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a b s t r a c t

Recently, meta-learning has been shown to be a promising way to solve few-shot learning. In this
paper, inspired by the human cognition process, which utilizes both prior-knowledge and visual
attention when learning new knowledge, we present a novel paradigm of meta-learning approach
that capitalizes on three developments to introduce attention mechanism and prior-knowledge to
meta-learning. In our approach, prior-knowledge is responsible for helping the meta-learner express
the input data in a high-level representation space, and the attention mechanism enables the
meta-learner to focus on key data features in the representation space. Compared with the existing
meta-learning approaches that pay little attention to prior-knowledge and visual attention, our
approach alleviates the meta-learner’s few-shot cognition burden. Furthermore, we discover a Task-
Over-Fitting (TOF) problem,1 which indicates that the meta-learner has poor generalization across
different K -shot learning tasks. To model the TOF problem, we propose a novel Cross-Entropy across
Tasks (CET) metric.2 Extensive experiments demonstrate that our techniques improve the meta-learner
to state-of-the-art performance on several few-shot learning benchmarks while also substantially
alleviating the TOF problem.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The development of deep learning has led to remarkable ad-
ancements in many computer vision tasks [1–3]. Deep learning-
ased approaches usually require thousands or even millions
f labeled samples to obtain satisfactory performance. However,
ollecting and annotating such enormous data is notoriously ex-
ensive. Therefore, few-shot learning [4–6], which requires deep

∗ Corresponding author.
E-mail addresses: qyxqyx@mail.nwpu.edu.cn (Y. Qin),

hangwg@nwpu.edu.cn (W. Zhang), zhaochenxu@mininglamp.com (C. Zhao),
angzezheng@kuaishou.com (Z. Wang), xiangyu.zhu@nlpr.ia.ac.cn (X. Zhu),
hijingping@nwpu.edu.cn (J. Shi), guojunq@gmail.com (G. Qi), zlei@nlpr.ia.ac.cn
Z. Lei).
1 When tested on J-shot classification tasks, the meta-learner trained on K -

hot tasks does not perform as well as the one trained on J-shot tasks, where
and J are different unsigned integers denoting different numbers of shots for

he meta-learner.
2 A metric for quantizing the extent to which a meta-learning method suffers

rom the TOF problem.
Please cite this article as: Y. Qin, W. Zhang, C. Zhao et al., Prior-knowledge and attenti
106609, https://doi.org/10.1016/j.knosys.2020.106609.
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etworks to learn from a few data, becomes a hotspot problem
n Computer Vision.

Learning from limited data is challenging for deep learning
ased image classification. In comparison, we human beings can
apidly learn new categories from very few examples. Recently,
eta-learning [7–18] has shown promising performance to im-
rove few-shot learning for Computer Vision. However, the ex-
sting meta-learning methods commonly ignore prior-knowledge
19–23] and attention mechanism [24,25] which have both
een demonstrated to be important for human cognitive and
earning processes. Fig. 1 illustrates a few-shot classification
roblem to provide a clearer understanding of the role of
rior-knowledge and attention mechanism in human few-shot
earning. In Fig. 1, we unconsciously leverage our learned knowl-
dge about the world to understand and express these images
nto high-level compact representations, such as plant, animal,
ree, and table etc. However, according to the four training im-
ges, we discover that only the features of the tree and table are
seful for us to recognize these two image classes. Finally, we
uickly adjust ourselves to pay attention to the critical features
nd make a precise decision based on the focused features.
on based meta-learning for few-shot learning, Knowledge-Based Systems (2020)
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Fig. 1. An example of few-shot classification task. The six images belong to
two classes; the four labeled images are training data, and the two unlabeled
images are testing data. When predicting the two test images, we utilize our
prior-knowledge about the world to understand all components in these images
and use visual attention to pay attention to the key components—table and tree.
Finally, we predict that image (c) belongs to class 1 which contains table, while
image (f) is associated with class 2 which contains tree.

Evidently, we can summarize two main modules in human
few-shot learning: a stable Representation module that uti-
lizes prior-knowledge to express the image into compact fea-
ture representations; and a smart attention-based logical deci-
sion module that adapts accurately and performs recognition
based on the feature representations. Whereas, the existing
eta-learning approaches commonly train meta-learners to learn
daptive networks directly based on the original input data with
either attention mechanism nor prior-knowledge.
In this paper, inspired by human cognition, we present a

ovel paradigm of meta-learning approach with three develop-
ents to introduce attention mechanism and prior-knowledge to
eta-learning in a step-by-step fashion. Here, we briefly in-

roduce the proposed methods. (1) The first method is called
ttention-based Meta-Learning (AML). It leverages attention
echanism to enable the meta-learner to pay more attention to
ritical features. (2) To enable the meta-learner enjoying not only
ttention but also prior-knowledge, we present another method
epresentation and Attention based Meta-Learning (RAML).
ts network contains a Representation module and an
ttention-based prediction (ABP) module. The Representation
odule is similar to the Representation module of human vi-
ion. It learns the prior-knowledge in a supervised fashion and
s responsible for understanding and extracting stable compact
eature representations from the input image. The ABP module
lays the same role as the smart attention-based logic decision
odule of human vision. It enables the meta-learner to precisely
djust first its attention to the most discriminative feature repre-
entations of input images and second its predictions. (3) In the
hird method, to take full advantage of endless unlabeled data,
he Representation module learns the prior-knowledge through
n unsupervised learning process [26–32]. We call this method
nsupervised Representation and Attention based Meta-Learning
URAML). With URAML, our experiments show that the growth
n the number of unlabeled data and the development of un-
upervised learning both improve the performance of URAML
pparently.
In addition, we show the existence of a Task-Over-Fitting (TOF)

roblem for the existing meta-learning methods, and present a
ross-Entropy across Tasks (CET) metric to evaluate how much a
eta-learning method is troubled by the TOF problem. An exam-
le of the TOF problem is that the meta-learner trained on 5-way
2

1-shot tasks is not as capable as the one trained on 5-way 5-shot
tasks when both of them are tested on 5-way 5-shot tasks, and
vice versa. However, in practical applications, it is uncertain how
much data and how many shots are available to the meta-learner
to learn. Therefore, we argue that the trained meta-learner should
generalize well to different K -shot tasks. The possible underlying
reason for the TOF problem is that the existing meta-learning
methods ignore prior-knowledge, which results in the feature
extractor of their meta-learners overfit to the training K -shot
tasks. Moreover, ignoring attention mechanism makes the ex-
isting meta-learners be vulnerable to interference from features
irrelevant to the presented tasks. Our experiment validates that
by incorporating prior-knowledge and attention mechanism, our
methods suffer less from the TOF problem than do the existing
meta-learning methods.

We summarize the main contributions of our work as follows.

• We argue that attention mechanism and prior-knowledge
are both crucial for meta-learners to reduce their cognition
burden in few-shot learning. To validate our viewpoint,
we develop a novel paradigm with three methods AML,
RAML, and URAML to leverage attention mechanism and
prior-knowledge in meta-learning.

• We discover the TOF problem for meta-learning and design
a novel metric Cross-Entropy across Tasks (CET) to measure
the extent to which meta-learning approaches suffer from
the TOF problem.

• Through extensive experiments, we show that the proposed
methods achieve state-of-the-art performance on several
few-shot learning benchmarks. Meanwhile, compared with
the existing meta-learning methods, they are also less sen-
sitive to the TOF problem, particularly RAML and URAML.

2. Related work

2.1. Meta-learning for few-shot learning

Few-shot learning tasks are also called as N-way K -shot learn-
ing tasks. Each N-way K -shot task contains a support set and
a query set [4,10]. The support and query set contain K and L
examples for each of the N classes, respectively. The existing
meta-learning approaches [10–18,33–38] usually solve the few-
shot learning by training a meta-learner on the N-way K -shot
learning tasks in the following way. Firstly, the meta-learner
is required to inner-update itself on the support set. Secondly,
after inner-updating, the meta-learner is evaluated on the query
set. Finally, by minimizing the loss on the query set, the meta-
learner learns a base learner that has easy-fine-tune weights [10,
13,37,39] or a skillful weight updater [12,18] or both [11] or the
ability to memorize the support set [14]. The methods which
train the meta-learner learning an easy-fine-tune base learner
are also called as weight initialization based methods, because
the meta-learner learns generalized initial weight for few-shot
learning tasks. Recently, MAML, a classical weight initialization
based method, is popular and lots of MAML based methods have
been proposed. For example, LLAML [34] uses a local Laplace
approximation to model the task parameters, and MTL [40] trains
a meta-transfer to adapt a pre-trained deep network to few-shot
learning tasks. Besides, MetaGAN [17] shows that by coupling
MAML with adversarial training, the meta-learner is trained to
learn better decision boundaries between different classes in
few-shot learning. To reduce the computation and memory cost
of MAML, iMAML [33] leverages implicit differentiation to remove
the need of differentiation through the inner-update path.

Though the existing meta-learning methods perform promis-
ing, they seldom consider prior-knowledge and attention mech-
anism in meta-learning. In this paper, we improve meta-learning
for few-shot learning by introducing prior-knowledge and atten-
tion mechanism to meta-learning.
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.2. Attention mechanism

Recent years, attention mechanism [41–44] has been widely
sed in computer vision systems, machine translation, and natu-
al language processing systems. Several manners of the attention
echanism have been proposed, such as soft attention [41,42],
ard attention [43], and self attention [44]. Soft attention trains
weight mask for the hidden features and calculates the atten-

ive features by multiplying the weight mask with the hidden
eatures. The features which multiples with larger weight will
e focused on by the deep model. SENet [42] takes advantage
f soft attention mechanism to win the champion on the image
lassification task of ILSVRC-2017 [45]. Hard attention [43] can
e seen as a module that decides an image block region that
s visible to the network, and the other regions are invisible to
he network. Self-attention [44] improves the performance of the
achine translation system by training a network to find the

nner dependency of the input and that of the output. In this
aper, we use soft attention mechanism as the meta-learner’s
ttention mechanism.

.3. Unsupervised representation learning

Supervised learning is data-hungry at training deep networks,
hich costs a great deal of manual annotation effort. Consider-

ng this disadvantage of supervised learning, several unsuper-
ised learning approaches [26,27,29–32,46] have been proposed.
he traditional unsupervised learning way is training a neural
etwork to reconstruct the input through an Encoder–Decoder
rchitecture, such as Auto-Encoder [26] and Variational
uto-Encoder (VAE) [27]. Colorization [29] uses Lab images to
rain an encoder–decoder network to predict the unseen ab chan-
nels based only on the input L channel. Split-Brain [31] extend
Colorization by training two separated encoder–decoder net-
works to independently predict (1) the ab channels based on the
L channel and (2) predict the L channel based on the ab channels.
Except for the above methods, image rotation based methods [46,
47] present another direction for unsupervised learning. For in-
stance, RotNet [46] trains a network to predict the rotation of
the randomly rotated input image. Recently, contrastive learning
based methods [32,48] develop quickly and show their promising
unsupervised learning performance. In this work, Split-Brain is
default utilized for URAML learning the prior-knowledge about
image classification. Besides, in our experiment, we show that
URAML is compatible with not only Split-Brain but also the
other unsupervised learning methods, such as RotNet [46] and
MoCo [32].

3. Methodology

3.1. Problem of learning from few data

Learning from limited data is extremely difficult for deep
learning models. One reason is that the original input data are
commonly represented in a large dimensional space, typically
with tens or hundreds of thousands of dimensions. For example,
for the image classification task, each original image is commonly
stored in a large dimensional space (the dimension of a 224 × 224
RGB image is 150,528). In this large dimensional space, it is
difficult for a few samples of one category to accurately reflect
the entire characters of this category.

Humans are able to learn new categories efficiently because
they utilize prior-knowledge and attention mechanism in cog-
nition [19,20,22,23,49–53]. Prior-knowledge allows humans to
express perceptual images as high-level representations or de-
scriptions, while attention mechanism enables humans to focus
3

Fig. 2. Network structure of the proposed AML.

on the critical components of the representations. In this way, hu-
mans reduce the dimension of images while maintaining the dis-
criminative image components. This process alleviates the human
cognition load and facilitates humans to learn new categories
efficiently.

The existing meta-learning methods [10,11,13,16,33,34] have
greatly improved deep learning in learning from few data. How-
ever, they focus mainly on training the meta-learner to quickly
adapt its network to fit few-shot learning tasks directly based
on the few original high-dimensional input data. Prior-knowledge
and attention mechanism were almost ignored in these methods,
leading to unsatisfactory performances. Besides, as introduced
before, we propose that ignoring prior-knowledge and atten-
tion mechanism is also the possible reason why the existing
meta-learning approaches are vulnerable to suffer from the TOF
problem.

In this paper, inspired by human cognition and for address-
ing the problem the existing meta-learning approaches expose,
we propose three methods in a step-by-step manner: Atten-
tion based Meta-Learning (AML), Representation and Attention
based Meta-Learning (RAML), Unsupervised Representation and
Attention based Meta-Learning (URAML).

3.2. AML

AML equips the meta-learner with the ability to control its
attention. We first introduce the network structure and then
detail the training of AML.

3.2.1. Network of AML
Fig. 2 shows the network architecture of AML. The network

consists of a feature extractor and an attention-based prediction
(ABP) module. The feature extractor is a CNN F composed of
four cascaded convolutional layers. The ABP module contains a
convolution-based attention model A and a fully-connect layer-
based classifier C. Eq. (1) shows the inference of the network.
θf , θa, and θc are the weights of F , A, and C, respectively. F
extracts features γi from the input image xi. Then, A calculates
the soft attention mask mi for the features γi. By channel-wise
multiplication ⊙ between γi and mi, the attentive features γ α

i are
obtained. Finally, the classifier C outputs the prediction ŷi for the
image xi. We simplify and integrate the overall inference in Eq. (1)
as ŷi = F(xi; θf , θa, θc).⎧⎪⎨⎪⎩

γi = F(xi; θf )
mi = A(γi; θa)
γ α
i = γi ⊙ mi

ŷi = C(γ α
i ; θc)

(1)

In this paper, we use soft attention mechanism to build the at-
tention model. Although soft attention does not function exactly
the same as the attention mechanism in human vision, it plays a
similar role—it helps the meta-learner control its attention to key
features.

Fig. 3 shows the attention model structure. The input feature
γ is first global-average-pooled to obtain the feature γ ′. Then,
a convolution layer and a sigmoid layer are used to predict the
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Fig. 3. The inner structure of the attention model. The shape of feature map γ

is (b,w,h,c) (at the left of the figure), where b, w, h, c are the batch size, width,
eight and number of feature map channels of γ . The shapes of both γ ′ and m
re (b,1,1,c)..

ttention mask m from the feature γ ′. We formulate the attention
odel in Eq. (2).

γ ′
= Pa(γ ),

m = σ (Fa(γ ′
; θa))

(2)

Pa is the global-average pooling operation, σ is the sigmoid
activation, and Fa is the convolution layer in the attention model.

3.2.2. Meta-training of AML
Given a few-shot classification task τ , AML meta-trains the

meta-learner to solve the task τ through the following two steps.
First, AML requires the meta-learner to inner-update itself on

the support set of τ , which can be formulated as Eqs. (3) and (4).⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŷi = F(xi; θf , θa, θc),
Li(θf , θa, θc) = l(ŷi, yi),

Ls(θf , θa, θc) =
1
Ns

Ns∑
i=1

Li(θf , θa, θc)
(3)

(θ ′

f , θ
′

a, θ
′

c) = (θf , θa, θc) − α◦∇(θf ,θa,θc )Ls(θf , θa, θc) (4)

In Eq. (3), xi is the ith image of the support set. l is the
cross-entropy loss function and Li is the meta-learner’s loss on
the image xi. Ls is the meta-learner’s loss on the total support
set and Ns is the number of images in the support set. In Eq. (4),
inspired by Meta-SGD [11], we set α to a trainable vector which
adjusts the inner-update direction and step size. α can also be
detailed as α = [αf , αa, αc]. αf , αa, and αc have the same shape
as the weights θf , θa, and θc , respectively. Therefore, Eq. (4) can
be split into three equations, i.e. θ ′

f = θf − αf ◦∇θf Ls(θf , θa, θc)
and etc.. For simplicity, we merge these three equations into one
equation as Eq. (4) shows. ◦ is the element-wise multiplication.
With Eqs. (3) and (4), the meta-learner inner-updates its weights
θf , θa, θc to θ ′

f , θ
′
a, θ

′
c .

Second, because the inner-updated weight θ ′

f , θ
′
a, and θ ′

c de-
pend not only on the initial values of θf , θa, and θc , but also on
α, all θf , θa, θc , and α can be meta-optimized. We formulate the
meta-optimization as Eqs. (5) and (6).⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŷi = F(xi; θ ′

f , θ
′
a, θ

′
c),

Li(θ ′

f , θ
′
a, θ

′
c) = l(ŷi, yi),

Lq(θ ′

f , θ
′
a, θ

′
c) =

1
Nq

Nq∑
i=1

Li(θ ′

f , θ
′

a, θ
′

c)
(5)

(θf , θa, θc, α) = (θf , θa, θc, α) − β·∇(θf ,θa,θc ,α)Lq(θ ′

f , θ
′

a, θ
′

c) (6)

In Eq. (5), xi is the ith image of the query set, and Nq denotes
the number of images in the query set. Lq is the inner-updated
meta-learner’s loss on the query set. Note that ∇(θf ,θa,θc ,α)Lq(θ ′

f ,

θ ′
a, θ

′
c) computes the gradient of Lq towards (θf , θa, θc, α) but not

(θ ′

f , θ
′
a, θ

′
c). By optimizing Lq, the meta-learner is forced to learn

not only the suitable initial weights θf , θa, θc but also α for task
τ . With the learned initial weights and α, the meta-learner can
 m

4

inner-update itself precisely on the support set and then perform
well on the query set.

In AML, the meta-learner is trained on multiple few-shot
learning tasks using these two steps. This process causes the
meta-learner to learn generalizable initial weights not only for
the feature extractor F and the classifier C but also for the
attention model A. In contrast, the existing initialization-based
meta-learning methods train the meta-learner to learn initial
weights for only the feature extractor and the classifier. There-
fore, compared with the existing meta-learners, AML simplifies
the few-shot learning problem and improves the performance
since it learns how to quickly focus its attention on the features
that are crucial to solving few-shot learning. In our experiments,
we validate the effectiveness of this attention mechanism.

3.3. RAML

RAML assembles the meta-learner with not only the attention
mechanism but also the ability to capitalize on the learned past
knowledge.

3.3.1. Structure of RAML
Fig. 4 shows the meta-learner’s network structure. It consists

of a Representation module and an ABP module. The Represen-
tation module differs from the feature extractor in AML; it is
responsible for the meta-learner leveraging prior-knowledge to
understand the input image. Whereas, the feature extractor in
AML is meta-trained to be responsible for quickly adjusting itself
to solve few-shot learning tasks. In our work, the Representa-
tion module is a ResNet-50 network. Similar to the ABP module
in AML, the ABP module in RAML also contains an attention
model and a classifier. It is responsible for quickly adjusting the
meta-learner’s attention and prediction based on the compact
high-level features extracted by the Representation module. Note
that the Auxiliary module shown in Fig. 4 does not belong to
the meta-learner and it is used only to assist the meta-learner
learning prior-knowledge.

3.3.2. Training of RAML
The training process of RAML can be separated into two stages:

prior-knowledge learning and meta-training stages.
At the prior-knowledge learning stage, with the assistance

of the Auxiliary module, the Representation module is trained to
learn prior-knowledge about image classification in a supervised
manner. The training process can be formulated as⎧⎪⎪⎨⎪⎪⎩

γi = Fr (xi; θr )
ŷi = Cau(γi; θau)

θ∗
r , θ∗

au = argmin
θr ,θau

1
n

n∑
i=1

l(ŷi, yi)
(7)

Fr and Cau denote the Representation and Auxiliary mod-
les, respectively, and θr and θau are their respective weights.
i is an input image used for the representation model learning
rior-knowledge, and n is the number of images. θ∗

r and θ∗
au are

he learned values of θr and θau.
At the meta-training stage, we train the meta-learner on

mount of few-shot learning tasks. For the meta-learner can use
he learned knowledge well to stably express the input image
n high-level representation space, we freeze the Representation
odule and meta-train only the ABP module. Similar to AML,

n RAML, we simplify the meta-learner’s prediction as ŷi =

(xi; θ∗
r , θa, θc), where θ∗

r is the Representation module’s learned
eight at the prior-knowledge stage. θa and θc respectively de-
ote the weights of the attention model and classifier in the ABP

odule.
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Fig. 4. The network structure of the proposed RAML. The meta-learner is composed of a Representation module and an ABP module. The Auxiliary module is used
to assist the meta-learner to learn prior-knowledge.
Fig. 5. The network structure of URAML. The meta-learner is composed of a Representation module and an ABP module. The Auxiliary module is used to assist the
meta-learner to learn prior-knowledge. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
L
r
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Given a few-shot learning task, we formulate the inner-update
f the meta-learner on the corresponding support set as Eqs. (8)
nd (9). Unlike the inner-update of AML which updates all net-
ork weights, RAML only inner-updates the weights θa and θc of

the ABP module. The Representation module weight θ∗
r is frozen

to avoid forgetting the learned prior-knowledge.⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŷi = F(xi; θ∗

r , θa, θc),
Li(θ∗

r , θa, θc) = l(ŷi, yi),

Ls(θ∗
r , θa, θc) =

1
Ns

Ns∑
i=1

Li(θ∗

r , θa, θc)
(8)

(θ ′

a, θ
′

c) = (θa, θc) − α◦∇(θa,θc )Ls(θ∗

r , θa, θc) (9)

After inner-updating, RAML meta-trains the meta-learner on
the corresponding query set, which can be formulated as Eqs. (10)
and (11).⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŷi = F(xi; θ∗

r , θ ′
a, θ

′
c),

Li(θ∗
r , θ ′

a, θ
′
c) = l(ŷi, yi),

Lq(θ∗
r , θ ′

a, θ
′
c) =

1
Nq

Nq∑
i=1

Li(θ∗

r , θ ′

a, θ
′

c)
(10)

θa, θc, α) = (θa, θc, α) − β·∇(θa,θc ,α)Lq(θ∗

r , θ ′

a, θ
′

c) (11)

The main characteristic of RAML is that the Representation
odule and the ABP module are trained separately. The Rep-

esentation module is trained in a supervised manner to learn
he prior-knowledge about image classification, while the ABP
odule is meta-trained to learn how to adjust itself quickly to
olve few-shot learning tasks in the representation space pro-
ided by the Representation module. Compared with AML, which
eta-trains the meta-learner not only adjusting the feature ex-

ractor but also the ABP module, RAML simplifies the few-shot
earning problem because the meta-learner needs to adjust only
ts ABP module when solving few-shot learning tasks. This may
xplain why RAML outperforms AML in our experiment.
5

3.4. URAML

Prior-knowledge can be learned not only from labeled data
but also from large-scale unlabeled data. Thus, we develop the
method URAML which learns the prior-knowledge in an unsuper-
vised learning manner. Fig. 5 shows its network structure. Similar
to RAML, the meta-learner is composed of a Representation mod-
ule and an ABP module. The Auxiliary module in Fig. 5 does not
belong to the meta-learner. The training process of URAML can
also be separated into two stages: prior-knowledge learning and
meta-training stages.

At the prior-knowledge learning stage, the Representation
module learns the knowledge with an unsupervised learning
method Split-Brain [31]. Split-Brain simultaneously trains two
encoder–decoders on Lab images. In Lab color system, the L
channel determines the image brightness, and the ab channels
determine the image color. One encoder–decoder in Split-Brain is
trained to predict the unseen ab channels of the input Lab image,
given only the L channel. Another is trained to predict the unseen
L channel, given the ab channels. As Fig. 5 shows, the Repre-
sentation module consists of two ResNet-50 based encoders and
the Auxiliary module consists of two deconvolution [54] based
decoders. We formulate the prior-knowledge learning process as
Eqs. (12) and (13).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ l
i = Fl(xli; θl)

x̂abi = Dl(γ l
i ; ωl)

Ll(θl, ωl) =
1
n

n∑
i=1

l2(xabi , x̂abi )

θ∗

l , ω∗

l = argmin
θl,ωl

Ll(θl, ωl)

(12)

In Eq. (12), xli and xabi are the L and ab channels of the input
ab image xi, respectively. Fl and Dl are the encoder and decoder,
espectively, and θl and ωl are their corresponding weights. The
ncoder extracts the features γ l from xl and the decoder predicts
i i
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x̂abi based on the features γ l
i . θ

∗

l and ω∗

l are the optimized values
of θl and ωl. Ll is the loss of Fl and Dl, and l2 is the mean squared
error (MSE) loss function. n is the number of Lab images used to
train Fl and Dl. Similarly, we formulate another encoder–decoder
pair which predicts L channel from ab channels as Eq. (13).⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ ab
i = Fab(xabi ; θab)

x̂li = Dab
i (γ ab

i ; ωab)

Lab(θab, ωab) =
1
n

n∑
i=1

l2(xli, x̂li)

θ∗

ab, ω
∗

ab = argmin
θab,ωab

Lab(θab, ωab)

(13)

After unsupervised learning, the representations γi of an Lab
image xi can be obtained with the formulation γi = Con(γ l

i , γ
ab
i ),

where Con() is the concatenate operation.
At the meta-training stage, the ABP module is trained in

the same way as RAML. Note that, the learned weight of the
Representation module in URAML is denoted as θ∗

r = [θ∗

l , θ∗

ab].
Here, we summarize our three methods briefly. Inspired by

human cognition, which makes full use of attention mecha-
nism and prior-knowledge to efficiently learn new knowledge,
we design a novel paradigm by capitalizing on three meth-
ods to introduce attention mechanism and prior-knowledge to
meta-learning in a step-by-step manner. First, the method AML
is designed to leverage attention mechanism in meta-learning.
Second, the method RAML is designed to use both the attention
mechanism and prior-knowledge in meta-learning. Unlike RAML,
URAML learns prior-knowledge through unsupervised learning,
which confers the advantage that the meta-learner performance
can be boosted with (1) the growth of the number of unlabeled
images used at the prior-knowledge learning stage and (2) the
progress of the unsupervised learning algorithm.

4. Experiments

4.1. Experimental dataset

We use several datasets in all our experiments: MiniIma-
genet [12], Omniglot [55], MiniImagenet-900, Places2 [56],
COCO2017 [57], and OpenImages-300. Note that, we resize all the
images in Omniglot into 28 × 28 resolution, and all the other
images into 84 × 84.

4.1.1. MiniImagenet
MiniImagenet [12] is popularly used for evaluating few-shot

learning and meta-learning. It contains 100 image classes, in-
cluding 64 training classes, 16 validation classes, and 20 testing
classes. Each image class with 600 images are sampled from the
ImageNet dataset [58].

4.1.2. Omniglot
Omniglot [55] is another widely used dataset for few-shot

learning. It contains 50 different alphabets and 1623 characters
from these alphabets, and each character has 20 images that
hand-drawn by 20 different people.

4.1.3. MiniImagenet-900
MiniImagenet-900 dataset is designed for the Representation

modules in RAML and URAML learning prior-knowledge. It con-
tains 900 image classes and each image class with 1300 images
are collected from the original ImageNet dataset. It is worth
noting that there is no image class in MiniImageNet-900 coincides

with the classes in the MiniImagenet dataset.

6

Table 1
Few-shot learning performance on MiniImagenet. The methods shown in the
upper part of the table use shallow networks to extract image features while
those shown in the lower part use deep networks. All proposed methods are
presented in bold font.
Method Venue 5-way accuracy

1-shot 5-shot

MAML [10] ICML-17 48.70 ± 1.84% 63.11 ± 0.92%
Prototypical nets [5] NIPS-17 49.42 ± 0.78% 68.20 ± 0.66%
Meta-SGD [11] / 50.47 ± 1.87% 64.03 ± 0.94%
LLAMA [34] ICLR-18 49.40 ± 1.83% /
Relation Net [60] CVPR-18 51.38 ± 0.82% 67.07 ± 0.69%
GNN [61] ICLR-18 50.33 ± 0.36% 66.41 ± 0.63%
Spot-Learn [62] CVPR-19 51.03 ± 0.78% 67.96 ± 0.71%
iMAML HF [33] NIPS-19 49.30 ± 1.88% /
Meta-MinibatchProx [63] NIPS-19 50.77 ± 0.90% 67.43 ± 0.89
NIL [39] ICLR-20 48.00 ± 0.70% 62.20 ± 0.50
MAML + Meta-dropout [35] ICLR-20 51.93 ± 0.67% 67.42 ± 0.52
Meta-SGD + Meta-dropout [35] ICLR-20 50.87 ± 0.63% 65.55 ± 0.57
MAML + L2F [36] CVPR-20 52.10 ± 0.50% 69.38 ± 0.46
AML / 52.25 ± 0.85% 69.46 ± 0.68%
SNAIL[14] ICLR-18 55.71 ± 0.99% 68.88 ± 0.92%
TADAM[64] NIPS-18 58.50 ± 0.30% 76.70 ± 0.30%
MetaGAN+RN[17] NIPS-18 52.71 ± 0.64% 68.63 ± 0.67%
AM3-TADAM[65] ICLR-19 65.30 ± 0.49% 78.10 ± 0.36%
Incremental[66] NIPS-19 54.95 ± 0.30% 63.04 ± 0.30%
LEO+L2F[36] CVPR-20 62.12 ± 0.13% 78.13 ± 0.15%
RAML / 63.66 ± 0.85% 80.49 ± 0.45%
URAML / 49.56 ± 0.79% 63.42 ± 0.76%
URAML(AE) / 33.29 ± 0.71% 43.60 ± 0.66%
URAML(RotNet) / 53.61 ± 0.85% 66.17 ± 0.73%
URAML(MoCo) / 55.73 ± 0.68% 69.32 ± 0.63%

4.1.4. Other datasets
As the Representation module of URAML is trained by unsu-

pervised learning, we take full advantage of this characteristic
by training the Representation module of URAML on not only
MiniImagenet-900 but also Places2 [56], COCO2017 [57], and
OpenImages-300. The dataset OpenImages-300 is a subset of
OpenImages-V4 [59]. The total OpenImages-V4 dataset contains 9
million images, and we randomly downloaded 3 million images
from the OpenImages-V4 website to form the OpenImages-300
dataset.

4.2. Experiments on MiniImagenet

On MiniImagenet, we test all proposed methods on 5-way
1-shot and 5-way 5-shot classification tasks. All performances are
presented in the ACCmean ± ACCinterval formation, where ACCmean
is the average of the testing accuracies on 600 testing tasks and
ACCinterval is the 95% confidence interval. All 600 testing tasks are
randomly generated on the test set of MiniImagenet. The support
and query set of each 5-way K -shot task contains 5∗K and 5∗15
images, respectively.

For AML, the meta-leaner’s network structure is shown in
Fig. 2. The feature extractor contains 4 Convolution_ReLU_Batch
normalization (C_R_B) layers and the classifier is a fully-connect
layer. The attention model structure is shown in Fig. 3. Each
Convolution layer consists of 64 channels. We train the meta-
learner on 200,000 randomly generated tasks for 60,000 itera-
tions, and set the learning rate to 0.001, and decay the learn-
ing rate to 0.0001 after 30,000 iterations. Moreover, to prevent
the meta-learner from over-fitting, we set Dropout, L1, and L2
normalization to 0.2, 0.001, and 0.00001, respectively.

The experimental results of AML on MiniImagenet are shown
in Table 1. Note that in Table 1, the methods shown in the upper
part of the table use shallower backbone consisting of 4 or 5
C_R_B layers, while the methods in the lower part of the table
use deeper ResNet-based backbone. Among all the methods using
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etailed structure of the decoder in the auxiliary module of URAML.
Layers Number of filters Kernel

Convolution 1024 5
Deconvolution 512 3
Deconvolution 256 3
Convolution 1 or 2 1

shallow networks, AML attains the state-of-the-art performances
on both the 5-way 1-shot and 5-way 5-shot image classification
tasks. Note that

For RAML, the Representation module is a ResNet-50 [67]
network, and the Auxiliary module is a fully-connect layer. The
attention model is the same as that in AML, and the classifier
contains two fully-connect layers.

At the prior-knowledge learning stage, we set the batch size
and the learning rate to 256 and 0.001, respectively. L2 normal-
ization with 0.00001 and Dropout with 0.2 are utilized to pre-
vent the Representation module from over-fitting. At the meta-
training stage, the ABP module is meta-trained with the same
setting as AML. The experimental results of RAML are listed
in Table 1. Compared to AML, RAML significantly improves the
meta-learner’s performance. It rises the accuracy on 5-way 1-shot
tasks from 52.25% to 63.66%, and the accuracy on 5-way 5-shot
tasks from 69.46% to 80.49%.

The most likely reason why RAML performs well is that before
the meta-training stage, the Representation module has learned
the prior-knowledge that helps the meta-learner understand new
input images and provides high-level meaningful image repre-
sentations. At the meta-training stage, the meta-learner’s work
becomes easier because it only needs learning how to quickly
adjust its ABP module based on the compact features provided by
the Representation module; it does not need to take care of the
original high-dimensional input data. However, the AML meta-
learner works harder than does the RAML meta-learner, because
it must adjust its entire network to fit new few-shot learning
tasks based on the original input data.

For URAML, the Representation module learns the prior-
knowledge through unsupervised learning. As Fig. 5 shows, two
independent ResNet-50 based encoders compose the Representa-
tion module. The Auxiliary module is composed of two deconvo-
lution-based decoders. Table 2 shows the detail of the decoder
network structure. The last Convolution layer’s number of filters
is set to 1 or 2 according to that the decoder recovers the
L channel or the ab channels of the Lab image. At both the
prior-knowledge learning and meta-training stages, we set all
hyperparameters to the same values as RAML. Note that to reduce
the training computation cost, the decoders in the Auxiliary
module recover the ab and L channels into 11 × 11 resolution
rather than the original 84 × 84 resolution.

The experimental results of URAML are reported in Table 1.
URAML lags behind RAML, and the underlying reason is that
URAML learns prior-knowledge with unsupervised learning
method Split-Brain, while RAML learns its prior-knowledge
through supervised learning. The discussion about URAML(AE),
URAML(RotNet), and URAML(MoCo) will be detailed in the abla-
tion study in Section 4.4.2.

4.3. Experiments on Omniglot

As Omniglot is a much easier dataset than MiniImagenet that
the existing meta-learners can easily achieve more than 95%
accuracy on testing tasks generated on Omniglot, we only test
method AML on Omniglot.

Same to the experiments on Miniimagenet, we also train the
meta-learner on 200,000 randomly generated tasks for 60,000
7

iterations and set the learning rate to 0.001. The experiment
results are shown in Table 3. It is clear that the proposed method
AML attains state-of-the-art performance on 2 of all 4 kinds of
few-shot image classification tasks. On the 5-way 1-shot task,
though the method MetaGAN+RN slightly outperforms AML,
we still highlight AML since MetaGAN+RN uses a deeper
ResNet-based network while AML uses a shallower network.
On the 20-way 1-shot task, our method AML surpasses other
methods by a large margin. For example, compared to NIL, AML
improves the meta-learner’s performance from 96.70% to 98.48%.

4.4. Ablation study

4.4.1. The attention mechanism
To confirm the beneficial effect of the attention mechanism

for meta-learning, we conduct experiments to compare the per-
formance of a meta-learner equipped with the attention model to
that of its counterpart without the attention module. The experi-
mental results are shown in Table 4. The compared meta-learner
marked with an asterisk (‘*’) is the meta-learner re-implemented
by ourselves. The performances of our re-implemented
meta-learners differ slightly from those reported in their original
papers. This is probably caused by different hyper-parameter
or experimental settings (all methods in this experiment use
convolutional layers with 32 filters). The comparisons in Table 4
reveals that the attention mechanism significantly improves the
meta-learner.

4.4.2. Unsupervised learning for URAML
URAML default learns prior-knowledge through Split-Brain.

To investigate whether URAML is compatible with other
unsupervised learning methods, we train URAML to learn
prior-knowledge through other unsupervised learning methods
Auto-Encoder [26], RotNet [46], and MoCo [32]. We use URAML
(AE), URAML(RotNet) and URAML(MoCo) to denote the URAML
meta-learners that learn prior-knowledge through Auto-Encoder,
RotNet, and MoCo, respectively. The reported results of URAML
(AE), URAML(RotNet), URAML(MoCo) and URAML in Table 1 in-
dicate that the unsupervised learning algorithm selection sub-
stantially affects the meta-learner’s performance. Clearly, URAML
(MoCo) outperforms the other URAML meta-learners. The possi-
ble reason behind this result is that among all unsupervised learn-
ing methods, MoCo is the most powerful one. This experiment
reveals that (1) URAML is compatible with other unsupervised
learning methods and (2) better unsupervised learning methods
result in better URAML performances. Considering that with
the development of unsupervised learning algorithm, URAML’s
performance can be significantly improved, we also highlight the
best performances of URAML.

4.4.3. Prior-knowledge learning dataset
Here, we assess how does the prior-knowledge learning

dataset affects RAML and URAML.
(a) Effect to RAML: In RAML, we adopted the reorganized

iniImagenet-900 dataset as the default prior-knowledge learning
ataset; however, in this experiment, the Representation module
earns prior-knowledge from Places2 [56] instead. We denote this
eta-learner as RAML(Places2). All the other experimental set-

ings and hyperparameters are consistent with those conducted
n the original RAML. Table 5 shows the experimental results.
learly, the choice of prior-knowledge learning dataset affects the
eta-learner. The reason is that different prior-knowledge learn-

ng datasets lead the Representation module to learn different
nowledge and express the image features differently. Places2 is a
ataset commonly used for scene classification that results in the



Y. Qin, W. Zhang, C. Zhao et al. Knowledge-Based Systems xxx (xxxx) xxx

T
F

q
d
U
U
w
d
w
l

able 3
ew-shot learning performance on Omniglot. The accuracy is assessed in the same way as MAML [10].
Method Venue 5-way accuracy 20-way accuracy

1-shot 5-shot 1-shot 5-shot

MAML [10] ICML-17 98.70 ± 0.40% 99.90 ± 0.10% 95.80 ± 0.30% 98.90 ± 0.20%
Prototypical nets [5] NIPS-17 98.80% 99.70% 96.00% 98.90%
Meta-SGD [11] / 99.53 ± 0.26% 99.93 ± 0.09% 95.93 ± 0.38% 98.97 ± 0.19%
Relation net [60] CVPR-18 99.60 ± 0.20% 99.80 ± 0.10% 97.60 ± 0.20% 99.10 ± 0.10%
GNN [61] ICLR-18 99.20% 99.70% 97.40% 99.00%
Spot-Learn [62] CVPR-19 97.56 ± 0.31% 99.65 ± 0.06% / /
iMAML HF [33] NIPS-19 99.50 ± 0.26% 99.74 ± 0.11% 96.18 ± 0.36% 99.14 ± 0.10%
SNAIL[14] ICLR-18 99.07 ± 0.16% 99.78 ± 0.09% 97.64 ± 0.30% 99.36 ± 0.18%
NIL [39] ICLR-20 / / 96.70 ± 0.30% 98.00 ± 0.04%
MetaGAN + RN[17] NIPS-18 99.67 ± 0.18% 99.86 ± 0.11% 97.64 ± 0.17% 99.21 ± 0.10%
AML(ours) / 99.65 ± 0.10% 99.85 ± 0.04% 98.48 ± 0.09% 99.55 ± 0.06%
Table 4
Ablation experiments to investigate the attention mechanism on MiniImagenet.
Method 5-way accuracy

1-shot 5-shot

MAML* 48.03 ± 0.83% 64.11 ± 0.73%
MAML+attention 48.52 ± 0.85% 64.94 ± 0.69%
Reptile* 48.23 ± 0.43% 63.69 ± 0.49%
Reptile+attention 48.30 ± 0.45% 64.22 ± 0.39%
Meta-SGD* 48.15 ± 0.93% 63.73 ± 0.85%
Meta-SGD+attention 49.11 ± 0.94% 65.54 ± 0.84%

Representation module learning scene understanding knowledge
rather than object classification knowledge.

(b) Effect to URAML: In this experiment, we test how the
uantity of unlabeled Lab images in the prior-knowledge learning
ataset affect URAML. We train two other versions of URAML:
RAML(V1) and URAML(V2). The Representation module of
RAML(V1) learns prior-knowledge only fromMiniImagenet-900,
hile that of URAML(V2) learns prior-knowledge from three
atasets: MiniImagenet-900, Places2, and COCO2017. Compared
ith URAML(V1) and URAML(V2), the primordial URAML uses the

argest quantity of unlabeled Lab images because it learns on all
of MiniImagenet-900, Places2, COCO2017, and OpenImages-300.
Table 5 shows the performances of URAML(V1) and URAML(V2).
Clearly, the primordial URAML outperforms URAML(V1) and
URAML(V2), and the more unlabeled Lab images that the meta-
learner uses to learn prior-knowledge the better it performs. This
experiment reveals that a large performance improvement space
still exists, because we can use more unlabeled data to train
URAML.

4.5. Cross-testing experiment

We find that the existing meta-learning methods generally
suffer from a seldom-studied problem: Task-Over-Fitting (TOF).
An example of the TOF problem is that a meta-learner to be tested
on 5-way 1-shot classification tasks should be trained on 5-way
1-shot tasks rather than on other tasks. Similarly, a meta-learner
to be tested on 5-way 5-shot tasks should be trained on 5-way 5-
shot tasks. This situation occurs because a meta-learner trained
on 5-shot tasks overfits to 5-shot tasks, and when tested on 1-
shot tasks, it will perform notably worse than the meta-learner
trained on 1-shot tasks.

We perform numerous cross-testing experiments to evaluate
the extent to which MAML, Meta-SGD, AML, RAML, and URAML
suffer from the TOF problem. The corresponding experimental re-
sults show that compared with the other methods, the proposed
methods suffer less from the TOF problem, especially RAML and
URAML.

For each tested meta-learning method, we perform
cross-testing experiments in the following manner: (1) Train the
8

meta-learner on 5-way K -shot image classification tasks, where
K ∈ {1, 3, 5, 7, 9}. (2) Test the meta-learner on 5-way J-shot
tasks, where J ∈ {1, 3, 5, 7, 9}. Finally, we can obtain 5 ∗ 5 =

25 cross-testing performance for each meta-learning method. The
experimental results are shown in Table 6.

Table 6 reveals that MAML suffers extensively from the TOF
problem because its meta-learner, which performs best on
K -shot tasks, probably does not perform well on J-shot tasks,
where K ̸= J . For example, on 1-shot testing tasks, the MAML
meta-learner trained on 1-shot tasks performs best; but on 3-
, 5-, 7-, and 9-shot testing tasks, it performs worse than the
other four meta-learners trained on 3-, 5-, 7-, and 9-shot training
tasks. This experiment means the MAML meta-learner trained on
1-shot training tasks overfits to 1-shot testing tasks. The URAML
meta-learner is little troubled by the TOF problem because the
meta-learner that performs best on K -shot tasks probably also
performs best on J-shot tasks, where K , J ∈{1,5,7,9}. For example,
the URAML meta-learner trained on 1-shot training tasks per-
forms best not only on 1-shot testing tasks but also on 5-, 7-, and
9-shot testing tasks, which means that the meta-learner trained
on 1-shot tasks generalizes well to the other J-shot testing tasks.

We design a Cross-Entropy across Tasks (CET) metric to quan-
tize the extent to which a given meta-learning approach is vul-
nerable to the TOF problem. The evaluation process is shown in
Eq. (14), where i, j∈{1,3,5,7,9}. The overstruck variables are vec-
tors, and S and D are the softmax and cross-entropy operations,
respectively. ai represents the i-shot testing accuracies (i-shot
row in Table 7) of the five meta-learners trained on 1-, 3-, 5-, 7-,
and 9-shot tasks. d i represents the i-shot testing accuracy distri-
bution of the meta-learners. li,j represents the similarity between
the accuracy distribution vector d i and d j, where i,j∈{1,3,5,7,9}. L
represents the overall similarities of li,j for a specific approach.⎧⎨⎩
d i = S(ai/max(ai))
lij = D(di, d j)
L =

∑i̸=j
i,j∈1,3,5,7,9 lij

(14)

For example, the testing accuracies a3 of Meta-SGD [58.24%,
59.18%, 58.90%, 58.75%, 59.15%] are the 3-shot testing accuracies
of the five Meta-SGD meta-learners trained on 1-, 3-, 5-, 7-, and
9-shot tasks. Therefore, a3/max(a3) = [58.24%, 59.18%, 58.90%,
58.75%, 59.15%] / 59.18%, and d3 = S(a3/max(a3)) = [0.116,
0.255, 0.202, 0.178, 0.249]. Similarly, d7 = [0.122, 0.206, 0.255,
0.233, 0.184]. Then, l3,7 = 1.603 and L = 34.22.

Obviously, the smaller the total distance L appears, the less
the meta-learning approach suffers from the TOF problem. We
show the performances of the different meta-learning approaches
in terms of the CET metric in Table 7. This experiment shows
that the proposed AML, RAML, and URAML perform better than
do MAML and Meta-SGD on the CET metric; of these, RAML and
URAML perform the best. The possible reason for this result is
that prior-knowledge and attention mechanism are both helpful
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Fig. 6. Visualization of the distributions of the γ and γ α features of all three developed methods. For each method, we randomly generate a 5-way 1-shot and
a 5-way 5-shot testing task on Miniimagenet. The query set in each task contains 100 images for each image class. For each testing task, after the meta-learner
inner-updating on the support set, we use t-SNE to visualize the distributions of the meta-learner’s γ and γ α of the query set images. In each picture, five colors
are used to represent the 5 image classes in the testing task and each point denotes the γ or γ α feature of a query image. We also show the inner-class distance
1 and inter-class distance D2 of the feature distribution in each picture to better understand the distributions.
Table 5
Results of the ablation experiments evaluating the effects of prior-knowledge learning dataset to RAML and URAML.
P: Places2, M: Miniimagenet-900, C: COCO2017, O: Openimages-300.
Method Dataset Number of images 5-way accuracy

1-shot 5-shot

RAML(Places2) P 2.62 million 58.82 ± 0.89% 74.09 ± 0.76%
RAML M 1.15 million 63.66 ± 0.85% 80.49 ± 0.45%
URAML(V1) M 1.15 million 45.91 ± 0.79% 61.04 ± 0.71%
URAML(V2) M, P, C 4.10 million 48.82 ± 0.79% 62.84 ± 0.78%
URAML M, P, C, O 7.10 million 49.56 ± 0.79% 63.42 ± 0.76%
Table 6
Cross-testing experimental results of MAML, Meta-SGD, AML, RAML, and URAML. Each column presents specific K -shot training tasks and each row presents specific
-shot testing tasks, where K , J ∈{1,3,5,7,9}. For each method, the value in the J-shot row and K -shot column presents the J-shot testing accuracy of the meta-learner
rained on K -shot training tasks. For example, the value 59.99 in the 3-shot row and 7-shot column of MAML presents the 3-shot testing accuracy of the MAML
eta-learner trained on 7-shot training tasks. The value 80.83 in the 9-shot row and 1-shot column of RAML presents the 9-shot testing accuracy of the RAML
eta-learner trained on 1-shot training tasks. For each method, within each J-shot testing scene, we highlight the highest accuracy with bold font. Moreover, the
igher the accuracy the more red background. The worst accuracy on each J-shot testing scene uses white background.
s
D
a
d
a
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Table 7
Performance of different meta-learning methods on the CET metric.
Method MAML Meta-SGD AML RAML URAML

CET 57.19 34.22 33.35 32.13 32.16

in reducing the meta-learner’s few-shot cognitive load and in
avoiding interference from redundant useless information.

An interesting phenomenon can be seen in Table 6, where the
eta-learner trained by RAML on 5-way 9-shot tasks performs
est on most of the test tasks, but the meta-learner trained by
RAML on 5-way 1-shot tasks performs best. The possible rea-
on behind this phenomenon is that the Representation module
f RAML learns knowledge through supervised learning, while
he Representation module of URAML learns knowledge through
nsupervised learning. This difference results in variations in
he output features between these two types of Representation
odules.
9

4.6. Feature distribution

To understand the effect of attention mechanism, we visualize
the distributions of features γ and γ α (shown in Figs. 2, 4 and
5) in Fig. 6 with t-SNE [68]. In Fig. 6, the 500 feature points of
each picture represent 500 γ or γ α features from the query set
images of a randomly generated 5-way 1- or 5-shot testing task
on MiniImagenet.

The average distribution inner-class distance D1 of γ α is
maller than that of γ , and the average inter-class distance
2 of γ α is larger than that of γ . This result indicates that
mong different image classes, the distribution of γ α is more
istinguishable than that of γ . The underlying reason is that the
ttention mechanism enables the meta-learner to quickly focus
ts attention on the critical image features and makes γ α more
istinguishable than γ for differentiating images of different
lasses.
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Fig. 7. The first row shows some images sampled from the query set of a 5-way
1-shot classification task. The second and third rows show the corresponding Hγ

nd Hγ α heat-maps.

.7. Heat-maps

To further analyze how the meta-learner leverages its at-
ention model, we visualize the γ and γ α heat-maps in Fig. 7,
where the heat-maps are denoted as Hγ and Hγ α , respectively.

is the output of RAML’s Representation module, while γ α is
the attentive feature. To obtain Hγ , we first inner-update the
RAML meta-learner on the support set of a randomly generated 5-
way 1-shot testing task on MiniImagenet. Second, we input each
image x ∈ R84×84×3 of the query set to the meta-learner and
obtain the feature map γ ∈ R6×6×2048. Third, we average γ across
its 2048 channels to obtain a feature map Mγ ∈ R6×6. Then, we
onvert the gray feature map Mγ into an RGB heat-map M̂γ ∈
6×6×3. Finally, we resize M̂γ into 84 × 84 resolution and obtain
γ ∈ R84×84×3 with the formulation Hγ = 0.4 ∗ x + 0.6 ∗ M̂γ .
imilarly, we can obtain the heat-map Hγ α ∈ R84×84×3 through
he same procedure.

The heat-maps in Fig. 7 show that Hγ α is more sensitive to the
istinguishable region of the input image than is Hγ , revealing
hat with the attention model, the meta-learner learns to focus
n the most discriminative image features. For example, the first
olumn of Fig. 7 is a fish. In addition to the fish body, Hγ is
lso sensitive to some background regions of the image. However,
he meta-learner discovers that the fish body is the only crucial
eature for categorizing this image; thus, it shrinks its attention
egion so that Hγ α is sensitive only to the fish body.

Through the visualization and analysis of the heat-maps Hγ

nd Hγ α , we conclude that the attention mechanism helps the
eta-learner focus on the most distinguishable image features,

urther helping the meta-learner perform better few-shot learn-
ng.

. Conclusion and the future work

In this paper, inspired by human cognition and learning pro-
ess, we investigate the importance of attention mechanism and
rior-knowledge for meta-learning based few-shot learning. To
olve a few-shot learning task, the meta-learner should first well
se stable prior-knowledge to understand images and extract
ompact image feature representations, allowing it to solve the
ask in the compact feature representation space rather than the
igh-dimensional original image space. Then, the meta-learner
hould focus its attention on the crucial aspects of the extracted
eature representations and make the final decision based on that
ttention. Therefore, we propose three step-by-step methods,
ML, RAML, and URAML, to introduce attention mechanism and
 6

10
rior-knowledge to meta-learning. All three methods work suc-
essfully and achieve state-of-the-art performances on a variety
f few-shot learning benchmarks, which indicates the rationality
f our viewpoint and methods.
In addition, we find that the existing meta-learning approa-

hes suffer from the TOF problem, making it difficult for these
eta-learning approaches to be deployed in practical few-shot

earning applications. We design a novel CET metric to evalu-
te the extent to which a meta-learning method suffers from
OF. The experiments show that compared to the existing meta-
earning methods, the proposed methods suffer less from the TOF
roblem, particularly RAML and URAML.
Among all the proposed methods, although URAML does not

erform best, we believe it is the most promising method because
onsiderable development space exists for improving its perfor-
ance. From our experiments, two manners seem to be able

o significantly improve the performance of URAML. One man-
er involves developing better unsupervised or self-supervised
earning algorithms. RAML performs better than URAML, reveal-
ng that the current unsupervised learning algorithm falls be-
ind supervised learning. Bridging the gap between unsupervised
earning and supervised learning algorithms would boost the per-
ormance of URAML by a substantial amount. The other manner
nvolves using more unlabeled data from which URAML can learn
rior-knowledge. Although our current approach uses 7.1 million
nlabeled images to train URAML, that is still dramatically smaller
han the number of images that humans have typically seen in
erms of both quantity and quality. Regarding quantity, we can
ssume that if a person views 1 image per second continually
or 15 h per day, that person will have seen about 100 million
mages in 5 years. Regarding quality, humans see the world in
multimodal manner; that is, humans can not only see objects
ut also touch them and move them around (or move around the
bjects); this aspect helps humans understand the world more
ccurately than can computer vision alone. In a word, developing
nsupervised or self-supervised learning algorithms and collect-
ng more unlabeled images would both help to improve URAML’s
erformance.
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