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Abstract

Face recognition has witnessed significant progress due to the
advances of deep convolutional neural networks (CNNs), the
central task of which is how to improve the feature discrim-
ination. To this end, several margin-based (e.g., angular, ad-
ditive and additive angular margins) softmax loss functions
have been proposed to increase the feature margin between
different classes. However, despite great achievements have
been made, they mainly suffer from three issues: 1) Obvi-
ously, they ignore the importance of informative features min-
ing for discriminative learning; 2) They encourage the feature
margin only from the ground truth class, without realizing the
discriminability from other non-ground truth classes; 3) The
feature margin between different classes is set to be same and
fixed, which may not adapt the situations very well. To cope
with these issues, this paper develops a novel loss function,
which adaptively emphasizes the mis-classified feature vec-
tors to guide the discriminative feature learning. Thus we can
address all the above issues and achieve more discriminative
face features. To the best of our knowledge, this is the first
attempt to inherit the advantages of feature margin and fea-
ture mining into a unified loss function. Experimental results
on several benchmarks have demonstrated the effectiveness
of our method over state-of-the-art alternatives. Our code is
available at http://www.cbsr.ia.ac.cn/users/xiaobowang/.

Introduction
Face recognition is a fundamental and of great practice val-
ues task in the community of computer vision and pattern
recognition. The task of face recognition contains two cate-
gories: face identification to classify a given face to a spe-
cific identity, and face verification to determine whether
a pair of face images are of the same identity. Though
it has been extensively studied for decades (Wang, Guo,
and Li 2015; Hu et al. 2017; Liu, Hu, and Wang 2019;
Hu et al. 2015; Wang et al. 2018e; 2019; Liu et al. 2019a;
Sun, Wang, and Tang. 2015; Shi et al. 2017), there still exist
a great many challenges for accurate face recognition, espe-
cially on large-scale test datasets at the very low false alarm
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rate (FAR), such as the MegaFace Challenge (Kemelmacher-
Shlizerman et al. 2016; Nech and Kemelmacher 2017) and
the recent Trillion-Pairs Challenge (Deepglint 2018).

In recent years, the advanced face recognition models
are usually built upon deep convolutional neural networks
(Wang et al. 2017b; He, Zhang, and Ren. 2016; Simonyan
and Andrew 2014) and the learned discriminative features
play a significant role. To train deep models, the CNNs are
generally equipped with classification loss functions (Taig-
man, Yang, and Ranzato. 2014; Wen, Zhang, and Li 2016;
Liang et al. 2017; Liu et al. 2017; Wang et al. 2018f), met-
ric learning loss functions (Sun, Wang, and Tang. 2014;
Schroff, Kalenichenko, and Philbin. 2015; Wang, Zhou, and
Wen. 2017) or both (Sun, Wang, and Tang. 2015; Wen,
Zhang, and Li 2016; Zheng, Pal, and Savvides 2018). Metric
learning loss functions such as contrastive loss (Sun, Wang,
and Tang. 2014) or triplet loss (Schroff, Kalenichenko, and
Philbin. 2015) usually suffer from high computational cost.
To avoid this problem, they require carefully designed sam-
ple mining strategies. But the performance is very sensitive
to these strategies. So increasingly more researchers shift
their attention to construct deep face recognition models by
re-designing the classical classification loss functions.

Intuitively, face features are discriminative if their intra-
class compactness and inter-class separability are well max-
imized. However, as pointed out by many recent studies
(Wen, Zhang, and Li 2016; Wang et al. 2017a; Liu et al.
2017; Wang et al. 2018b; 2018f; Deng et al. 2019), the
current prevailing classification loss function (i.e., Softmax
loss) lacks the power of feature discrimination for deep
face recognition. To address this issue, Wen et al. (Wen,
Zhang, and Li 2016) develop a center loss to learn cen-
ters for each identity to enhance the intra-class compactness.
Wang et al. (Wang et al. 2017a) and Ranjan et al. (Ranjan,
Castillo, and Chellappa. 2017) propose to use a scale pa-
rameter to control the temperature of softmax loss, produc-
ing higher gradients to the well-separated samples to shrink
the intra-class variance. Recently, several margin-based soft-
max loss functions (Liu, Wen, and Yu 2016; Liu et al. 2017;
Wang et al. 2018c; 2018b; Deng et al. 2019) to increase
the feature margin between different classes have also been
proposed. Liu et al. (Liu, Wen, and Yu 2016; Liu et al.



2017) introduce an angular margin (A-Softmax) between
the ground truth class and other classes to encourage larger
inter-class variance. However, it is usually unstable and the
optimal parameters need carefully adjust for different set-
tings. To enhance the stability of A-Softmax loss, Liang et
al. (Liang et al. 2017) and Wang et al. (Wang et al. 2018b;
2018c) propose the additive margin (AM-Softmax) loss to
stabilize the optimization. Deng et al. (Deng et al. 2019) de-
velop an additive angular margin (Arc-Softmax) loss, which
has a clear geometric interpretation.

Although the above approaches have achieved promis-
ing results, they mainly suffer from three shortcomings: 1)
They obviously ignore the importance of informative fea-
tures mining for discriminative learning. To address it, one
may resort to the mining-based softmax loss functions. Shri-
vastava et al. (Shrivastava, Gupta, and Girshick. 2016) de-
sign the hard mining strategy (HM-Softmax) to improve the
feature discrimination by constructing mini-batches using
high-loss examples. But the percentage of hard examples is
empirically decided and the easy examples are completely
discarded. In contrast, Lin et al. (Lin, Goyal, and Girshick.
2017) design a relatively soft mining strategy, namely Focal
loss (F-Softmax), to focus training on a sparse set of hard
examples. However, the indication of hard examples is un-
clear. As a result, these two mining-based candidates usually
fail to improve the performance. How to semantically select
the hard examples is still an open problem. 2) They enlarge
the feature margin only from the perspective of the ground
truth class, which is partial and without realizing the dis-
criminability from other non-ground truth classes. 3) Last
but not at least, they enlarge the feature margin by using a
same and fixed margin for all classes, which may not be ap-
propriate and may not work very well in practice.

To overcome the aforementioned shortcomings, this pa-
per tries to design a new loss function, which explicitly indi-
cates the hard examples as mis-classified vectors and adap-
tively emphasizes on them to guide the discriminative fea-
ture learning. To sum up, the main contributions of this pa-
per can be summarized as follows:

• We propose a novel MV-Softmax loss, which explicitly
indicates the hard examples and focuses on them to guide
the discriminative feature learning. As a consequence, our
new loss also absorbs the discrimiantibility from other
non-ground truth classes as well as is with adaptive mar-
gins for different classes.

• To the best of our knowledge, this is the first attempt to
effectively inherit the merits of feature margin and feature
mining techniques into a unified loss function. Moreover,
We deeply analyze the relations and differences between
our new loss and the current margin-based and mining-
based losses.

• We conduct extensive experiments on the common bench-
marks of LFW, CALFW, CPLFW, AgeDB, CFP, RFW,
MegaFace and Trillion-Pairs, which have verified the su-
periority of our new approach over the baseline Softmax
loss, the mining-based Softmax losses, the margin-based
Softmax losses, and their naive fusions.

Preliminary Knowledge
Softmax. Softmax loss is defined as the pipeline combi-
nation of last fully connected layer, softmax function and
cross-entropy loss. In face recognition, the weights wk,
(where k ∈ {1, 2, . . . ,K} and K is the number of classes)
and the feature x of the last fully connected layer are usu-
ally normalized and their magnitudes are replaced as a scale
parameter s (Wang et al. 2017a; 2018b; Deng et al. 2019).
In consequence, given an input feature vector x with its cor-
responding ground truth label y, the softmax loss can be re-
formulated as follows:

L1 = − log
es cos(θwy,x)

es cos(θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
, (1)

where cos(θwk,x) = wT
k x is the cosine similarity and θwk,x

is the angle between wk and x. As pointed out by a great
many studies (Liu, Wen, and Yu 2016; Liu et al. 2017;
Wang et al. 2018b; Deng et al. 2019), the learned features
with softmax loss are prone to be separable, rather than to
be discriminative for face recognition.
Mining-based Softmax. Hard example mining is becoming
a common practice to effectively train deep CNNs. Its idea
is to concentrate on informative examples, thus it usually re-
sults in more discriminative features. There are recent works
that select hard examples based on loss value (Shrivastava,
Gupta, and Girshick. 2016; Lin, Goyal, and Girshick. 2017)
to learn discriminative features. Generally, they can be sum-
marized as:

L2 = −g(py) log
es cos(θwy,x)

es cos(θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
, (2)

where py = e
s cos(θwy,x)

e
s cos(θwy,x)

+
∑K
k 6=y e

s cos(θwk,x
) is the predicted

ground truth probability and g(py) is an indicator function.
Basically, for the soft mining method Focal loss (Lin, Goyal,
and Girshick. 2017) (F-Softmax), g(py) = (1 − py)

γ , γ
is a modulating factor. For the hard mining method HM-
Softmax (Shrivastava, Gupta, and Girshick. 2016), g(py) =
0 when the sample is indicated as easy and g(py) = 1 when
the sample is hard.
Margin-based Softmax. To directly enhance the feature
discrimination, several margin-based softmax loss functions
(Liu et al. 2017; Wang et al. 2018f; 2018b; Deng et al. 2019)
have been proposed in recent years. In summary, they can be
defined as follows:

L3 = − log
esf(m,θwy,x)

esf(m,θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
, (3)

where f(m, θwy,x) is a carefully designed margin function.
Basically, f(m1, θwy,x) = cos(m1θwy,x) is the motiva-
tion of A-Softmax loss (Liu et al. 2017), where m1 ≥ 1
and is an integer. f(m2, θwy,x) = cos(θwy,x) − m2 with
m2 > 0 is the AM-Softmax loss (Wang et al. 2018b).
f(m3, θwy,x) = cos(θwy,x +m3) with m3 > 0 is the Arc-
Softmax loss (Deng et al. 2019). More generally, the mar-
gin function can be summarized into a combined version:
f(m, θwy,x) = cos(m1θwy,x +m3)−m2.



Problem Formulation
To begin with, let us retrospect the formulation of margin-
based softmax losses, i.e., Eq. (3), from which we can sum-
marized that: 1) It ignores the importance of informative
features mining for discriminative learning. 2) It only ex-
ploits the discriminability from the ground truth class y,
i.e, f(m, θwy,x), without be aware of the potential dis-
criminability from other non-ground truth classes k, where
k 6= y, k ∈ {1, 2, . . . ,K}\{y}. 3) It simply uses a same and
fixed margin m1, m2 or m3 to enlarge the feature margin
between different classes.

Naive Mining-Margin Softmax Loss
To solve the first shortcoming, one may resort to hard ex-
amples mining strategies (Shrivastava, Gupta, and Girshick.
2016; Lin, Goyal, and Girshick. 2017). The mining-based
loss functions aim to focus training on the hard examples
while the margin-based loss functions are to enlarge the fea-
ture margin between different classes. Therefore, these two
branches are orthogonal and can seamlessly incorporate into
each other, leading a naive motivation to directly integrate
them as:

L4 = −g(py) log
esf(m,θwy,x)

esf(m,θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
. (4)

The formulation Eq. (4) do involve informative features by
the indicator function g(py), but its improvement is limited
in practice. The reason behind this may be, for the HM-
Softmax (Shrivastava, Gupta, and Girshick. 2016), it explic-
itly indicates the hard examples, but it discards the easy
ones. For the F-Softmax (Lin, Goyal, and Girshick. 2017),
it uses all examples and empirically re-weights them by a
modulating factor, but hard examples are unclear for train-
ing and without intuitive interpretation. This motivates us to
design a more effective way to improve the performance.

Mis-classified Vector Guided Softmax Loss
Intuition says that considering the well-separated feature
vectors has little effect on the learning problem. That means
the mis-classified feature vectors are more crucial to en-
hance feature discriminability. To this end, we alternatively
introduce a more elegant way to focus training on the truly
informative features (i.e., mis-classified vectors). Specifi-
cally, based on the margin-based softmax loss functions, we
define a binary indicator Ik to adaptively indicate whether a
sample (feature) is mis-classified by a specific classifier wk

(where k 6= y) in the current stage:

Ik =

{
0, f(m, θwy,x)− cos(θwk,x) ≥ 0

1, f(m, θwy,x)− cos(θwk,x) < 0
. (5)

From the definition Eq. (5), we can see that if a sample (fea-
ture) is mis-classified, i.e., f(m, θwy,x) − cos(θwk,x) < 0
(e.g., in the left sub-figure of Figure 1, the feature x2 be-
longs to class 1, but it is mis-classified by the classifier w2,
i.e., f(m, θw1,x2

) − cos(θw2,x2
) < 0), it will be empha-

sized temporarily. In this way, the hard examples are explic-
itly indicated and we mainly focus on them for discrimina-
tive training. Consequently, we formulate our Mis-classified

Figure 1: A geometrical interpretation of MV-Softmax from
feature perspective. Samples x1 and x2 are both from class
1. The mis-classified vectors (red dots) are those who are
mis-classified by a specific classifier (e.g., w2).

Vector guided Softmax (MV-Softmax) loss as follows:

L5 = − log
esf(m,θwy,x)

esf(m,θwy,x) +
∑K
k 6=y h(t, θwk,x, Ik)e

s cos(θwk,x)
,

(6)
where h(t, θwk,x, Ik) ≥ 1 is a re-weighted function to
emphasize the indicated mis-classified vectors. Here we
give two candidates, one is with fixed weights for all mis-
classified classes:

h(t, θwk,x, Ik) = estIk , (7)

and the other one is an adaptive formulation:

h(t, θwk,x, Ik) = est(cos(θwk,x)+1)Ik . (8)

where t ≥ 0 is a preset hyperparameter. Obviously, when
t = 0, the designed MV-Softmax loss Eq. (6) becomes iden-
tical to the original margin-based softmax losses Eq. (3).

Comparision to Mining-based Softmax Losses. To illus-
trate the advantages of our MV-Softmax loss over the tradi-
tional mining-based loss functions (e.g., HM-Softmax (Shri-
vastava, Gupta, and Girshick. 2016) and F-Softmax (Lin,
Goyal, and Girshick. 2017)), Figure 1 gives a toy example.
Assume that we have two samples (features) x1 and x2, both
of them are from class 1, where x1 is well-classified while
x2 is not. The HM-Softmax empirically indicates the hard
samples and discards the easy sample x1 to use the hard one
x2 for training. The F-Softmax does not explicitly indicate
the hard samples, but it re-weights all the samples, making
the harder one x2 to have relatively larger loss value. These
two strategies are directly from the loss viewpoint and the
selection of hard examples is without semantic guidance.
Our MV-Softmax loss Eq. (6) is from a different way. Firstly,
we semantically indicates the hard examples (mis-classified
vectors) according to the decision boundary. The hardness of
previous methods is defined as a global relationship between
feature (sample) and feature (sample). While our hardness is
a local relationship between feature and classifier, which is
more consistent with discriminative feature learning. Then,
we emphasize these hard examples from probability view-
point. Specifically, because the cross-entropy loss −log(p)
is a monotonically decreasing function, reducing the prob-
ability p (the reason is that h(t, θwk,x, Ik) ≥ 1, see Eqs.
(7) and (8)) of the mis-classified vector x2, will increase its



importance for training. In summary, we can claim that our
mis-classified vector guided mining strategy, is more supe-
rior for discriminative feature learning than previous ones.

Comparision to Margin-based Softmax Losses. Simi-
larly, assume that we have a sample x2 from class 1, and
it is not well-classified, (e.g., the red dot in Figure 1). The
original softmax loss aims to make wT

1 x2 > wT
2 x2 ⇐⇒

cos(θ1) > cos(θ2) and wT
1 x2 > wT

3 x2 ⇐⇒ cos(θ1) >
cos(θ3). To make these objectives more rigorous, margin-
based loss functions introduce a margin function f(m, θ1) =
cos(m1θ1 + m3) − m2 from the perspective of ground
truth class (i.e., θ1) (Liu et al. 2017; Wang et al. 2018b;
Deng et al. 2019):

cos(θ1) ≥ f(m, θ1) > cos(θ2)

cos(θ1) ≥ f(m, θ1) > cos(θ3),
(9)

wherein f(m, θ1) is with a same and fixed margin for differ-
ent classes and ignores the potential discriminability from
other non-ground truth classes (e.g., θ2 and θ3). To solve
these issues, our MV-Softmax loss tries to further enlarge
the feature margin from the perspective of other non-ground
truth classes. Specifically, we have introduced a margin
function h∗(t, θ2) for the mis-classified feature x2:

cos(θ1) ≥ f(m, θ1) > h∗(t, θ2) ≥ cos(θ2)

cos(θ1) ≥ f(m, θ1) ≥ cos(θ3),
(10)

where h∗(t, θ2) = log[h(t, θ2)e
cos(θ2)] = cos(θ2) + t or

(t + 1) cos(θ2) + t. For the case θ3, because x2 is well-
classified by the classifier w3, we do not need to give any
additional enforcement to further enlarge its margin. More-
over, our MV-Softmax losses have also set adaptive mar-
gins for different classes. Taking MV-AM-Softmax (i.e.,
f(m, θy) = cos(θy) − m) as an example, for the mis-
classified classes, the margin is m+ t or m+ t cos(θ2) + t.
While for the well-classified classes, the margin is m. On
account of these, our MV-Softmax losses have addressed the
second and third shortcomings.

According to the above discussions, we conclude that our
new loss has inherited the merits of feature margin and fea-
ture mining into a unified loss function, thus it is expected
to achieve more discriminative features for face recognition.

Optimization
In this section, we show that our MV-Softmax loss
Eq. (6) is trainable and can be easily optimized by
the typical stochastic gradient descent (SGD). The dif-
ference between the previous margin-based softmax
losses and the proposed MV-Softmax loss lies in the
last fully connected layer v = [v1, v2, . . . , vK ]T =
[cos(θw1,x), cos(θw2,x), . . . , cos(θwK ,x)]

T . For the for-
ward propagation, when k = y, it is the same as the original
margin-based softmax loss (i.e., vy = cos(m1θwy,x+m3)−
m2). When k 6= y, it has two cases, if the feature vector is
well-classified for a specific classifier, it is the same as the
original softmax (i.e., vk = cos(θwk,x)). Otherwise, it will
be re-computed with a fixed weight cos(θwk,x) + t or an
adaptive weight (t + 1) cos(θwk,x) + t. The whole scheme
of our method is summarized in Algorithm 1.

Algorithm 1: MV-Softmax
Input: Training set S; The hyper-parameter t; Training

epochs τ .
Initialization: α = 1; Randomly initialize the parameter
Θ in convolution layers and W in the last fully connected
layer.

while α ≤ τ do
Shuffle the training set S and fetch mini-batch Sn;
Forward: According to the indication of hard

examples Eq. (5), we compute the MV-Softmax loss
by Eq. (6);

Backward: Update the parameters W and Θ by
Stochastic Gradient Descent (SGD);

end
Output: Parameters Θ and W .

Table 1: Face datasets for training and test. ”(P)” and ”(G)”
refer to the probe and gallery set, respectively.

Datasets Identities Images
Training MS-Celeb-1M-v1c-R 72,690 3.28M

Test

LFW 5,749 13,233
CALFW 5,749 12,174
CPLFW 5,749 11,652
AgeDB 568 16,488

CFP 500 7,000
RFW 11,430 40,607

MegaFace 530(P) 1M(G)
Trillion-Pairs 5,749(P) 1.58M(G)

Experiments
Datasets
Training Data. The original MS-Celeb-1M dataset (Guo
et al. 2016) contains about 100K identities with 10M im-
ages. However, it consists of a great many noisy faces. For-
tunately, the trillion-pairs consortium (Deepglint 2018) has
made their efforts to get a high-quality version MS-Celeb-
1M-v1c, which is well-cleaned for training.
Test Data. We use eight face recognition benchmarks, in-
cluding LFW (Huang, Ramesh, and Miller. 2007), CALFW
(Zheng et al. 2017), CPLFW (Zheng et al. 2018), AgeDB
(Moschoglou et al. 2017), CFP (Sengupta et al. 2016), RFW
(Wang et al. 2018d), MegaFace (Kemelmacher-Shlizerman
et al. 2016; Nech and Kemelmacher 2017) and Trillion-Pairs
(Deepglint 2018), as the test data. For more details about the
test datasets, please see their references.
Dataset Overlap Removal. In face recognition, it is very
important to perform open-set evaluation, i.e., there should
be no overlapping identities between training set and test
set. To this end, we need to carefully remove the over-
lapped identities between the employed training dataset (i.e.,
MS-Celeb-1M-v1c) and the test datasets (including LFW,
CALFW, CPLFW, AgeDB, CFP, RFW and MegaFace)1. For
the overlap identities removal tool, we use the publicly avail-
able script provided by (Wang et al. 2018b) to check whether

1For the Trillion-Pairs test set, we can not remove the potential
overlaps because its ground truth label (name) is unreleased.



Table 2: Verification performance (%) of our MV-Softmax
loss functions with different hyper-parameter t. ’f’ and ’a’
donate the fixed re-weight function Eq. (7) and the adaptive
one Eq. (8), respectively.

Method BLUFR CALFW AgeDB1e-5
MV-Arc-Softmax-f (0.15) 94.60 95.54 98.05
MV-Arc-Softmax-f (0.2) 95.18 95.46 98.11

MV-Arc-Softmax-f (0.25) 94.04 95.51 98.08
MV-Arc-Softmax-a (0.25) 94.15 95.33 97.86
MV-Arc-Softmax-a (0.3) 95.50 95.46 98.06

MV-Arc-Softmax-a (0.35) 95.08 95.50 97.90
MV-AM-Softmax-f (0.2) 94.81 95.29 98.01

MV-AM-Softmax-f (0.25) 95.74 95.45 98.05
MV-AM-Softmax-f (0.3) 95.07 95.41 98.00

MV-AM-Softmax-a (0.15) 94.09 95.41 98.13
MV-AM-Softmax-a (0.2) 96.27 95.63 98.00

MV-AM-Softmax-a (0.25) 94.29 95.51 97.96

if two names are of the same person. As a consequence, we
remove 14,186 identities from the training set MS-Celeb-
1M-v1c. For clarity, we donate the refined training dataset as
MS-Celeb-1M-v1c-R. Important statistics of all the involved
datasets are summarized in Table 1. To be rigorous, all the
experiments in this paper are based on the refined training
set MS-Celeb-1M-v1c-R. To encourage more researchers to
abide by the open-set protocol, the overlapping lists and the
refined dataset MS-Celeb-1M-v1c-R are publicly available.

Experimental Settings
Data Processing. We detect the faces by adopting the
FaceBoxes detector (Zhang et al. 2017; 2019) and local-
ize five landmarks (two eyes, nose tip and two mouth cor-
ners) through a simple 6-layer CNN (Feng et al. 2017;
Liu et al. 2019b). The detected faces are cropped and re-
sized to 144×144, and each pixel (ranged between [0,255])
in RGB images is normalized by subtracting 127.5 and di-
vided by 128. For all the training faces, they are horizontally
flipped with probability 0.5 for data augmentation.
CNN Architecture. In face recognition, there are many
kinds of network architectures (Liu et al. 2017; Wang et
al. 2018b; 2018a). To be fair, the CNN architecture should
be the same to test different loss functions. As suggested
by the work (Wang et al. 2018a), we use the Attention-
Net (Wang et al. 2017b) to achieve a good balance be-
tween computation and accuracy. Moreover, inspired by the
work (Deng et al. 2019), we integrate the IRSE module into
the AttentionNet and rename the developed architecture as
AttentionNet-IRSE. For the depth stages of AttentionNet-
IRSE, we set [1, 1, 1] as our baseline architecture. The out-
put of AttentionNet-IRSE gets a 512-dimension feature.
Training. All the CNN models are trained with stochas-
tic gradient descent (SGD) algorithm and are trained from
scratch, with the batch size of 32 on 4 P40 or 4 V100 GPUs
parallelly, total batch size 128. The weight decay is set to
0.0005 and the momentum is 0.9. The learning rate is ini-
tially 0.1 and divided by 10 at 4, 8, 10 epochs, and we finish

the training process at 12 epoch. All experiments in this pa-
per are implemented by Pytorch library.
Test. At test stage, only the original image features are em-
ployed to compose the face representation. All the reported
results in this paper are evaluated by a single model, without
model ensemble or other fusion strategies.

For the evaluation metric, the cosine similarity is utilized.
We follow the unrestricted with labelled outside data proto-
col (Huang, Ramesh, and Miller. 2007) to report the perfor-
mance on LFW, CALFW, CPLFW, AgeDB, CFP and RFW.
Moreover, we also report the BLUFR protocol (Liao et al.
2014) on the test set LFW. On Megaface and Trillion-Pairs
Challenge, face identification and verification are conducted
by ranking and thresholding the scores. Specifically, for face
identification, the Cumulative Match Characteristics (CMC)
curves are adopted to evaluate the Rank-1 accuracy. For face
verification, the Receiver Operating Characteristic (ROC)
curves are adopted. The true positive rate (TPR) at low false
acceptance rate (FAR) is emphasized since in real applica-
tions false acceptance gives higher risks than false rejection.

For the compared methods, we compare our method
with the baseline Softmax loss (Softmax) and the recently
proposed state-of-the-arts, including 2 mining-based soft-
max losses (i.e., F-Softmax and HM-Softmax), 3 margin-
based softmax losses (A-Softmax, Arc-Softmax and AM-
Softmax) and their 4 naive fusions (F-Arc-Softmax, F-
AM-Softmax, HM-Arc-Softmax and HM-AM-Softmax).
For all the competitors, their source codes can be down-
loaded from the github or from authors’ webpages. The cor-
responding parameters of each competitors are mainly deter-
mined according to their paper’s suggestions. Specifically,
for HM-Softmax (Shrivastava, Gupta, and Girshick. 2016),
we save 90% high-loss samples in each mini-batch for train-
ing. For F-Softmax, it is with the parameter γ = 2.0. For
A-Softmax, the margin parameter is set as m1 = 3. While
for AM-Softmax and Arc-Softmax, the margin parameters
are set as m2 = 0.35 and m3 = 0.5, respectively. The scale
parameter s has already been discussed sufficiently in pre-
vious works (Wang et al. 2018b; 2018c). In this paper, we
empirically fixed it to 32 for all the methods.

Exploratory Experiments
Effect of parameter t. Since the hyper-parameter t in the re-
weighted function Eqs. (7) and (8) plays an important role
in the developed MV-Softmax loss, we mainly explore to
search its possible best value in this part. In Table 2, we list
the performance of our proposed MV-Softmax loss function
with t varies from different ranges. ’f’ and ’a’ donate the
fixed re-weight function Eq. (7) and the adaptive one Eq.
(8), respectively. From the numbers, we can summarize that
our MV-Softmax loss is insensitive to the hyper-parameter
t in a certain range. Moreover, according to this study, we
empirically set t = 0.2 for MV-Arc-Softmax-f, t = 0.3 for
MV-Arc-Softmax-a, t = 0.25 for MV-AM-Softmax-f and
t = 0.2 for MV-AM-Softmax-a in the subsequent experi-
ments.
Convergence of MV-Softmax. Although the convergence
of our method is not easy to be theoretically analyzed, it
would be intuitive to see its empirical behavior. Here, we



Table 3: Verification performance (%) of different loss functions on the test sets LFW, CALFW, CPLFW, AgeDB and CFP.

Method LFW BLUFR CALFW CPLFW AgeDB CFP1e-3 1e-4 1e-5
Baseline Softmax 99.59 99.29 99.11 91.74 94.66 87.76 97.01 94.04

Mining-based F-Softmax 99.65 99.24 98.72 91.19 93.83 86.35 96.51 93.20
HM-Softmax 99.65 99.30 99.11 92.03 94.69 87.56 97.05 94.12

Margin-based
A-Softmax 99.65 99.30 99.12 92.77 94.55 87.85 97.16 94.22

Arc-Softmax 99.76 99.33 99.30 93.75 95.44 88.78 98.00 95.28
AM-Softmax 99.71 99.33 99.31 93.68 95.58 89.60 98.03 95.68

Naive-fused

F-Arc-Softmax 99.71 99.33 99.29 94.51 95.48 88.85 98.10 95.62
F-AM-Softmax 99.73 99.33 99.30 92.81 95.58 89.60 98.20 95.47

HM-Arc-Softmax 99.75 99.33 99.29 93.53 95.36 89.16 97.86 95.22
HM-AM-Softmax 99.76 99.33 99.30 96.09 95.45 89.56 98.05 95.37

Ours

MV-Arc-Softmax-f (0.2) 99.78 99.34 99.30 95.18 95.46 89.30 98.11 95.21
MV-Arc-Softmax-a (0.3) 99.76 99.33 99.30 95.50 95.46 89.41 98.06 95.45

MV-AM-Softmax-f (0.25) 99.79 99.33 99.31 95.74 95.45 89.69 98.05 95.70
MV-AM-Softmax-a (0.2) 99.79 99.33 99.30 96.27 95.63 89.19 98.00 95.30

Figure 2: Convergence of MV-Softmax. From the curves,
we can see that our MV-Softmax loss functions have a good
behavior of convergence.

give the loss changes as the number of epochs increases.
From the curves in Figure 2, it can be observed that our
method has a good behavior of convergence.

Results on LFW, CALFW, CPLFW, AgeDB, CFP
Table 3 provides the quantitative results of all the competi-
tors on LFW, CALFW, CPLFW, AgeDB and CFP. The bold
number in each column represents the best result. For the
LFW accuracy and its BLUFR protocol with different false
alarm rates (e.g., 1e-3, 1e-4, 1e-5), it is well-known that
these protocols are typical and easy for face recognition.
For instance, at LFW accuracy and TPR@FAR=1e-3 and
1e-4, almost all the competitors can achieve 99% perfor-
mance. So the improvement of our MV-Softmax losses is not
quite large. For the BLUFR with TPR@FAR=1e-5, we can
see that the naive fusion HM-AM-Softmax outperforms the
baseline Softmax, the simple mining-based losses and the
margin-based ones. Despite this, our MV-AM-Softmax still
achieves about 0.2% improvement. On CALFW, CPLFW,
AgeDB and CFP test sets, we also observe that our MV-

Table 4: Verification performance (%) of different loss func-
tions on the test set RFW.

Method RFW
Caucasian Indian Asian African

Softmax 98.33 93.33 93.16 91.33
F-Softmax 97.50 90.30 91.16 88.33

HM-Softmax 98.66 93.49 92.83 90.50
A-Softmax 98.83 94.33 93.33 91.33

Arc-Softmax 98.83 96.16 93.66 95.00
AM-Softmax 99.16 96.16 94.46 95.83

F-Arc-Softmax 98.99 95.83 94.16 95.50
F-AM-Softmax 99.16 96.66 93.66 95.00

HM-Arc-Softmax 98.66 94.33 94.16 96.66
HM-AM-Softmax 99.16 94.66 93.33 96.00
MV-Arc-Softmax-f 98.66 96.83 94.50 96.50
MV-Arc-Softmax-a 98.00 94.66 94.83 95.99
MV-AM-Softmax-f 99.00 94.99 94.83 96.66
MV-AM-Softmax-a 99.33 95.83 95.66 95.83

Softmax losses are better than the state-of-the-art alterna-
tives in most of cases. Nevertheless, we can see that the im-
provements of our method in these test sets are not by a large
margin. The reason is that the test protocol is relatively easy
and the performance of all the methods on these test sets are
near saturation. So there is an urgent need to test the per-
formance of all the competitors on new test sets or test with
more complicated protocols.

Results on RFW
Firstly, we evaluate all the competitors on the recent pro-
posed new test set RFW (Wang et al. 2018d). RFW is
a face recognition benchmark for measuring racial bias,
which consists of four test subsets, namely Caucasian, In-
dian, Asian and African. Tables 4 displays the performance
comparison of all the involved methods. From the values,
we can conclude that the results on the four subsets exhibit
the same trends, i.e., the margin-based losses are better than
the baseline Softmax loss and the mining-based losses. The



Table 5: Performance (%) of different loss functions on
MegaFace and Trillion-Pairs Challenge.

Method MegaFace Trillion-Pairs
Id. Veri. Id. Veri.

Softmax 93.94 94.76 60.06 59.00
F-Softmax 91.60 93.06 51.14 48.32

HM-Softmax 93.95 95.53 61.34 60.07
A-Softmax 94.18 95.26 60.34 59.01

Arc-Softmax 97.28 97.58 70.80 68.12
AM-Softmax 97.69 97.82 74.00 71.57

F-Arc-Softmax 97.51 97.81 70.65 69.06
F-AM-Softmax 95.75 97.75 73.82 72.18

HM-Arc-Softmax 97.43 97.56 70.08 68.16
HM-AM-Softmax 97.48 97.64 73.89 71.63
MV-Arc-Softmax-f 97.52 98.01 73.90 71.28
MV-Arc-Softmax-a 97.74 97.62 75.44 74.69
MV-AM-Softmax-f 97.95 97.85 75.92 74.45
MV-AM-Softmax-a 98.00 98.31 76.94 75.93

improvement by simply combining the margin-based and
mining-based losses is limited. Our mis-classified guided
ones, which explicitly emphasize on the mis-classified fea-
ture vectors for training, are more consistent with the dis-
criminative feature learning. Therefore, they inherently ab-
sorb the merits of feature margin and feature mining into
a unified loss function. They usually achieve more discrim-
inative face features and can get higher performance than
previous alternatives.

Results on MegaFace and Trillion-Pairs
We then test all the competitors with more complicated pro-
tocols. Specifically, the identification (Id.) Rank-1 and the
verification (Veri.) TPR@FAR=1e-6 on MegaFace, the iden-
tification (Id.) TPR@FAR=1e-3 and the verification (Veri.)
TPR@FAR=1e-9 on Trillion-Pairs are reported in Table
5. From the numbers, we can observe that our MV-AM-
Softmax-a achieves the best performance over the base-
line Softmax loss, the mining-based Softmax losses, the
margin-based softmax losses and the naive combinations of
mining-based and margin-based losses, on both MegaFace
and Trillion-Pairs Challenge. Specifically, on MegaFace, for
our proposed MV-AM-Softmax-a, it obviously beats the
best margin-based competitor AM-Softmax loss by a large
margin (about 0.3% on identification and 0.5% on verifi-
cation). Compared with the naive fusions of mining-based
and margin-based losses, our improved MV-AM-Softmax-a
loss is also better than them. Moreover, compared the MV-
Softmax-a with MV-Softmax-f, we can say that the adap-
tive re-weighted function Eq. (8) is generally better than the
fixed one Eq. (7). This is reasonable because for more dif-
ficult mis-classfied feature vectors, they should be more im-
portant for discriminative feature learning. In Figure 3, we
also draw both of the CMC curves to evaluate the perfor-
mance of face identification and the ROC curves to evalu-
ate the performance of face verification on MegaFace Set 1.
From the curves, we can see the similar trends at other mea-

100 101 102 103 104 105 106

Rank

90

92

94

96

98

100

I
d
e
n
t
i
f
i
c
a
t
i
o
n
 
R
a
t
e
 
(
%
)

Identification with 1M distractors

Softmax
F-Softmax
HM-Softmax
A-Softmax
Arc-Softmax
AM-Softmax
F-Arc-Softmax
F-AM-Softmax
HM-Arc-Softmax
HM-AM-Softmax
MV-Arc-Softmax-f
MV-Arc-Softmax-a
MV-AM-Softmax-f
MV-AM-Softmax-a

10-6 10-5 10-4 10-3 10-2 10-1 100

False Positive Rate (FAR)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

T
r
u
e
 
P
o
s
i
t
i
v
e
 
R
a
t
e
 
(
T
P
R
)

Verification with 1M Distractors

Softmax
F-Softmax
HM-Softmax
A-Softmax
Arc-Softmax
AM-Softmax
F-Arc-Softmax
F-AM-Softmax
HM-Arc-Softmax
HM-AM-Softmax
MV-Arc-Softmax-f
MV-Arc-Softmax-a
MV-AM-Softmax-f
MV-AM-Softmax-a

Figure 3: From Left to Right: CMC curves and ROC curves
of different loss functions with 1M distractors on MegaFace
Set 1.

sures. On Trillion-Pairs Challenge, we can observe that the
results exhibit the same trends that emerged on MegaFace
test set. Besides, the trends are more obvious. In particu-
lar, we achieve at least 3% improvements at both the iden-
tification and the verification on Trillion-Pairs Challenge. In
this experiment, we have clearly demonstrated that our MV-
AM-Softmax-a approach is superior for both the identifica-
tion and verification tasks, especially when the false positive
rate is very low. To sum up, by inheriting the advantages
of both margin-based and mining-based Softmax losses, our
new desined mis-classified guided one has shown its strong
generalization ability for face recognition.

Conclusion
This paper has proposed a simple yet very effective loss
function, namely mis-classified vector guided softmax loss
(i.e., MV-Softmax), for the task of face recognition. In spe-
cific, MV-Softmax loss explicitly concentrates on optimiz-
ing the mis-classified feature vectors. Thus it semantically
inherits the motivations of feature margin and feature min-
ing into a unified loss function. Consequently, it exhibits
a higher performance than the baseline Softmax loss, the
current mining-based losses, margin-based losses and their
naive fusions. Extensive experiments on several face recog-
nition benchmarks have validated the effectiveness of our
new approach over the state-of-the-art alternatives.
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