x̃ is calculated as follows:

h = f(W1x) (1)

x̃ = f(W2h) = f(W2f(W1x)) (2)

where f(·) is the activation function. To achieve intra-class
reconstruction, let x̂ be any data sample that has the same
label with x. Therefore, the objective function of class-
encoder is defined as

Costce =
1

2N

∑
x∈X

∑
x̂∈Sx

‖ x̃− x̂ ‖2 (3)

where N denotes the total number of training data, X de-
notes the entire training data set, and Sx denotes the subset
of the class in which x is found. Supposing there are C
classes in total, let c = 1, 2, ...,C be the class labels, and
Sc be the subset of cth class with size of Nc. Then, Eq. 3
can be developed as follows:

Costce =
1

2

C∑
c=1

1

Nc
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∑
x̂∈Sc
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=
1
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1
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(‖ x̃ ‖2 + ‖ x̂ ‖2 − 2x̃T x̂)

=
1

2

C∑
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∑
x∈Sc

(
1

Nc
‖ x̃ ‖2 + 1

Nc

∑
x̂∈Sc

‖ x̂ ‖2

− 2x̃T (
1

Nc

∑
x̂∈Sc

x̂)). (4)

In Eq. 4, the first term is regarded as a penalty of magni-
tude of the reconstruction; the second term is constant; the
third term indicates that class-encoder’s reconstruction x̃ is
prone to have small angle with the mean vector of the cor-
responding class. Hence, class-encoder tends to maximize
a cosine-similarity-like metric between the reconstructions
and intra-class means.

It is a supervised learning task which implicitly mini-
mizes the intra-class variation. The model a learns discrim-
inative low-dimensional manifold on a class scale in the de-
coder space. Data points are projected into a dense distribu-
tion within each class, whose center is located at the intra-
class mean. Considering Eq. 1, this intra-class convergency
also takes place in the hidden layer h (i.e. encoder space).
It will be proved empirically in the next section.



3.2. CEC model

To make use of the advantage that class-encoder mini-
mizes the intra-class variation, we impose the class-encoder
into the softmax classifier, and train the network with the
intra-class reconstruction and softmax regression jointly, in
order to potentiate the discrimination.

Figure 2. CEC model. We train class-encoder and softmax simul-
taneously. During the test of classification, we ignore the decoder
and only take account of the output of softmax.

Fig. 2 shows the model of CEC. The objective function
is the weighted sum of each part,

Costcec = Costsoftmax + λCostce . (5)

The second term in Eq. 5 represents the weighted cost
from class-encoder. It has the same definition with Eq. 3.
The cost of softmax is formulated as

Costsoftmax = −
C∑

c=1

1

Nc

∑
x∈Sc

log
exp(W c

3h)∑C
l=1 exp(W

l
3h)

, (6)

where W c
3 and W l

3 are the cth and lth row of W3. The
softmax outputs the probability that an input h belongs to
the cth class by computing the following equation

P (y = yc |W3, h) =
exp(W c

3h)∑C
l=1 exp(W

l
3h)

, (7)

where yc ∈ {1, . . . ,C} is the ground-truth class label of the
cth class, and y is the prediction decision. Obviously, we
expect this probability to be large for the correct prediction.
This probability can be developed by the Bayesian rule

P (y = yc |W3, h) = P (h | y = yc,W3)
P (y = yc)

P (h)
. (8)

We assume that the conditional probability P (h | y =
yc,W3) follows the Gaussian distribution,

h | y = yc,W3 ∼ N (µ, σ). (9)

It is also natural to assume the conditional of h in the class
yc follows the Gaussian distribution,

h | yc ∼ N (µh, σh). (10)

From an optimized softmax classifier, we can find either
µ = µh or the two mean vectors are very close. In addi-
tion, due to the effect of class-encoder, σh is small. Thus,
softmax has a very large probability to have h close to µ,
which leads to a large value of P (h | y = yc,W3) and so
the output probability in Eq. 7. In other words, the class-
encoder improves the lower-bound of the likelihood of soft-
max. Sharper distribution P (h | yc) we sample from, more
possibly we obtain large value of likelihood.

3.3. Deep CEC and Feature-level Strategy

Deep CEC (DCEC) is built by cascading CNN module
and the CEC (Fig. 3). Like conventional CNNs, the CN-
N module is composed by convolutional and max-pooling
layers.

Figure 3. Overview of DCEC. The network is built by cascading
the CNN module and the CEC.

The CEC receives the features from the CNN module,
and works like the above-mentioned CEC except that the
decoder aims to reconstruct the feature rather than the raw
data. Here, we notate the input data pair as {x′, x′′}. Let h1,
h2, and z be the activations of the first layer, encoder, and
decoder in the CEC, respectively. The training objective is
defined as

Cost featurece =
1

2N

∑
x′∈X

∑
x′′∈Sx′

‖ z′ − h′′1 ‖
2
. (11)

Note that z′ and h′′1 come from the input data pair {x′, x′′},
not from a single sample. In the practical training, x′ and
x′′ are sampled from a class, and input to the DCEC in se-
quence, to compute z′ and h′′1 , respectively.

Here, the objective of class-encoder is to reconstruct the
features (i.e. h′′1 ). We refer to this kind of reconstruction
as feature-level, in contrast to the data-level reconstruction.
There are two reasons behind the feature-level reconstruc-
tion.

First, the images may contain not only the target ob-
ject, but nuisance factors as well, such as background, fa-
cial expression, poses etc. Simply reconstructing the intra-
class images will introduce substantial noise to the training,
whereas the feature-level reconstruction can eliminate the
nuisance factors, and preserve the discriminative factors in
the feature space. This is because the input of CEC is no
longer raw data, but features. Considering two input sam-
ples with the same label, their features’ common part is the
discriminative factors. It exists a large probability that the



features have the accordance in discriminative factors, and
the discrepancy in nuisance factors, since the nuisance fac-
tors are very likely different (e.g. background in different
images could seldom be the same). Therefore, by recon-
struction from one to another in the same class, the pro-
portion of nuisance factor is reduced in the feature space.
From another point of view (i.e. the previous interpretation
of convergency), the intra-class features converge to the cor-
responding discriminative factor.

Second, the target object may present at different loca-
tions in images. Without alignment, the data-level recon-
struction will introduce the noise too. Owing to the CNN
module, the extracted feature is robust to image translation,
and so is the feature-level reconstruction.

The objective function of DCEC is the weighted sum of
softmax and intra-class, feature-level reconstruction,

Costdcec = Costsoftmax + λCost featurece . (12)

By BP method, the CNN module and the CEC are trained
simultaneously.

4. Experiments
In this section, we report the experiments of the proposed

methods. We started with the pure class-encoder. Then, we
extended the experiment to CEC. Finally, we applied DCEC
to learn robust features for human face recognition.

4.1. Inspection of class-encoder

In this subsection, we trained a network of pure class-
encoder, in order to give an intuitive show of class-encoder’s
ability of discrimination in the feature space.

Data. MNIST [12] is a general database of handwritten
digits, containing a training set of 50,000 samples, a valida-
tion set of 10,000 samples, and a test set of 10,000 samples.
The 10 digits own roughly equal number of samples.

Setting. To achieve good convergency, we built a 4-layer
encoder and a symmetrical decoder. The number of nodes
for encoder were 2000-1000-500-250, determined by refer-
ring to the architecture in Hinton et al. [6]. Since the data
had been well aligned and keep mono-black background,
we let the reconstruction to be on data-level. The network
was randomly initialized. We randomly selected 15,000
pairs for each digit. Each pair was fed to the network con-
sequently to calculate the reconstruction cost.

Result. The network was optimized by stochastic gra-
dient descent (SGD) and BP method. We extracted the ac-
tivation values of the middle layer (250-dimensional) and
reduced its dimensionality to 2 by PCA. We show the scat-
ters in Fig 4. Along with the training process, each class
converged effectively. In Fig. 5, we show more attempts on
different architectures. The scatters suggest that deeper and
wider architectures give better results.

Figure 4. From left to right, top to bottom: scatters of the middle-
layer activation of the class-encoder network along with the train-
ing epoch 0, 10, 50 and 200. We assign each digit a distinct color.
Best view in color.

Figure 5. From left to right, the corresponding architectures of en-
coder are 200-200-200, 1500-1000-500, and 200-200-200-200, re-
spectively.

4.2. CEC for classification

In this subsection, we evaluated the CEC for classifica-
tion.

Data. We evaluated the classification experiments on M-
NIST.

Setting. We chose the pure softmax as our baseline mod-
el. We compared the pure softmax with CEC for classi-
fication task, in order to highlight the advantage of class-
encoder. Note that CEC drops into softmax when the weight
λ becomes 0 in Eq. 5.

Fig. 6 shows the architecture of CEC. The decoder was a
single FC layer since, with a large number of experiments,
we found that the one-layer decoder was most suitable for
reconstruction.

For the diversity of experiment, we initialized the net-
work in 3 different ways – AE, DAE, and CAE. Then, we
took the pre-trained networks for either CEC or softmax.

Result. Table 1 shows that our CEC outperforms the
baselines on MNIST classification. We found that the
method of initialization (AE, DAE, or CAE) does not in-
fluence the CEC reaching better results.

It should be mentioned that the training error rate
reached zero for all the models. Therefore, the class-
encoder improved the classifier’s generalization.



Figure 6. CEC with multi-layer encoder and single-layer decoder.
The baseline was the same but without decoder.

Initialization
Training

softmax
CEC

(CE+softmax)
AE 1.40±0.23 1.29±0.18

DAE 1.28±0.22 1.16±0.20
CAE 1.26±0.12 1.15±0.09

Table 1. Test error rates (in percentage) on MNIST. In each line,
the baseline model was compared with CEC that initialized by the
same method.

4.3. DCEC for face recognition

In combination with the advantages of CEC and feature-
level strategy, DCEC was employed to learn discriminative
representation of human faces.

Data. For training our DCEC, we collected a set of face
images from websites, and formed a database called Web-
face (Fig. 7). It contains 156,398 face images of 4,024 i-
dentities, most of which are celebrities. Each identity own-
s quasi-equal number of images. All these images were
roughly aligned according to a group of landmarks [25], and
normalized to the size of 100×100 with RGB channels. Fi-
nally, 3,500 identities were selected to form the training set,
and the rest were devoted to the validation. We tested our
model on LFW [9] with their official unrestricted protocol.
The identities of Webface and LFW are exclusive.

Figure 7. Examples of the Webface database. Through large range
of age, expression, pose, and external environment, the database
contains eastern and western people of quasi-equal number.

Setting. To build the CNN module, we adopted one
convolutional layer and two locally-connected layers, each
of which was followed by a max-pooling layer. Locally-
connected layer is similar to convolutional layer, while it
does not share weights within feature maps. Therefore, it is
suitable to extract features from a set of regular images, e.g.
human faces. As to CEC, the encoder and the decoder were
both of single FC layer. The network employed ReLU as
activation function. The softmax corresponded to the train-
ing identities. See Table. 2 for the details of the parameters.

Name Type
Filter Size/

Stride
Output

Size
Conv1 conv. 3× 3/1 100× 100 ×32
Pool1 max pooling 2× 2/2 50× 50 ×32
Local2 local 3× 3/1 50× 50 ×64
Pool2 max pooling 2× 2/2 25× 25 ×64
Local3 local 3× 3/1 25× 25 ×128
Pool3 max pooling 2× 2/2 13× 13 ×128
h1 FC N/A 512

h2 (encoder) FC N/A 256
z (decoder) FC N/A 512

Softmax softmax N/A 3500

Table 2. Parameters of the architecture of DCEC for face represen-
tation learning. Both the layer z (decoder) and softmax followed
the layer h2 (encoder).

Each image was horizontally flipped to double the data
amount. We generated totally about 25 million intra-person
pairs. The CNN module and the CEC were trained together,
according to the objective (Eq. 12).

After training, we extracted the feature h2, which was
then processed by PCA and Joint Bayesian (JB) [3] for face
verification. We implemented the test under the LFW offi-
cial unrestricted protocol. Besides, recent studies [14] have
noticed the limitations of the original LFW evaluation, e.g.,
limited pairs for verification, high FAR, and no identifica-
tion experiments. Therefore, we also tried the BLUFR pro-
tocol proposed in [14], which included both verification and
open-set identification experiments with an exhaustive eval-
uation of over 40 million of matching scores.

Result. We compared our DCEC with the network
that trained by only softmax. We also compared it with
contrastive-style DeepID2 and DeepID2+ [18, 19], which
used the similar structure (softmax + contrastive cost).

It should be noted that, though increasing higher results
have been reported on LFW, it is not clear about the influ-
ence of the large private training data they used. To make
a fair comparison, we trained all the networks on the same
Webface database, respectively.

The results are listed in Table. 3. Our DCEC yielded the
best results under all the protocols. The softmax-only col-
umn shows that the absence of class-encoder leads to sig-
nificant depravity of performance. Hence, the improvement
of DCEC was mainly attributed to the class-encoder.

The BLUFR evaluation indicated that the proposed
method performed better under practical scenarios like ver-
ification at low FARs and the watch-list task in surveillance.

To eliminate the background, we cropped the face im-
ages according to 7 patches used in Sun et al. [18], and
trained 7 DCECs with them. We fused the 7 models and
tested them on the YouTube Faces (YTF) database [24].
This gave a competitive performance (Table. 4). Note that
DeepFace [21] used much more data (4.4 million images)



DeepID2 DeepID2+
Softmax

only
DCEC

VR (%)
PCA+JB

94.97 95.33 94.21 95.87

VR (%)
@FAR=0.1%

55.51 57.13 38.61 57.22

DIR (%)
@FAR=1%,

Rank=1
20.19 15.27 12.38 21.58

Table 3. The first line shows the accuracies under LFW unrestrict-
ed protocol. The second and the bottom lines indicate the two
criteria of the BLUFR protocol, respectively.

Method VR (%)
LM3L [8] 81.3 ±1.2

DDML (LBP) [7] 81.3 ±1.6
DDML (combined) [7] 82.3 ± 1.5

EigenPEP [13] 84.8 ± 1.4
DeepFace-single [21] 91.4 ± 1.1

DCEC (fusion) 90.2 ± 0.4

Table 4. Comparison on the YTF database, with the first two accu-
racies in bold.

and deeper architecture than ours.
Analysis. Our DCEC used only intra-class pairs for

training, and obtained better results than DeepID2 and
DeepID2+ which used both intra- and inter-class pairs. It
implies that inter-class pairs contribute very little for train-
ing. In addition, rather than the penalty by feature dis-
tance (contrastive cost), intra-class reconstruction gives bet-
ter regularization for learning robust and discriminative
face representation. There are two reasons for this. First,
the L2 contrastive cost gives limited effect in the high-
dimensional feature space, whereas the class-encoder min-
imizes the intra-class variation implicitly. Second, in the
high-dimensional space, the discriminative methods often
allocate much larger partition than the proper class, leading
to false positives with high confidence [15]. By contrast,
the generative method, involved in CEC, eliminates the nui-
sance factors in the feature space with their low marginal
probability.

Negative pairs. DCEC does not require inter-class
pairs (the negatives). This can accelerate the training pro-
cess comparing with the contrastive-style methods or the
margin-style methods (often with time-consuming hard-
negative-mining).

5. Conclusion
In this paper, we have two main contributions.
Firstly, we propose a novel class-encoder model, which

minimizes the intra-class variations and learns discrimina-
tive manifolds of data at a class scale. The experiment on

MNIST shows that, if data is well aligned and with mono-
background, the mere data-level reconstruction is able to
bring about discrimination in not only the decoder, but the
encoder as well. We further imposed the class-encoder into
the softmax classifier and improves the ability of general-
ization. The intra-class convergency leads to a sharp priori
distribution, from which we obtain high value of conditional
probability to the correct prediction given the trained weight
matrix and the inputs.

Secondly, we generalize the class-encoder to the feature-
level, and combine the convolutional network and the CEC
to learn discriminative features (Fig. 8). Our DCEC ob-
tained competitive results with much less training data re-
garding to state-of-the-art on face recognition. The feature-
level strategy has well coped with size issue and translation
issue of FC networks; and CNNs have gained better gener-
alization from class-encoder.

Figure 8. Instances in LFW and the corresponding feature vectors
learned by DCEC. Each column belongs to an identity.
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