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Efficient Face Alignment with Fast Normalization and

Contour Fitting Loss
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of Chinese Academy of Sciences, National Lab of Pattern Recognition, Institute of Automation, CAS, Beijing

Face alignment is a key component of numerous face analysis tasks. In recent years, most existing methods

have focused on designing high-performance face alignment systems and paid less attention to efficiency.

However more face alignment systems are now applied on low-cost devices, such as mobile phones. In this

article, we design a common efficient framework that can team with any face alignment regression network

and improve the overall performance with nearly no extra computational cost. First, we discover that the

maximum regression error exists in the face contour, where landmarks do not have distinct semantic posi-

tions, and thus are randomly labeled along the face contours in training data. To address this problem, we

propose a novel contour fitting loss that dynamically adjusts the regression target during training so the

network can learn more accurate semantic meanings of the contour landmarks and achieve better localiza-

tion performance. Second, we decouple the complex sample variations in face alignment task and propose a

Fast Normalization Module (FNM) to efficiently normalize considerable variations that can be described by

geometric transformation. Finally, a new lightweight network architecture named Lightweight Alignment

Module (LAM) is also proposed to achieve fast and precise face alignment on mobile devices. Our method

achieves competitive performance with state-of-the-arts on 300W and AFLW2000-3D benchmarks. Mean-

while, the speed of our framework is significantly faster than other CNN-based approaches.
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1 INTRODUCTION

Face alignment algorithms try to detect the facial landmarks by using the facial appearance in

2D face images. It plays a fundamental role in many face analysis tasks, such as face recognition,

expression estimation, and 3D face reconstruction. Recently, face alignment methods have been
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Fig. 1. Overview of our framework. The upper network is a Fast Normalization Module that can efficiently

normalize translations, scalings, and in-plane rotations. Then the normalized face image is input to our main

network to predict the final landmarks. We use the lightweight CNN at both stages and apply CF loss to

train our main network.

required to handle the complicated pose, illumination, and expression variations in unconstrained

environment and to run on low-cost devices such as mobile at real-time speed.

Thanks to the powerful fitting ability of Convolutional Neural Networks (CNNs), CNNs have

been successfully applied to face alignment task, regarding the landmark localization task as a

regression problem. Deep learning–based methods regress landmark coordinates [25, 35, 43, 45]

or heatmaps [10, 40] from facial images. However, they relied on a heavy network [10, 12, 25, 37,

40] to get powerful fitting ability with unsatisfactory efficiency. Few high-performance methods

can achieve real-time speed on CPU, certainly not on low-cost handheld devices such as mobile

phones. Therefore, designing a CNN-based framework with satisfactory performance and high

efficiency is crucial for face alignment applications. To achieve this goal, we propose to improve

existing face alignment framework in two aspects: designing more powerful loss function with-

out bringing computational cost and designing a efficient framework that allocates the limited

computing resource reasonably.

In this article, we first investigate the localization errors of existing face alignment methods

and indicate that most detection errors come from the contour landmarks. We further compare

the predicted landmarks with the ground-truth ones and notice that the positions of labeled land-

marks have some potential randomness. And the randomness depends on whether the landmarks

possess distinct semantic positions or not. Some landmarks have distinct semantic positions that

usually distribute on the corners of face structure, such as eye corner, mouth corner. For this kind

of landmark, annotators are able to accurately identify their locations by their texture appearance.

In contrast, some landmarks (e.g., those evenly distributed along the face contour) do not have clear

and accurate definition. Therefore, it can make human annotators confused about the positions of

weak semantic points, and it is inevitable for annotators to introduce random noises during anno-

tating. The inconsistent and imprecise annotations can mislead CNN training and cause degraded

performance. Since the face contour curve is much longer than other curves, the random noise is

most serious in contour landmarks. To resolve this problem, we propose a novel contour fitting re-

gression loss (CF Loss). The contour fitting loss automatically adjusts the regression target during
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training and helps the network better understand the semantic position of contour landmarks. It

is beneficial for searching for the better local optima and paying more attention to localize the

points that possess strong semantic meaning. Experiments show that our novel contour fitting

loss is effective for improving performance of face alignment.

To better allocate the limited computing resource, we systematically analyze the effects of dif-

ferent pose variations and present an efficient two-stage face alignment framework with a Fast

Normalization Module (FNM) followed by an unprecedented lightweight face alignment network

named Lightweight Alignment Module (LAM). Different from the common landmark localization

methods that adopt a heavy network to deal with all the variations [18, 23, 38, 40], we demonstrate

that under strict computation limit, it is more effective and efficient to divide the face alignment

into two subtasks: image normalization and landmark localization. First, FNM coarsely localizes

the landmarks with tiny cost, normalizing the scaling, translation, and in-plane rotation of the

input images. Then the LAM trained by our novel contour fitting loss accurately localizes the

landmarks. Although two-stage framework has been applied in previous works [14, 25], they did

not consider the efficiency of the normalization stage and adopted heavy networks to normalize

the image, generating a lot of redundant computation. In this article, we demonstrate that a sim-

ple and tiny network is able to finish the normalization task, and this normalization is especially

important when the computation resource is limited.

This work aims to provide a surprisingly efficient baseline method to alleviate the impact of

simply described variations and weak semantic points because LAM can be replaced by any CNN

regression network. Our method is a common efficient face alignment framework that can sig-

nificantly improve the overall performance with nearly no extra computational cost. We believe

that our framework is helpful for inspiring and evaluating new ideas for the face alignment field.

Extensive experiments on 300W and AFLW2000-3D datasets demonstrate the effectiveness of our

method and achieve competitive performance with other state-of-the-art methods.

The main contributions of our work include:

• According to the different semantic positions, we propose a novel contour fitting regression

loss that helps the network better understand the semantic positions of contour landmarks

to improve the localization performance.

• We decouple the complex sample variations in face alignment task and design a common

two-stage alignment framework with an FNM and an LAM to localize landmarks accurately

and efficiently. The two-stage architecture is found very effective when the computation

resource is limited.

• Our method achieves competitive performance with the state-of-the-art on 300W and

AFLW2000-3D benchmarks and the speed is also significantly faster than other CNN-based

face alignment approaches.

2 RELATED WORK

Face alignment has achieved remarkable successes during the past decades, which can be divided

in several ways. Traditional approaches are based on statistical models such as Active shape models

(ASM) [7] and Active appearance models (AAM) [8], which perform well in some constrained sce-

narios. Recently, regression-based methods, especially cascaded regression methods, signicantly

boost the performance of face alignment. The most efficient cascaded regression methods need an

initial shape and regress the current offset via boosting of weak regressors [6, 11, 39] or the shadow

models [30, 42]. The representative approaches are Supervised Descent Method (SDM) [39] and

Coarse-to-Fine Auto-Encoder Network (CFAN) [42], which cascades several stacked auto-encoders

in a coarse-to-fine way to refine the shape stage-by-stage. Although cascaded methods achieve
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promising performance on both controlled and wild settings with high speed, most of them are

based on linear or shallow models that might be insufficient for modeling the complex nonlin-

earity problem, especially under the challenging wild scenario. Furthermore, extraction of the

hand-crafted features like SIFT [24] for dense points also consumes lot of time. So it is not easy to

extend cascaded regression method to tackle with challenge task in most practical applications.

In the past three years, convolutional neural networks (CNN) achieved very impressive results

on many computer vision tasks, including face alignment. Sun et al. [35] propose to cascade several

DCNN to predict the shape stage-by-stage. Zhang et al. [45] proposed a single CNN and jointly

optimize facial landmark detection together with other tasks of facial attributes, further enhancing

the speed and performance. The methods above use shadow CNN models to directly regress facial

landmarks, which is difficult to cope with the complex task with dense landmarks and large pose

variations. Many popular semantic segmentation and human pose estimation frameworks can also

be used for face alignment [10, 40]. They predict a heatmap which contains existing probability

of the corresponding landmark. These methods usually need lots of model parameters and much

computation load due to the up-sampling and deconvolution operation. In this article, we focus on

designing an efficient framework with high accuracy. Therefore, we use CNN to directly regress

the landmark coordinates like traditional CNN-based approaches. Feng et al. [14] study different

regression loss and design a piece-wise loss function that paid attention to the small- and medium-

range errors and alleviate impact of outliers. Different from this method that develops loss function

from the theoretical perspective, we analyze different semantic meanings of various landmarks in

the human face and proposed a novel contour fitting loss. Our contour fitting loss pays more

attention to localize the points that possess a strong semantic meaning and help CNN search for

the better local optima.

Two recent works, LAB [37] and SBR [12], are related to the problem caused by weak semantic

points. LAB trains a facial boundary heatmap estimator and incorporates it into the main landmark

regression network to provide the facial geometric structure, leading to improved performance.

SBR proposes a registration loss that uses the coherency of optical flow from adjacent frames as its

supervision. They all utilize extra information to help CNN better understand the face structure.

However, compared with our method, they have many disadvantages: First, the regression net-

works of LAB and SBR still use ground-truth as their optimization target. Therefore, LAB and SBR

do not intrinsically address the problem caused by weak semantic points, because the degraded

accuracy is actually derived from the random noise in annotated contour points. Second, LAB and

SBR both apply complex network (e.g., hourglass) to regress heatmaps in their framework, which

are computationally expensive and cannot be applied on platforms with limited computational re-

sources. Third, the optical flow used in SBR is not always credible in unconstrained environments.

In this work, we propose a common efficient face alignment framework that can team with any

backbone and alleviate the problem caused by weak semantic points.

Recently, model compression and efficient network architecture design have become a hot topic.

One of the representative approaches is weight pruning [17] and weight quantization [9, 29]. These

approaches are effective, because deep networks often have a substantial number of redundant

weights that can be pruned or quantized without sacrificing (and sometimes even improving) accu-

racy. Many recent studies have explored efficient architectures that can be trained end-to-end, such

as MobileNet [16], ShuffleNet [44], and Neural Architecture Search (NAS) networks [49]. In this

article, we follow the second way to develop the lightweight efficient face alignment framework

that can be trained from scratch. We systematically analyze the characteristics of face alignment

task and use many effective strategies to design our efficient framwork with the Fast Normalization

Module (FNM).
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Fig. 2. (a) Strong semantic point and weak semantic point. Green points represent the strong semantic points

that can be accurately localized by the annotator. Red points represents the weak semantic points, and their

position can only be estimated. (b) Some cases where the contour landmarks have been good enough but

there are still large point-to-point errors.

3 CONTOUR FITTING LOSS

For CNN-based face alignment methods trained with the common L2 loss, we observe the training

loss curves of different face areas and find that the error of face contour points is significantly

higher than that of other facial feature points. The main reason is that face contour points have

no strict semantic positions. They are just defined to be evenly distributed along the face contour.

Hence, the annotators cannot judge the exact location of these points. So there are potential ran-

dom factors in the labelled face contour landmarks, during training, even though the predicted

contour points have been accurately located on the contour curve, there are still large point-to-

point errors due to the randomness of the regression targets. Considering the above problems of

weak semantic points, existing methods apply Iterative Closest Point (ICP) algorithms [3] to the

surface registration [1] and 3DMM fitting [31] task. ICP algorithms are employed to minimize the

difference between two clouds of points by searching for the closest points to the template vertices

on the target surface. Note that reducing the error between the output of CNN and ground-truth

is similar with the process of point cloud registration. Inspired by this, we propose a novel con-

tour fitting loss (CF loss) to help CNN better understand the semantic positions of face contour

landmarks. Contour fitting loss automatically adjusts the regression target during training and

successfully improves the overall localization accuracy.

In this section, we introduce a contour fitting loss to resolve the non-strict semantic positions of

facial contour landmarks. We first analyze the semantic positions of each landmark and propose

that landmarks should be divided into strong semantic points and weak semantic points. Strong

semantic points indicate the points that have distinct semantic positions, such as nose tip, eye

corner, and mouth corner. These points distribute on the apexes and corners of the face structure,

so they can be exactly localized by annotators. Weak semantic points do not have distinct seman-

tic positions; they are just required to evenly distribute along some curves of the face structure,

such as eye line, lip line, and face contour. For these points, the annotators cannot localize their

positions and just label them on the curve and coarsely make them evenly distributed. Since the

face contour curve is much longer than other curves, we suppose the contour landmarks have the

weakest semantic meanings and are extremely difficult to accurately label. As a result, there is

severe randomness in the labelled positions of face contour landmarks.

To verify the above analysis, we analyze the offsets between the labelled points and the pre-

dicted points. As shown in Figure 2(b), despite the predicted face contour curve being pretty close

to the real contour curve, the offsets between the predicted contour points and the ground-truth

points also bring considerable training errors during training. The error brought by the contour

points is larger than that brought by the facial feature points, and the optimization direction
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might be dominated by these contour points. Moreover, the error from the contour is difficult to

be reduced due to the randomness of the regression target. This case could make the optimization

reach the plateau. To alleviate the effect of the weak semantics of contour points and further

improve the performance, we relax the point-to-point loss to point-to-curve loss and dynamically

adjust the regression target for weak semantic points.

The target of CNN-based face alignment method is to find a nonlinear mapping:

Φ : I → s, (1)

where s ∈ R2N represents the output shape vector predicted by the input image I ∈ RH×W ×3. The

shape vector is composed of s = [p1, p2, . . . , pN ]T . pi = (xi ,yi ) represents the coordinates vector

of the point and N is the number of landmarks. Existing methods mainly adopt L2 loss to regress

the landmark coordinates, which is defined as:

LL2 =

L∑

i=1

�
�pi − p∗i

�
�

2
2 , (2)

where p represents the point predicted by CNN and p∗ represents the ground-truth points if we

separate the contour points from the facial feature points:

LL2 =

Nc∑

i=1

�
�
�
pci
− p∗ci

�
�
�

2

2
+

Nf∑

i=1

�
�
�
pfi
− p∗fi

�
�
�

2

2
, (3)

whereNc andNf represent the number of contour points pc and other facial feature points pf . Note

that L2 loss gives equal attention to all the landmark points. When the predicted contour points

are located on the contour curve but are far from its ground-truth positions, their optimization

directions will be along the contour curve and produce larger errors than other facial feature

points, as shown in Figure 2(b). At this time, the overall optimization direction might be dominated

by these insignificant errors from contour points and stop optimizing the facial feature points.

To address this problem, we reshape the common L2 loss to a novel contour fitting loss, which

optimizes point-to-curve distances rather than point-to-point distances. Specifically, we first get

the real face contour curve by connecting all adjacent contour points. For each predicted face

contour point, we connect its ground-truth points and two adjacent points to determine a target

curve, as shown on the right side of Figure 3. During training, the contour fitting loss finds the

nearest point on the target curve for each predicted contour point and regards them as the new

regression target as depicted on the left side of Figure 3, which can be defined as:

LCF =

Nc∑

i=1

�
�pci
− t∗i

�
�

2
2 +

Nf∑

i=1

�
�
�
pfi
− p∗fi

�
�
�

2

2

where t∗i = arg min
ti j ∈N (pci )

d (pci
, ti j ),

(4)

where N (pci
) represents the point set of the target curve. ti j represents jth points in the point

set. The new target point t∗i has the minimum Euclidean distance to the predicted point. In our

implementation, we adopt the Bresenham algorithm to get the point setN (pci
) of the target curve.

Besides, we combine the contour fitting loss with L2 loss by adding a hyper-parameter λ. The final

loss function is written as:

L = λLCF + (1 − λ)LL2. (5)

The new loss is also able to regress the contour points to fit the contour curve and make a good

balance of the contour points and facial feature points. Note that the target curves only depend on

the ground-truth points; we calculate them by Bresenham offline before training and just load it
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Fig. 3. Illustration of contour fitting loss. The left side shows the optimization direction of the contour points.

Right side shows the detail, which indicates the target curve and the difference between CF Loss and L2 Loss.

Fig. 4. (a) shows the error of contour points and facial feature points by L2 loss and CF loss, respectively.

(b) shows the test error curve along the training process by the L2 loss. (c) shows the test error curve along

the training process by the CF loss. Note that the CF loss reduces the error of both contour landmarks and

facial feature landmarks.

during optimization. Hence, the proposed contour fitting loss just slightly increases training time

and does not increase inference time cost.

At the early stage of training, the predicted landmarks have large deviations with the real land-

marks due to the under-fitting of CNN. Directly using contour fitting loss would lead CNN to

output non-even contour points. As a result, we adopt the L2 loss at the beginning and replace

L2 loss by contour fitting loss after 20K iterations. Figure 4(b) and Figure 4(c) show the testing

error curve along the training process. We can observe that the contour point error is close to the

facial feature points error at the early stage. While after 20K iterations when the training starts

to converge by the L2 loss, the contour fitting loss continuously optimizes the CNN to a better

local optima, getting more accurate facial features and contour landmarks. In general, the contour

fitting loss provides a better optimizing direction and brings considerable performance promotion.

4 EFFICIENT ALIGNMENT FRAMEWORK

In this section, we introduce the network structure of our efficient two-stage face alignment frame-

work. In the first stage, we normalize the scaling, translation, and in-plane rotation with a well-

designed Fast Normalization Module (FNM). In the second stage, we further design a Lightweight
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Fig. 5. Illustration of Fast Normalization Module (FNM). The upper framework is the traditional method

that uses one powerful CNN to deal with all kinds of pose variations. This cannot work when we apply the

lightweight CNN. The lower one represents our proposed efficient two-stage framework with FNM.

Alignment Module (LAM) to achieve fast and precise face alignment on mobile devices. Figure 1

shows the overview of our framework. Note that the contribution of FNM and LAM is not mainly

based on any theoretical evidence. It is also based on simple techniques and validated by compre-

hensive ablation experiments.

4.1 Fast Normalization Module

In real applications, face alignment system would degenerate when there are large variations in

pose, expression, illumination, and face bounding box. Many robust face alignment methods prefer

the end-to-end scheme, which applies abundant training data and complex network architecture to

handle all the possible variations [18, 23, 38, 40]. As a result, they suffer from the low efficiency and

cannot be applied on low-cost devices. Among all of these variations, the scaling and translation

caused by inaccurate face detection and the in-plane rotations caused by face action can be easily

normalized by simple geometric transformation. Some existing methods [14, 25, 25] apply two-

stage face alignment frameworks to preliminarily normalize the geometric variations at the first

stage and provide a better initialization for the second stage. However, their normalization modules

only aim at the overall performance and ignore the efficiency.

In this article, we conduct an empirical analysis and observe that using normalization can not

only improve the performance of face alignment but also compress calculation of the overall

system. When using different frameworks with same computational cost, it is better to divide

resources into a normalization network and an alignment network than to directly perform

alignment with a bigger network. Specifically, our experiments show that existing normalization

methods are usually suboptimal, including: using heavy networks [14], using less landmarks to

normalize [10], and directly regressing transformation parameters [25]. Finally, we overcome

these weaknesses and propose Fast Normalization Module (FNM) to deal with the geometric

variations and make the overall framework much more efficient.

At first, FNM applies an extremely lightweight network to detect 68 coarse landmarks. Then, we

apply Ordinary Procrustes Analysis to compute the best similarity transformation matrix between

the detected 68 landmarks and the mean shape. Finally, we transform the input image via this sim-

ilarity transform matrix. The advantages are threefold: First, the lightweight CNN of FNM greatly

reduces the computational cost. Second, compared with directly predicting the parameters of sim-

ilarity transformation matrix, it is better to predict the landmarks and use Ordinary Procrustes

Analysis to compute the transformation matrix, because the six parameters of 2D affine trans-

formation cannot be considered equally when training a network to regress them. Third, using
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Table 1. The Network Architectures

of Our Framework

Layer FNM LAM

Conv1.x [5×5, 16]×1, S1 [5×5, 8]×1, S2

MaxPool [2×2, 16], S2 [2×2, 8], S2

Conv2.x [3×3, 24]×1, S1 [3×3, 16]×2, S1

MaxPool [2×2, 24], S2 [2×2, 16], S2

Conv3.x [3×3, 32]×1, S1 [3×3, 32]×2, S1

MaxPool [2×2, 32], S2 [2×2, 32], S2

Conv4.x [3×3, 40]×1, S1 [3×3, 64]×2, S1

FC1 64 256

FC2 N × 2 256

FC3 - N × 2

Conv1.x, Conv2.x, and Conv3.x denote convolution units

that may contain multiple convolution layers. [3×3,

16]×2 denotes 2 cascaded convolution layers with 16 fil-

ters of size 3×3 and S2 denotes stride 2. FC1, FC2, and

FC3 are fully connected layers. N are the number of

landmarks.

the full 68 landmarks can provide more useful supervision information to help FNM understand

low-quality face images and make the normalization more stable.

4.2 Network Architecture

In Fast Normalization Module (FNM), we find the best tradeoff between performance and efficiency

and design a streamlined network. We use a 30 × 30 × 3 image as input and a 5-layer CNN with

tiny computation. This network could conduct fitting with less than 1ms on CPU. In the experi-

ment, we empirically try many CNN architectures with larger cost and find that this tiny CNN is

powerful enough to coarsely normalize the image. Compared with previous works, the normaliza-

tion network [14, 25] is much more complicated and needs about 3 to 7ms on CPU. There exists

a lot of redundancy within their normalization networks. After FNM, the 120 × 120 × 3 normal-

ized image is transferred into a Lightweight Alignment Module (LAM) to predict each landmark

accurately, which is trained by proposed CF Loss. The architecture of FNM and LAM is shown

in Table 1. We follow the mechanism of VGGNet [34] and control the receptive field to cover the

entire input image gradually. Meanwhile, we substantially reduce the channel of the two CNNs

to ensure high efficiency. Extensive experiments demonstrate that our overall framework can get

high performance with extremely small computation cost.

5 EXPERIMENTS

In this section, we first introduce our implementation details. Then, we analyze the proposed

Contour Fitting Loss and Fast Normalization Module (FNM) to validate their effectiveness. Fi-

nally, we compare our algorithm with the state-of-the-art on the popular 300W and AFLW2000-3D

datasets. Experiments demonstrate that our approach achieves competitive performance on 300W

and AFLW2000-3D datasets with much lower cost.

5.1 Implementation Details

Data augmentation is important for the CNN-based face alignment task. We apply random in-

plane variations (e.g., scaling, rotation, translations) to perform data augmentation. Each kind of
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Table 2. A Comparison of Different Weighting

Factors of the Proposed Contour Fitting Loss

Function, Measured by NME(%) on 300W

λ 0 0.2 0.4 0.6 0.8 1.0

Com. 5.45 5.14 5.19 5.20 5.09 5.41

Challenge 8.77 8.46 8.32 8.40 8.32 8.50

Table 3. A comparison of NME(%) in Different

Facial Areas, Including Face Contour, Facial

Features, and All the Face Area

Loss Function Contour Facial All

L2 Loss 12.98 7.39 8.79

CF Loss 12.76 6.83 8.32

augmentation follows a Gaussian distribution, as shown in Table 4. For training LAM, we apply

smaller standard deviations than training FNM to ensure the CNN pays more attention to the

details. During training, the basic learning rate is 0.05, and each stage is trained for 100 epochs. The

learning rate is reduced by a factor of 10 after 40 and 80 epochs. We also set the momentum to 0.9,

weight decay to 1 × 10−4, and batch size to 512 for network training. SGD is used as our optimizer.

Finally, we use the 300W [32] training data and do not use any extra data. We adopted the widely

used Normalised Mean Error (NME) for evaluation, normalized by the inter-ocular distance.

5.2 Analysis Experiments

We use the popular 300W dataset for our evaluation in all of our experiments.

300W is a collection of multiple face datasets, including the LFPW [2], HELEN [22], AFW [27],

and XM2VTS [26] face datasets that have 68 annotated landmarks [33]. The training set contains

3,148 training samples in total. The size of the test set is 689, which is further divided into the

common and challenging subsets. The common subset has 554 face images, and the challenging

subset constitutes the 135 IBUG face images.

AFLW2000-3D is constructed by Reference [47] to evaluate 3D face alignment on challenging

unconstrained images. This database contains the first 2K images from AFLW [20] and expands

its annotations with fitted 3DMM parameters and 68 3D landmarks. The NME is computed using

the bounding box size. We use the projected 3D landmarks in 300W-LP [47] as our training set.

5.2.1 Analysis of the CF loss. We first evalute different hype-parameters of our proposed con-

tour fitting loss in Table 2. First the weighting factors λ, which controls the weights of contour

fitting loss. When λ = 0, our loss is equivalent to the standard L2 loss. When λ = 1, it means that

we only use CF Loss for training. We observed that only using CF loss does not achieve the best

results in our experiments. The reason is that the CF loss underestimates the error from contour

points and hurts the performance. When λ = 0.8, our loss achieves a good balance and gets the

best result.

Second, we analyze the performance promotion by the CF loss in different facial areas. We

compute the NME of the contour points and the facial feature points. As shown in Table 3, the CF

loss outperforms L2 loss in each evaluation criterion, especially on facial features. These results

demonstrate that our CF loss alleviates the effects of regressing weak semantic points and makes

CNN concentrate on learning better visual representation of other facial feature points.

Third, we design the CF Loss+, which applies point-to-line regression to all weak semantic

points on the edges (e.g., nose bridge, eyebrow). As shown in Table 5, the performance of CF Loss+

degrades slightly. We think the reason for this is that the curves of other facial regions are much

narrower than the face contour. Therefore, the original ground-truth points are relatively reliable.

Changing the positions of these points might harm the facial structure.

Finally, to further demonstrate the effectiveness of the CF loss and observe where the improve-

ment comes from, we decompose the error into two parts: the meaningful error perpendicular to

the contour curve and the non-meaningful error parallel to the contour curve. As shown in Table 8,
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Table 4. Different Standard Deviations of the

Gaussians Used to Augment Training Samples

for FNM and LAM

Module Rotation Scale translation

FNM 17◦ 0.07d 0.08d

LAM 8◦ 0.05d 0.03d

d Is the Size of Face Boundingbox.

Table 5. A comparison of CF Loss and CF Loss+

Method Com. Challenge

FNM + LAM + CF loss 5.09 8.32

FNM + LAM + CF loss+ 5.11 8.36

FNM + ResNet + CF loss 4.34 7.40

FNM + ResNet + CF loss+ 4.39 7.47

CF Loss+ applies Point-to-line Regression to All Weak

Semantic Points for Training.

Table 6. The Performance with Regressing

Targets in FNM, Including Regressing 5

Landmarks, 19 Landmarks, 68 Landmarks,

and Transformation Parameters

Norm Method Com. Challenge

5 Landmarks Norm 5.57 9.03

19 Landmarks Norm 5.47 8.98

68 Landmarks Norm 5.44 8.78

Transformation Params Norm 5.71 9.04

Table 7. Comparison of Different Input Image

Sizes and Network Architectures in the Fast

Normalization Module (FNM)

Size Network Flops(M) Com. Challenge

15 CNN-4 0.31 5.47 8.95

30 CNN-5 1.88 5.44 8.78

60 CNN-6 4.03 5.43 8.77

120 CNN-7 5.40 5.46 8.83

The Performance Is Evaluated on the 300W Dataset.

Table 8. A Comparison of the Performance With or Without Our CF

Loss, NME of Contour Points is Decomposed Into Two Parts: The

Meaningful Error Perpendicular to the Contour Curve (Prep NME) and

the Non-meaningful Error Parallel to the Contour Curve (Para NME)

Dataset Method Prep NME Para NME NME

Com. LAM 4.38 5.50 8.04

Com. LAM + CF Loss 4.01(↓ 8.4%) 5.37(↓ 2.3%) 7.63

IBUG LAM 7.53 9.11 13.89

IBUG LAM + CF Loss 6.84(↓ 9.2%) 8.98(↓ 1.4%) 13.19

when we replace the L2 loss with our CF loss, the error perpendicular to the contour curve de-

creases more significantly than the error parallel to the contour curve (8.4% vs 2.3% on Common

and 9.2% vs 1.4% on IBUG). These results demonstrate that most of the performance promotion

comes from the decrease of point-to-line error.

5.2.2 Analysis of Fast Normalization Module. The proposed Fast Normalization Module (FNM)

efficiently normalizes the scaling, translation, and in-plane rotations in our face alignment system.

To reduce the computation time in our FNM, we first design a series of CNNs with different sizes

and different input sizes and evaluate their performance. As shown in Table 7, we try four kinds of

network architecture and find that a 30 × 30 input image with a five-layer CNN can well preserve

the face structure and get competitive results with larger networks. When we reduce the input size

to 15 × 15, the effectiveness of normalization starts to degrade. To balance efficiency and perfor-

mance, we employ 30 × 30 input images in our FNM. We further investigate the performance with

different kinds of geometric transformations, as shown in Table 9. The deformable affine transfor-

mation in Reference [14] performs worse than the non-deformable similarity transformaton used

in our method.

In addition, we use different regression targets in the Fast Normalization Module (FNM) and

explore their influences to the final results. We test a different number of landmarks and the
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Table 9. The Performance of

Different Transformation Methods

Transform Com. Challenge

Affine 5.83 9.61

Similarity 5.44 8.78

We Test the Deformable Affine Trans-

formation and the Non-deformable Sim-

ilarity Transformation.

Table 10. The Effectiveness of Normalization

Norm Method Com. Challenge

LAM+ 5.40 9.37

LAM with gt Norm 5.47 8.75

LAM with FNM 5.45 8.78

We Evaluate the Performance of the Heavier CNN

LAM+, Normalization with Ground-truth Points

and With FNM.

Table 11. Ablation Study of Our Overall

Framework, Evaluated by the NME(%)

Method Com. Challenge

LAM + L2 Loss 5.46 9.49

LAM + CF Loss 5.20 8.89

FNM + LAM + L2 Loss 5.45 8.79

FNM + LAM + CF Loss 5.09 8.32

parameters of transformation matrix shown in Table 6. In this experiment, we find regressing

transformation matrix parameters gets the worst performance. This may be explained by the

fact that the six parameters of 2D affine transformation cannot be considered equally in the

normalization process. When we regress the landmarks in FNM, the results show that using all

68 points performs better than using part of them. We believe the reason of this experimental

phenomena is that FNM applies extremely low-resolution images (30 × 30) as its input, which

needs more supervision information to be understood. Meanwhile, because FNM applies similarity

transformation to normalize in-plane variations, more landmarks can also benefit the optimization

of least squares method. Therefore, training FNM with a smaller number of landmarks would

harm the performance of normalization.

Finally, we evaluate the overall normalization performance in FNM. We use the ground-truth

points and the predicted points by our FNM to normalize the geometric variations. As shown in

Table 10, our proposed FNM achieves competitive performance with the ground-truth normaliza-

tion. We also design a heavier CNN named LAM+ by adding channel dimensions. LAM+ has equal

computation cost with the combination of FMN and LAM but performs worse on the challenge

dataset. This result demonstrates the effectiveness of our FNM.

5.3 Ablation Experiments

To demonstrate the effectiveness of different components in our proposed framework, we run a

number of ablations to analyze the contour fitting loss and the Fast Normalization Module (FNM),

shown in Table 11. Specifically, for a fair comparison, we use the same parameter settings in all

these experiments. We first analyze the performance and find that the FNM significantly improves

the performance on the challenge dataset with large pose variations. There are no obvious im-

provements on the common dataset because of its small pose variations. These results demonstrate

the effectiveness of the FNM on normalizing geometric variances. To further validate the effective-

ness of our CF loss, we use the original training images and the normalized images to train with

CF loss. Results show that the CF loss consistently outperforms the L2 loss at each dataset. Finally,

the combination of CF-Loss and FNM provide the best performance.
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Table 12. A Comparison of the Proposed Approach with the State-of-the-art Approaches

on the 300W Dataset in Terms of the NME Averaged Over All the Test Samples

Method Com.(%) Challenge(%) Full Flops(M) Params(M) CPU Time(ms)

RCPR [5] 6.18 17.26 8.35 - - -

CFAN [42] 5.50 16.78 7.69 - - -

ESR [6] 5.28 17.00 7.58 - - -

SDM [39] 5.60 15.40 7.52 - - -

ERT [19] - - 6.40 - - -

CFSS [46] 4.73 9.98 5.76 - - -

TCDCN [45] 4.80 8.60 5.54 22.02 0.32 3.06

LBF [30] 4.95 11.98 6.32 - - -

3DDFA [47] 6.15 10.59 7.01 41.75 1.44 7.68

3DDFA + SDM 5.53 9.56 6.31 - - -

DDN [41] - - 5.65 1,779.84 33.47 74.77

RAR [38] 4.12 8.35 4.94 - - -

DeFA [23] 5.37 9.38 6.10 1,425.57 3.18 97.70

TR-DRN [25] 4.36 7.56 4.99 2,658.04 99.65 126.52

PCD-CNN* [21] 3.67 7.62 4.44 10K+ - -

LAB* [37] 3.42 6.98 4.12 10K+ - -

DCFE* [36] 3.83 7.54 4.55 10K+ - -

LAM 7.40 11.90 6.16 5.97 0.19 2.42

FNM + LAM 5.45 8.79 6.10 7.85 0.22 2.42

FNM + LAM + CF Loss(λ = 0.8) 5.09 8.32 5.72 7.85 0.22 2.42

ResNet 5.19 8.35 5.81 1,746.38 11.69 103.00

FNM + ResNet 4.87 8.08 5.50 1,748.23 11.73 104.00

FNM + ResNet + CF Loss(λ = 0.8) 4.34 7.40 4.93 1,748.23 11.73 104.00

We Follow the Protocol Used in Reference [30]. *Represents the Heatmap-based Methods.

5.4 Comparison Experiments

300W. We compare the performance and computational complexity of our method with other

state-of-the-art methods on the famous 300W dataset in Table 12. Specifically, we apply different

backbones such as lightweight LAM and the deeper 25-layer ResNet [15] to validate the effec-

tiveness of our common efficient face alignment framework. As shown in Table 12, we can see

our Fast Normalization Module (FNM) brings significant improvement (6.10% vs 5.72% on LAM;

5.81% vs 5.50% on ResNet) with nearly free computing overhead. This result demonstrates that

our high-speed FNM with extremely low-resolution input can still perform well in normalizing

the complex geometric variations of different human faces. In addition, compared with FNM +

LAM and FNM + ResNet, replacing the common point-to-point loss to our contour fitting loss (CF

loss) further reduces the NME by a significant margin (6.10% vs 5.72% on LAM; 5.50% vs 4.93% on

ResNet). This achievement means that our CF loss alleviates the impact of potential annotation

randomness caused by contour points and makes CNN pay more attention to the better optimiza-

tion direction. The above analysis proves that our FNM and CF loss both have a strong generalized

ability on different backbones such as LAM and ResNet.

Compared with other existing methods, heatmap-based methods such as PCD-CNN [21],

LAB [37], and DCFE [36] have better performance; however, they tend to be computationally

prohibitive and cannot be applied on CPU-only devices (over 10G flops). Our FNM + ResNet

+ CF Loss outperforms all of the state-of-the-art methods except the heatmap-based methods.
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Table 13. Performance Comparison on AFLW2000-3D Dataset

Method [0◦30◦] [30◦60◦] [60◦90◦] Mean

3DSTN [4] 3.15 4.33 5.98 4.49

Hyperface [28] 3.93 4.14 4.71 4.26

3DDFA [48] 2.84 3.57 4.96 3.79

PRN [13] 2.75 3.51 4.61 3.62

LAM 3.70 4.71 5.38 4.60

FNM + LAM 3.20 3.89 4.93 4.00

FNM + LAM + CF Loss 2.98 3.77 4.68 3.81

ResNet 3.01 3.74 4.81 3.85

FNM + ResNet 2.57 3.30 4.33 3.40

FNM + ResNet + CF Loss 2.56 3.22 4.17 3.31

The NME (%) for Faces with Different Yaw Angles Are Reported.

Meanwhile, our fast-speed framework FNM + LAM + CF Loss has a speed of 340FPS on a single

core i7-6700 CPU and still achieves competitive performance with other methods, even better than

using ResNet only (5.72% vs 5.81%). These results demonstrate that our method can well benefit

the deployment of face alignment framework on platforms with limited computational resources.

In addition, our FNM and CF loss can team with any backbone according to the requirements of

applications. Therefore, We believe that we can get further performance promotion when using

a more complex backbone.

AFLW2000-3D. To demonstrate the effectiveness of our framework on addressing the large

pose variations. We evaluate our method on AFLW2000-3D [47] dataset. We use the projected 68

3D landmarks from 300W-LP [47] as the ground truth to train our method. As shown in Table 13,

our framework with a simple 25-layer ResNet [15] outperforms other state-of-the-art methods. We

can observe that our FNM achieves significant improvement on both LAM and ResNet structures

(Mean NME: 3.81% vs 4.00% on LAM and 3.40% vs 3.85% on ResNet). This result demonstrates the

effectiveness of our FNM on the dataset with large pose variations. In addition, using our CF loss

further improves the overall performance.

6 CONCLUSIONS

In this article, we concentrate on exploring a CNN-based face alignment framework with both high

efficiency and performance. First, we analyze the different semantic meanings of facial landmarks

and propose the concept of strong and weak semantic point. Due to the potential randomness

of the annotation of weak semantic points, we propose a novel contour fitting loss to help the

network better understand the semantic positions of weak semantic points. Contour fitting loss

effectively improves the overall performance. Meanwhile, we systematically analyze the different

pose variations in face alignment task and design an efficient Fast Normalization Module (FNM) to

normalize geometric variations, which is simple to solve but crucial for facial landmark localiza-

tion. Our method achieves competitive performance with the state-of-the-art methods on 300W

and AFLW2000-3D benchmarks with significantly lower computation cost.
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