

Loss Function Search for Face Recognition

Xiaobo Wang JD Al Research

Authors

Xiaobo Wang

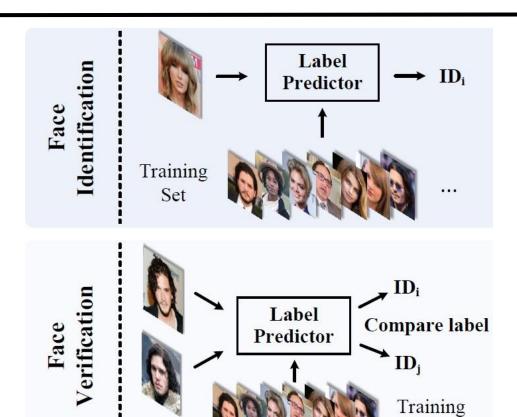
Shuo Wang

Cheng Chi

Shifeng Zhang

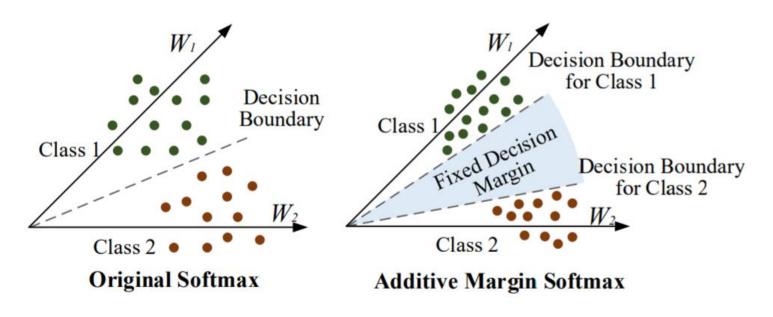
Tao Mei

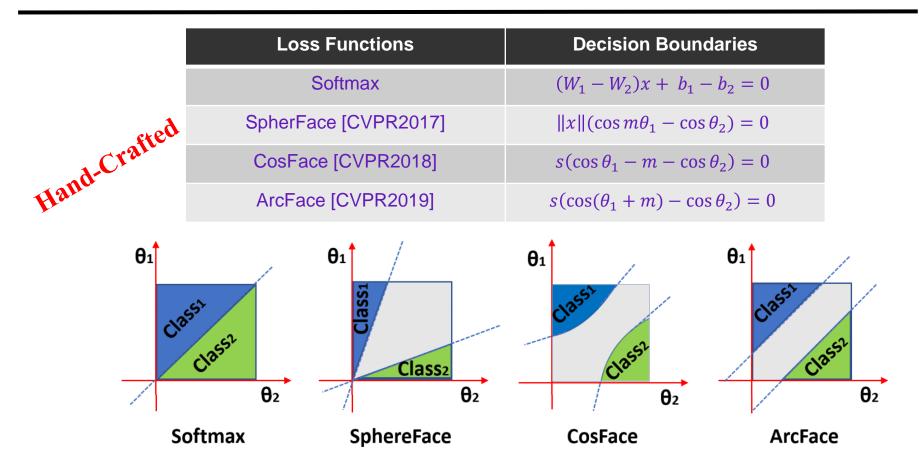
• 1:N matching

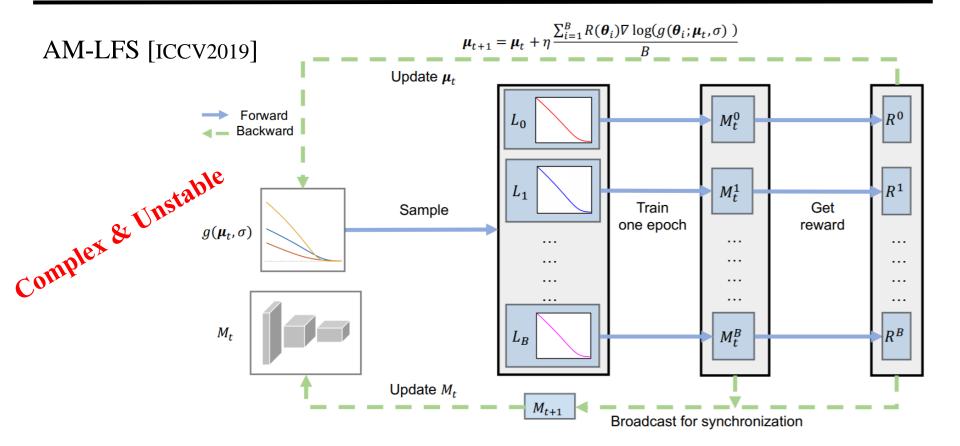


Set

• 1:1 matching







Hand-Crafted:

Softmax

SphereFace [CVPR2017]
CosFace [CVPR2018]
ArcFace [CVPR2019]

Require great effort to explore the large design space

Search:

AM-LFS [ICCV2019]

Search space is complex and unstable

Softmax Loss:

$$\mathcal{L}_{1} = -\log \frac{e^{\boldsymbol{w}_{y}^{T}\boldsymbol{x}}}{e^{\boldsymbol{w}_{y}^{T}\boldsymbol{x}} + \sum_{k \neq y}^{K} e^{\boldsymbol{w}_{k}^{T}\boldsymbol{x}}},$$
 (1)

$$\mathcal{L}_{2} = -\log \frac{e^{s\cos(\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})}}{e^{s\cos(\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})} + \sum_{k\neq y}^{K} e^{s\cos(\theta_{\boldsymbol{w}_{k},\boldsymbol{x}})}}, \quad (2)$$

Margin-based Softmax Loss:

n-based Softmax Loss:
$$f(m, \theta_{\boldsymbol{w}_{y}, \boldsymbol{x}}) \leq \cos(\theta_{\boldsymbol{w}_{y}, \boldsymbol{x}})$$

$$\mathcal{L}_{3} = -\log \frac{e^{sf(m, \theta_{\boldsymbol{w}_{y}, \boldsymbol{x}})}}{e^{sf(m, \theta_{\boldsymbol{w}_{y}, \boldsymbol{x}})} + \sum_{k \neq y}^{K} e^{s\cos(\theta_{\boldsymbol{w}_{k}, \boldsymbol{x}})}}, \quad (3)$$

• Softmax probability:

$$p = \frac{e^{s\cos(\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})}}{e^{s\cos(\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})} + \sum_{k \neq y}^{K} e^{s\cos(\theta_{\boldsymbol{w}_{k},\boldsymbol{x}})}}$$

Margin-based Softmax probability:

$$p_m = \frac{e^{sf(m, \theta_{\boldsymbol{w}_y, \boldsymbol{x}})}}{e^{sf(m, \theta_{\boldsymbol{w}_y, \boldsymbol{x}})} + \sum_{k \neq y}^{K} e^{s\cos(\theta_{\boldsymbol{w}_k, \boldsymbol{x}})}}$$

$$p_{m} = \frac{e^{sf(m,\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})}}{e^{sf(m,\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})} + \sum_{k\neq y}^{K} e^{s\cos(\theta_{\boldsymbol{w}_{k},\boldsymbol{x}})}}$$

$$= \frac{e^{sf(m,\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})}}{e^{sf(m,\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})} + e^{\cos(\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})}(1-p)/p}$$

$$= \frac{1}{p + e^{s[\cos(\theta_{\boldsymbol{w}_{y},\boldsymbol{x}}) - f(m,\theta_{\boldsymbol{w}_{y},\boldsymbol{x}})]}(1-p)} * p$$

$$= \frac{1}{ap + (1-a)} * p = h(a,p) * p,$$

modulating factor: $a = 1 - e^{s[\cos(\theta_{w_y,x}) - f(m,\theta_{w_y,x})]}$

(a < 0)

• The success of margin-based softmax losses is **how to reduce the softmax probability** *p*:

$$p_m = h(a, p) * p \tag{9}$$

where $h(a, p) = \frac{1}{ap + (1-a)} \in (0, 1]$ is a modulating function

Method	Modulating Factor a
Softmax	a = 0
A-Softmax	$a = 1 - e^{s[\cos(\theta_{\boldsymbol{w}_y, \boldsymbol{x}}) - \cos(m\theta_{\boldsymbol{w}_y, \boldsymbol{x}})]}$
AM-Softmax	$a = 1 - e^{sm}$
Arc-Softmax	$a = 1 - e^{s[\cos(\theta_{\boldsymbol{w}_y, \boldsymbol{x}}) - \cos(\theta_{\boldsymbol{w}_y, \boldsymbol{x}} + m)]}$

AM-LFS:

$$\mathcal{L}_4 = -\log\left(a_i \frac{e^{s\cos(\theta_{\boldsymbol{w}_y,\boldsymbol{x}})}}{e^{s\cos(\theta_{\boldsymbol{w}_y,\boldsymbol{x}})} + \sum_{k \neq y}^K e^{s\cos(\theta_{\boldsymbol{w}_k,\boldsymbol{x}})}} + b_i\right), \quad (4)$$

where a_i and b_i are the parameters of search space. $i \in$

$$p_m = h(a, p) * p p_m = a_i p + b_i$$

- Our search space p_m=h(a,p)*p is always less than the softmax probability p while the piece-wise linear functions p_m=a_i*p+b_i are not. The discriminability of AM-LFS is not guaranteed;
- There is **only one parameter a to be searched** in our formulation while the AM-LFS needs search 2M parameters. The search space of AM-LFS is complex and unstable;
- Our method has a reasonable range of the parameter (a<= 0) hence **facilitating the searching procedure**, while the parameters of AM-LFS a_i and b_i are without any constraints.

$$\mathcal{L}_5 = -\log\left(h(a, p) * p\right),\tag{10}$$

where the modulating function h(a, p) has a bounded range (0, 1] and the modulating factor is $a \le 0$. To validate our

Random-Softmax:

Randomly set the modulating factor ($a \le 0$) at each training epoch.

Search-Softmax:

Update the distribution of a and search the best model from B candidates for the next epoch.

Table 2. Face datasets for training and test. (P) and (G) refer to the probe and gallery set, respectively.

	Datasets	#Identities		
Training	CASIA-WebFace-R MS-Celeb-1M-v1c-R	9,879 72,690	0.43M 3.28M	Overla
	LFW	5,749	13,233	
	SLLFW CALFW	5,749 5,749	13,233 12,174	
	CPLFW	5,749	11,652	
Test	AgeDB	568	16,488	
	CFP	500	7,000	
	RFW	11,430	40,607	
	MegaFace	530 (P)	1M(G)	
	Trillion-Pairs	5,749 (P)	1.58M (G)	

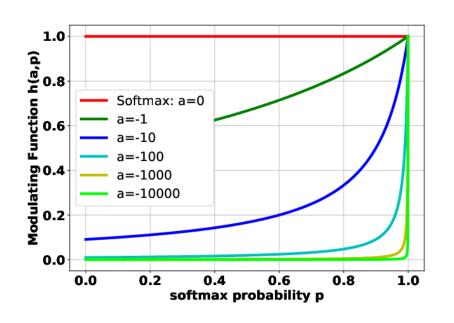
Overlap Removal

Data processing:

We detect the faces by adopting the **FaceBoxes detector** and localize five landmarks through a simple 6-layer CNN. The detected faces are cropped and resized to 144×144.

CNN architecture:

We use the **SEResNet50-IR** as the backbone, which is also publicly available at the website https://github.com/wujiyang/Face_Pytorch



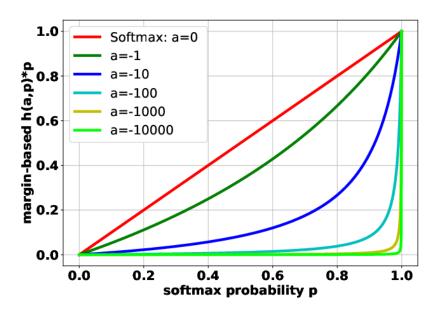


Table 3. Effect of reducing softmax probability by setting the modulating factor $a \le 0$. The training set is MS-Celeb-1M-v1c-R.

	0	-1	-10	-100	-1000	-10000
LFW SLLFW	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	99.66 99.20	, , , , _	99.61 99.36	99.71 99.36

Table 4. Effect of the number of sampled models by setting B. The training set is MS-Celeb-1M-v1c-R.

	B=2	B=4	B = 8	B = 16
LFW	99.79	99.78	99.79	99.78
SLLFW	99.31	99.56	99.53	99.58

Table 9. Performance (%) of different loss functions on the test sets MegaFace and Trillion-Pairs. The training set is CASIA-WebFace-R.

Table 10. Performance (%) of different loss functions on the test sets MegaFace and Trillion-Pairs. The training set is **MS-Celeb-1M-v1c-R**.

Method	MegaFace		Trillion-Pairs		Method	MegaFace		Trillion-Pairs	
	Id. Veri. Id. Veri.	Wellod	Id.	Veri.	Id.	Veri.			
Softmax	65.17	71.29	12.34	11.35	Softmax	91.10	92.30	50.34	46.63
A-Softmax	64.48	71.98	11.83	11.11	A-Softmax	90.81	93.49	49.99	45.59
V-Softmax	60.09	65.40	9.08	8.65	V-Softmax	94.45	95.25	63.85	61.17
Arc-Softmax	79.91	84.57	21.32	20.97	Arc-Softmax	96.39	96.86	67.60	66.46
AM-Softmax	82.86	87.33	25.26	24.66	AM-Softmax	96.77	97.20	69.02	67.94
AM-LFS	71.30	77.74	16.16	15.06	AM-LFS	92.51	93.80	54.85	52.76
Random-Softmax	82.51	86.13	27.70	27.28	Random-Softmax	96.15	96.81	68.73	68.03
Search-Softmax	84.38	88.34	29.23	28.49	Search-Softmax	96.97	97.84	70.41	68.67

4. Conclusion

- We identify that for margin-based softmax losses, the key to enhance the feature discrimination is actually **how to reduce the softmax probability**.
- We define a simple but very effective search space, which involves only one parameter to search. Accordingly, we design a random and a reward-guided method to search the best candidate.
- We conduct extensive experiments on a variety of face recognition benchmarks.
- Code and datasets: http://www.cbsr.ia.ac.cn/users/xiaobowang/

Thanks

