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Abstract

Multi-view subspace clustering aims to partition a set of
multi-source data into their underlying groups. To boost the
performance of multi-view clustering, numerous subspace
learning algorithms have been developed in recent years,
but with rare exploitation of the representation complemen-
tarity between different views as well as the indicator con-
sistency among the representations, let alone considering
them simultaneously. In this paper, we propose a novel
multi-view subspace clustering model that attempts to har-
ness the complementary information between different rep-
resentations by introducing a novel position-aware exclu-
sivity term. Meanwhile, a consistency term is employed to
make these complementary representations to further have
a common indicator. We formulate the above concerns in-
to a unified optimization framework. Experimental results
on several benchmark datasets are conducted to reveal the
effectiveness of our algorithm over other state-of-the-arts.

1. Introduction
Clustering data points into different groups such that the

objects in the same group are highly similar to each other, is
one of the most fundamental topics in computer vision and
pattern recognition [1, 30, 17, 22, 23]. In the past decades, a
number of clustering approaches have been developed, such
as the iteration based methods [28, 13], the factorization
based methods [6, 14], and the spectral clustering based
approaches [24, 8, 20]. Among them, spectral clustering
based ones have become popular and dominant. For exam-
ple, Standard Spectral Clustering (SPC) proposed in [24]
aims to perform clustering by learning the similarity matrix
based on the data locality. Sparse Subspace Clustering (SS-
C) [8] is to seek a sparse representation for each instance
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over the whole data. Having the representation calculat-
ed, the spectral clustering algorithm (e.g., Normalized Cuts
[27]) is performed to obtain the clustering result. The Low-
Rank Representation (LRR) approach proposed in [20] tries
to find a low-rank representation. Additionally, the method
proposed in [18], called Structured Sparse Subspace Clus-
tering (S3C), achieves promising results by integrating the
sparse representation learning and the spectral clustering in-
to one framework. However, these methods mainly focus on
advancing the clustering performance for single source fea-
tures. For multi-view ones, they are difficult to find good
clusters due to the potential presence of view insufficiency
or the high-dimensionality of data. Typically, they cannot
be directly applied to multi-view cases. This paper devotes
to boost the clustering performance by recovering the sub-
space structure of the data set with multi-view features.

In practice, we often face data in multiple views. Differ-
ent views characterize different and partly independent in-
formation about the data. For instance, images and videos
are described by different kinds of features, such as col-
or, texture and edge. Web pages contain texts, hyperlinks
and possibly existing visual information. In general, these
multi-view representations can seamlessly capture the rich
information from multiple data cues as well as the comple-
mentary information among different cues, thus will be ben-
eficial to clustering. To integrate different features, much
progress has been made in developing effective multi-view
clustering methods [7, 15, 5, 2, 4, 9, 31]. The work [7] u-
tilizes a bipartite similarity matrix to connect two types of
features and adopts the standard spectral clustering to gen-
erate the final result. The co-regularized multi-view spectral
clustering introduced in [15] is to perform clustering on d-
ifferent views simultaneously with a co-regularization con-
straint. The method designed in [5] learns a common repre-
sentation under the spectral clustering framework by com-
bining Laplacians of different views. By considering the
complementary information between representations, the
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Figure 1. Different viewpoints of our proposed ECMSC model. The green rectangle indicates the ground-truth clustering while the red
rectangle denotes the different version of the ECMSC. With the multi-view input, our ECMSC algorithm simultaneously exploits the
representation exclusivity ( parameter α) and indicator consistency (parameter β) in one framework.

work [2] employs the HSIC criterion [10] to pursue the di-
verse representations. Gao et al. [9] unified the represen-
tation learning and spectral clustering into one framework.
Zhang et al. [31] proposed to cluster multi-view features
with a low-rank tensor constraint for capturing the high-
order cross information among multiple views.

Although the above multi-view clustering approaches
generally provide more promising results than most single
view methods like [8, 20], they have two main shortcom-
ings: 1) Many works [4, 5, 21] prefer to learn a common
representation, ignoring the complementary information be-
tween different views; 2) Existing works [2, 31, 5, 29] tend
to execute the subspace learning and spectral clustering in
two separated steps without consideration of the fact that
these two pipelined steps highly depend on each other.

To overcome the above shortcomings, this paper propos-
es a novel multi-view clustering algorithm namely ECM-
SC, to simultaneously exploit the representation exclusivity
and indicator consistency in a unified manner. Specifical-
ly, to exploit the complementary information between dif-
ferent representations, we introduce a novel position-aware
exclusivity term to enforce the representations of different
views to be as exclusive as possible. Meanwhile, an indica-
tor consistent term is employed to advocate the label consis-
tency among these complementary representations. There-
fore, we have integrated the two pipelined steps, i.e. sub-
space learning and spectral clustering, into one optimization
framework. Figure 1 gives an illustration of our proposed
ECMSC. Moreover, to efficiently and effectively seek the
solution of the associated optimization problem, an alterna-
tive based algorithm is designed. Extensive experiments on
benchmark datasets are conducted to demonstrate the supe-
riority of our method over state-of-the-art alternatives.
Notation: Throughout the paper, all the matrices are written
as uppercase. For a matrix G, the i-th row, the j-th column
and the ij-th element of G are denoted by gi, gj and gij ,
respectively. 0, 1 and I represent the all-zeros, all-ones and
identity matrices with appropriate sizes, respectively.

2. Problem Statement
This section first briefly introduces the general procedure

of subspace clustering based approaches, then provides the
formulation of our multi-view subspace clustering method1.

2.1. Subspace Clustering

For a data set, it usually lies in an underlying low-
dimensional subspace rather than distributing uniformly in
the entire space [18, 9]. Thus, the data points can be repre-
sented by a low-dimensional subspace. After obtaining the
subspace structure of the data set, the clustering is accom-
plished based on the recovered subspace instead of on the
entire space.

Suppose X = [x1,x2, ...,xn] ∈ Rd×n is the matrix of
data vectors, each column of which is a sample vector, d
is the dimensionality of the feature space and n is the total
amount of data points. The subspace clustering tries to find
the self-representation by solving the following optimiza-
tion problem:

min
Z,E
||E||k + λ||Z||l s. t. X = XZ + E, diag(Z) = 0,

(1)
where X = XZ + E is the self-representation model. Z =
[z1, . . . , zn] ∈ Rn×n is the subspace representation matrix,
each zi is the coding coefficient of the original data point
xi over the observed X, while E is the error matrix. || · ||k
and || · ||l are two properly chosen norms, λ is the trade-
off parameter, and the constraint diag(Z) = 0 is optionally
used to rule out the trivial solution of Z being an identity.

After obtaining the subspace structure Z by solving (1),
the similarity matrix is formed via S = (|Z|T + |Z|)/2.
Then, we can perform spectral clustering on such a sub-
space similarity matrix through optimizing the following:

min
F

tr(FT (D− S)F) s. t. F ∈ C, (2)

1Our code is released at http://www.cbsr.ia.ac.cn/users/
xiaobowang/.
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where D is a diagonal matrix whose diagonal elements are
defined as dii =

∑
j sij . The constraint C can be detailed

as {F ∈ {0, 1}n×k : F1 = 1, rank(F) = k.}. Specif-
ically, F = [q1, . . . ,qk] ∈ Rn×k is a binary matrix in-
dicating the membership of each data point to a specific
group. F1 = 1 means that each data point appears in one
and only one subspace. The constraint rank(F) = k is
to ensure that the number of subspaces is equal to the de-
sired k. For simplicity, the above problem (2) can be solved
approximately via spectral clustering by relaxing the con-
straint F ∈ C to FTF = I. Furthermore, note that the
objective tr(FT (D− S)F) can be rewritten as:

tr(FT (D− S)F) =
∑
i,j

1

2
sij(||f i − f j ||22)

=
∑
i,j

|zij |(
1

2
||f i − f j ||22) = ||Z�Θ||1

(3)

where θij = 1
2 ||f

i − f j ||22. Therefore, the final step spectral
clustering reads:

min
F
||Z�Θ||1 s. t. FTF = I. (4)

Considering the ubiquitousness of multi-view representa-
tion in practice, extending the single-view clustering to the
multi-view setting is of vital importance.

2.2. Exclusivity-Consistency Regularized Multi-
view Subspace Clustering

In this part, we detail our proposed multi-view subspace
clustering model. Given the data set Xv ∈ Rdv×n, which
denotes the features in the v-th view (v = 1, . . . , V ). Per-
forming the subspace learning on each single view gives the
subspace representation Zv for the v-th view. The nonzero
elements in Zv correspond to the data points from the same
subspace. In fact, how to combine multi-view features in
subspace clustering is challenging. The naive method is to
concatenate all the features together and execute the cluster-
ing on the concatenated features. However, in this way, each
view will be treated equally, which is not always proper. In
order to combine the multi-view subspace learning results,
existing works [4, 9] prefer to learn a common represen-
tation or a common indicator matrix among all the views.
Unfortunately, they can not guarantee the complementarity
across different Zv’s. Recently, to exploit such complemen-
tary information, the work [2] enforces different represen-
tations to be diverse by adopting the Hilbert-Schmidt Inde-
pendence Criterion (HSIC). The drawback of using HSIC is
that HSIC is a value-aware criterion (i.e., the diversity be-
tween Zv and Zw is related to their values). Due to the scale
issue of Zv

2, the value-aware regularization may greatly de-
grade the performance. Moreover, the work [2] executes

2Although the diagonal block in different Zv are similar, the magnitude
of element values in Zv can be dramatically different.

the representation learning and spectral clustering in two
separated steps, which also limits its performance. Based
on these observations, we introduce a novel position-aware
exclusivity term to exploit the complementary information
and an indicator consistency term to unify the processing of
subspace clustering.

2.2.1 Representation Exclusivity

Definition 1. (Exclusivity [12]) Exclusivity between t-
wo matrix U ∈ Rn×n and V ∈ Rn×n is defined as
H(U,V) = ||U � V||0 =

∑
i,j(uij · vij 6= 0), where �

designates the Hadamard product (i.e., element-wise prod-
uct), and || · ||0 is the `0-“norm”3.

From the definition, we can observe that the exclusivity
encourages two matrix to be as diverse as possible. Ideally,
if the position (i, j) of U is not equal to zero, then the ex-
clusivity term enforces the same position (i, j) of V to be
zero. Consequently, we can say that the defined exclusivity
term is position-aware. Naturally, for the diversity between
different representations, we have:

H(Zv,Zw) = ||Zv � Zw||0. (5)

Furthermore, owning to the non-convexity and discreteness
of `0 norm, we relax the `0 norm into `1-norm to make the
objective (5) computationally tractable. In the sequel, we
reach the following relaxed exclusivity as:

H(Zv,Zw) = ||Zv � Zw||1. (6)

Extending the model (1) into multi-view case by incor-
porating the relaxed exclusivity term (6) leads to the follow-
ing objective function:

min
F,Zv

V∑
v=1

(
||Ev||1 + λ1||Zv||1 + λ2

∑
w 6=v

||Zv � Zw||1
)

s. t. ∀ v, Xv = XvZv + Ev, diag (Zv) = 0.
(7)

Here we adopt the `1-norm for pursuing sparse representa-
tion ||Z||1. As pointed out in [9], the low-rank constraint
is sometimes bad for the low dimension features due to the
rigor rank restriction. For the error term E, its norm || · ||l
depends upon the prior knowledge about the pattern of noise
or corruptions [32]. This work simply adopts the `1-norm
to handle with the sparse corruptions. Moreover, we do not
use the HSIC for measuring the diversity mainly for two
reasons. One is that HSIC is value-aware while the pro-
posed exclusivity term is position-aware, expecting that the
position-aware criterion could be better to handle the case
of the magnitude of element values. The other is that the re-
laxed exclusivity term can be seamlessly incorporated with
the SSC [8] framework.

3`0-norm is not a real norm.



2.2.2 Indicator Consistency

The work [18] has validated that integrating the subspace
learning and spectral clustering into one framework can im-
prove the performance for single view cases. As for multi-
view cases, knowing that the goal of clustering is to classify
a point with multi-view features into only one cluster, we
can introduce the label consistency term naturally as:

min

V∑
v=1

||Zv �Θ||1 s. t. FTF = I, (8)

where F is the common indicator matrix for all the views.
Consequently, the clustering is expected to be consistent for
all the views, i.e. the corresponding points with exclusive
representations should be in the same cluster.

Based on the above analysis, we prefer to simultaneous-
ly harness the exclusivity of different representations and
the consistency of indicator. Now, putting all concerns,
say (7) and (8), together results in our final Exclusivity-
Consistency Regularized Multi-view Subspace Clustering
(ECMSC) model as follows:

min
F,Z1,...,ZV

V∑
v=1

||Ev||1 + λ1||Zv||1 + λ2
∑
w 6=v

||Zv � Zw||1︸ ︷︷ ︸
Exclusivity

+ λ3 ||Zv �Θ||1︸ ︷︷ ︸
Consistency

s. t. Xv = XvZv + Ev, diag (Zv) = 0, FTF = I,
(9)

where λ1, λ2 and λ3 are the tradeoffs corresponding to the
sparsity, exclusivity and consistency terms, respectively.

3. Optimization
It is difficult to jointly solve all the variables in (9) at the

same time. In this section, we propose a solution based on
solving the following two subproblems alternatively:

• Given F, find the exclusive representation Zv and the
residual Ev (v = 1, . . . , V ) by ADMM algorithm.

• With Zv and Ev fixed, compute the consistent indica-
tor F by spectral clustering.

3.1. Update Representation Zv and Residual Ev

Given the clustering indicator matrix F, we solve for Zv
and Ev by solving the following sub-problem:

min
Zv,Ev

||Ev||1 + λ1||Zv||1 + λ2
∑
w 6=v

||Zv � Zw||1

+ λ3||Zv �Θ||1
s. t. Xv = XvZv + Ev, diag (Zv) = 0.

(10)

Algorithm 1: ADMM for solving problem (11)

Input: Data matrix X, Θ0, Zw, where w ∈ {1, . . . , V } and
w 6= v. λ1, λ2 and λ3.

Initialize: Θ = Θ0, E = 0, C = Z = Z0, Q1 = 0,
Q2 = 0, ρ = 1.1, ε = 10−6.
while not convergence do

Update Z via (14);
Update C via (16);
Update E via (18);
Update Q1 and Q2 via (19);
Update µ = µρ;
Check the convergence condition
||X−XC−E||∞ ≤ ε.

end
Output: Z and E.

For convenience, ignoring the subscript tentatively, the
above problem is equivalent to:

min
Z,E
||E||1 + λ1||Z||1 + λ2

∑
w 6=v

||Z� Zw||1

+ λ3||Z�Θ||1
s. t. X = XC + E, C = Z− diag (Z).

(11)

We solve this problem using the Alternating Direction
Method of Multipliers (ADMM) [19]. The augmented La-
grangian can be given by:

L(Z,C,E,Q1,Q2) =

||E||1 + λ1||Z||1 + λ2
∑
w 6=v

||Z� Zw||1 + λ3||Z�Θ||1

+ Φ(Q1,X−XC−E) + Φ(Q2,C− Z + diag (Z)),
(12)

with the definition Φ(Q,Y) = µ
2 ||Y||

2
F + 〈C,Y〉, where

〈·, ·〉 denotes the matrix inner product, µ is a positive penal-
ty scalar, Q1 and Q2 are the Lagrangian multipliers. To find
a minimal point for L, we update each of Z, C, E, Q1 and
Q2 alternatively while keeping the other variables fixed.
Z-subproblem: Dropping the unrelated terms with respect
to Z yields:

min
Z
λ1||Z||1 + λ2

∑
w 6=v

||Z� Zw||1 + λ3||Z�Θ||1

+ Φ(Q2,C− Z + diag (Z)).

(13)

The closed-form solution for Z can be computed by

Z = Ẑ− diag (Ẑ),

Ẑ = Sλ11+λ2
∑
w 6=v |Zw|+λ3|Θ|
µ

[C +
Q2

µ
],

(14)

where Sτ [·] is the shrinkage thresholding operator.



C-subproblem: Similar to the Z-subproblem, we obtain:

min
C

Φ(Q1,X−XC−E) + Φ(Q2,C− Z + diag (Z)).

(15)
Taking the derivative of the objective with respect to C and
setting it to zero lead to the following closed-form solution:

C =(XTX + I)−1
(

XT (X−E +
Q1

µ
)

+ Z− diag (Z)− Q2

µ

)
.

(16)

E-subproblem: The associated optimization problem with
respect to E can be written as follows:

min
E
||E||1 + Φ(Q1,X−XC−E), (17)

whose solution can be calculated by :

E = S 1
µ

[X−XC +
Q1

µ
]. (18)

Multiplier: Besides, the multiplier Q1 and Q2 are also
needed to be updated, which can be simply done through:

Q1 = Q1 + µ(X−XC−E),

Q2 = Q2 + µ(C− Z + diag (Z)).
(19)

For clarity, the entire ADMM algorithm of solving the prob-
lem (11) is summarized in Algorithm 1.

3.2. Update Indicator F

Given all the exclusive self-representations Zv (v =
1, . . . , V ) and error matrices Ev , the second step is to up-
date the consistent indicator matrix F. The associated prob-
lem with respect to F in Eq. (9) can be simplified as:

min
F

∑
v

||Zv �Θ||1 = min
F

∑
v

tr(FT (Dv − Sv)F)

s. t. FTF = I.
(20)

It can be further reformulated in the following shape:

min
F

tr(FTMF) s. t. FTF = I, (21)

where we define M =
∑
v(Dv − Sv). The solution to (21)

are the eigenvectors corresponding to the smallest k eigen-
value of the Laplacian matrix M. The rows of F are then
used as input to the k-means algorithm, which produces a
clustering of the rows of F that can be used to produce a
binary matrix F ∈ {0, 1}n×k such that F1 = 1.

For clarity and completeness, we summarize the whole
scheme to solving problem in Algorithm 2. The algorith-
m alternates between solving for the matrices of exclusive
representations and the error (Zv,Ev) given the indicator F
using Algorithm 1, and solving for the consistent indicator
F given (Zv,Ev) using spectral clustering.

Algorithm 2: ECMSC algorithm
Input: Unlabeled multi-view data matrix

D = {X1, . . . ,XV }, number of subspaces k.
Initialize: Θ = 0, λ1, λ2, λ3, t = 0.
while not converged do

for each view v ∈ V do
Given F, solve problem (10) via Algorithm 1 to
obtain (Zv ,Ev);

end
Given all the (Zv ,Ev), solve problem (21) via spectral
clustering to obtain F;
Check the convergence condition ||Θt+1 −Θt||∞ < 1;
if not converged, set t = t+ 1;

end
Output: Segmentation matrix F.

4. Experiments
4.1. Experimental Settings

4.1.1 Dataset description

Three datasets adopted in the experiments are those widely
used in works [2, 31] for face image clustering, including:
Extended Yale-B consists of 2414 face images of 38 indi-
viduals. Each individual has 64 near frontal images under
different illuminations. Similar with [2, 31], we select the
first 10 classes as the final dataset, which has 640 frontal
face images in total.
Yale is composed of 165 gray-scale images of 15 individ-
uals. Each individual has 11 images, with different facial
expression and configuration.
ORL contains 400 face images of 40 distinct subjects. Each
subject has 10 different face images, which were taken at d-
ifferent times, changing with the lighting, facial expressions
and facial details.

For all the datasets, we employ the multi-view features
provided by the work [31]. Specifically, three types of fea-
tures, i.e. intensity, LBP [26] and Gabor [16] are extracted.
The standard LBP features are extracted with the sampling
density size of 8 and the blocking number of 7 × 8. Gabor
wavelets are extracted with one scale γ = 4 at four orienta-
tions θ = {0◦, 45◦, 90◦, 135◦}. So the dimensionalities of
LBP and Gabor are 3304 and 6750, respectively.

4.1.2 Compared Methods

We compare our method with recently proposed state-of-
the-art alternatives, including 3 single-view methods and 6
multi-view ones.
SPC [24]: The most informative view is selected to perform
with the standard spectral clustering scheme.
SSC [8]: Each single view features are separately used. Af-
ter the sparse subspace learning, the spectral clustering are
then employed to obtain the final clustering results.



Table 1. Results (mean ± standard deviation) on Extended Yale-B. We set α = 0.3, β = 0.5 in ECMSC.
Method NMI ACC ARI F-score Precision Recall
SPCbest 0.360±0.016 0.366±0.059 0.225±0.018 0.303±0.011 0.296±0.010 0.310±0.012

Single SSCbest 0.534±0.003 0.587±0.003 0.430±0.005 0.487±0.004 0.451±0.002 0.509±0.007
S3Cbest 0.542±0.010 0.391±0.012 0.415±0.007 0.492±0.004 0.417±0.005 0.487±0.009

FeaConPCA 0.152±0.003 0.232±0.005 0.069±0.002 0.161±0.002 0.158±0.001 0.64±0.002
Min-Dis 0.186±0.003 0.242±0.018 0.088±0.001 0.181±0.001 0.174±0.001 0.189±0.002

Co-Reg SPC 0.151±0.001 0.224±0.000 0.066±0.001 0.160±0.000 0.157±0.001 0.162±0.000
Multiple ConReg SPC 0.163±0.022 0.216±0.019 0.072±0.012 0.164±0.010 0.163±0.010 0.165±0.011

LT-MSC 0.637±0.003 0.626±0.010 0.459±0.030 0.521±0.006 0.485±0.001 0.539±0.002
DiMSC 0.635±0.002 0.615±0.003 0.453±0.000 0.504±0.006 0.481±0.002 0.534±0.001

ECMSCα=0 0.719±0.011 0.692±0.013 0.492±0.008 0.548±0.007 0.481±0.004 0.691±0.006
Proposed ECMSCβ=0 0.708±0.009 0.678±0.010 0.482±0.011 0.530±0.009 0.487±0.004 0.672±0.011

ECMSC 0.759±0.012 0.783±0.011 0.544±0.008 0.597±0.010 0.513±0.009 0.718±0.006

Table 2. Results (mean ± standard deviation) on Yale. We set α = 0.1, β = 0.3 in ECMSC.
Method NMI ACC ARI F-score Precision Recall
SPCbest 0.654±0.009 0.616±0.030 0.440±0.011 0.475±0.011 0.457±0.011 0.495±0.010

Single SSCbest 0.671±0.011 0.627±0.000 0.475±0.004 0.517±0.007 0.509±0.003 0.547±0.004
S3Cbest 0.678±0.013 0.634±0.016 0.471±0.005 0.508±0.012 0.512±0.005 0.568±0.025

FeaConPCA 0.665±0.037 0.578±0.038 0.396±0.011 0.434±0.011 0.419±0.012 0.450±0.009
Min-Dis 0.645±0.005 0.615±0.043 0.433±0.006 0.470±0.006 0.446±0.005 0.496±0.006

Co-Reg SPC 0.648±0.002 0.564±0.000 0.436±0.002 0.466±0.000 0.455±0.004 0.491±0.003
Multiple ConReg SPC 0.673±0.023 0.611±0.035 0.466±0.032 0.501±0.030 0.476±0.032 0.532±0.029

LT-MSC 0.765±0.008 0.741±0.002 0.570±0.004 0.598±0.006 0.569±0.004 0.629±0.005
DiMSC 0.727±0.010 0.709±0.003 0.535±0.001 0.564±0.002 0.543±0.001 0.586±0.003

ECMSCα=0 0.731±0.009 0.742±0.008 0.576±0.010 0.578±0.005 0.534±0.009 0.604±0.006
Proposed ECMSCβ=0 0.738±0.007 0.721±0.005 0.554±0.009 0.565±0.012 0.538±0.009 0.578±0.011

ECMSC 0.773±0.010 0.771±0.014 0.590±0.014 0.617±0.012 0.584±0.013 0.653±0.013

S3C [18]: Similarly, we carry out the clustering on each
single view and report the best performance.
FeaConPCA: The method firstly concatenates all types of fea-
tures and applies PCA to reduce the feature dimension to
300. Then, spectral clustering is performed on the low di-
mensional features.
Min-Dis [7]: This method creates a bipartite graph and tries
to minimize the disagreement. Then the final result is ob-
tained by spectral clustering.
Co-Reg SPC [15]: The method co-regularizes the cluster-
ing hypotheses to enforce that corresponding data points
should be in the same cluster.
ConvexReg SPC [5]: A common representation for al-
l views is first learned. Then the standard spectral clustering
is carried out on the similarity matrix.
DiMSC [2]: The method firstly enforces the diversity of
different views by the HSIC criterion [10], and then applies
the spectral clustering to obtain the final result.
LT-MSC [31]: Low-rank tensor constraint is enforced to
directly construct the similarity matrix and then performs
the spectral clustering.

To illustrate the advantage of our representation exclu-

Figure 2. Parameters α and β tuning on Extended Yale-B.

sivity term and indicator consistency term, we add two extra
methods, the difference between which comes from the way
of parameter setting. Specifically, by setting α = 0 (i.e.,
without exclusivity), we report the result as ECMSCα=0

4.
If disabling the consistency term (i.e., β = 0), we learn the
exclusive representations, and then, the similarity is con-
structed as S =

∑V
v=1(|Zv|T + |Zv|)/2. After that, the

4Since the code of [9] is not available, we do not explicitly compare
with it. However, from the formulation, the work in [9] can be approxi-
mately regarded as ECMSCα=0.



Table 3. Results (mean ± standard deviation) on ORL. We set α = 0.1, β = 0.7 in ECMSC.
Method NMI ACC ARI F-score Precision Recall
SPCbest 0.884±0.002 0.726±0.025 0.655±0.005 0.664±0.005 0.610±0.006 0.728±0.005

Single SSCbest 0.893±0.007 0.765±0.008 0.694±0.013 0.682±0.012 0.673±0.007 0.764±0.005
S3Cbest 0.902±0.012 0.784±0.009 0.705±0.019 0.698±0.018 0.688±0.012 0.791±0.011

FeaConPCA 0.835±0.004 0.675±0.028 0.564±0.010 0.574±0.010 0.532±0.011 0.624±0.008
Min-Dis 0.876±0.002 0.748±0.051 0.654±0.004 0.663±0.004 0.615±0.004 0.718±0.003

Co-Reg SPC 0.853±0.003 0.715±0.000 0.602±0.004 0.615±0.000 0.567±0.004 0.666±0.004
Multiple ConReg SPC 0.883±0.013 0.734±0.031 0.668±0.032 0.676±0.035 0.628±0.041 0.731±0.030

LT-MSC 0.930±0.002 0.795±0.007 0.750±0.003 0.768±0.007 0.766±0.009 0.837±0.004
DiMSC 0.940±0.003 0.838±0.001 0.802±0.000 0.807±0.003 0.764±0.012 0.856±0.004

ECMSCα=0 0.923±0.006 0.822±0.008 0.789±0.012 0.782±0.009 0.769±0.007 0.834±0.009
Proposed ECMSCβ=0 0.934±0.009 0.841±0.012 0.801±0.011 0.810±0.009 0.767±0.006 0.848±0.010

ECMSC 0.947±0.009 0.854±0.011 0.810±0.012 0.821±0.015 0.783±0.008 0.859±0.012

spectral clustering is performed on this similarity. Finally,
we set α and β suitably, termed it as ECMSC. For fair com-
parison, following the protocol in [31], we report the aver-
age accuracy and standard derivation of all the competitors
over 30 independent trials.

4.1.3 Evaluation Metrics

To assess the performance, six metrics including Normal-
ized Mutual Information (NMI), Accuracy (ACC), Adjust-
ed Rand index (AR), F-score, Precision and Recall are u-
tilized, of which, the ACC and NMI are the most two pop-
ular metrics and have been adopted in many literatures like
[3, 11]. The metrics ARI, F-score, Precision and Recall
have been widely used in [31, 2] to measure the clustering
quality. These six metrics favor different properties in the
clustering. For all the metrics, a higher value indicates a
better clustering quality.

4.2. Experimental Results

4.2.1 Parameter Setting

In our ECMSC, the parameters λ1, λ2 and λ3 need to be
set properly. Inspired by the works [25, 18], the conver-
gence of ECMSC can also be improved by using λ3 ← λ3η.
Therefore, we set λ1 = η1−t, λ2 = α and λ3 = βηt−1

to balance the corresponding terms, where η = 1.2 and
t = {1, 2, . . . , T} is the iteration index. Finally, we have
two free parameters α and β to tune, which emphasize the
importance of our exclusivity term and consistency term,
respectively. Specifically, we empirically tune the parame-
ters α and β in {0.1, 0.2, . . . , 1}. Due to the limitation of
the space, we only show the parameter effect on the Ex-
tended Yale-B dataset, which is plotted in Figure 2. We can
see that the promising performance can be expected when
the parameters α and β are chosen in a certain range (e.g.,
α ∈ [0.1, 0.5], β ∈ [0.2, 0.7]). Moreover, the detailed pa-

(a) Yale (b) ORL

Figure 3. Convergence analysis on Yale and ORL dataset.

rameter settings for each dataset are reported in their corre-
sponding tables.

4.2.2 Convergence Analysis

The whole algorithm alternates between solving for the ma-
trices of exclusive representations and the error (Zv,Ev)
given the segmentation F using Algorithm 1 (i.e., ADM-
M) and solving for F given (Zv,Ev) using spectral clus-
tering. Although we can not provide the theoretical proof
of convergence for ECMSC, our experiments show that the
algorithm has a very stable convergence behavior in prac-
tice. Similar to the work [18], we show the convergence of
our ECMSC empirically. Specifically, we randomly sam-
ple {2, 3, 5, 8, 10} classes of Yale and ORL datasets. For
each number, we randomly sample 60 times and show the
histogram of the numbers of iterations (i.e., the statistics
of how many iterations has been taken when the algorithm
meets the convergence condition.) for ECMSC to converge.
In Figure 3, we can observe that the proposed ECMSC al-
gorithm converges in 2 ∼ 8 iterations on average.

4.2.3 Representation Visualization

To validate the effectiveness of our proposed representation
exclusivity term and the indicator consistency term, due to



the limited space, we only show the visualization results
on the Extended Yale-B dataset. As observed in Figure 4,
we can see that the representations without exclusivity term
(i.e., the first row) are less diverse than the representations
employed with exclusivity (i.e., the second and third row).
Moreover, from the last column (i.e., the indicator matrix
Θ of different versions of ECMSC), we can clearly see that
simultaneously exploiting representation exclusivity and in-
dicator consistency will be beneficial for multi-view sub-
space clustering task.

4.2.4 Performance Comparison

We report the detailed clustering results on three face im-
age datasets in Tables 1-3. In each table, the bold values
represent the best performance.

Table 1 provides the quantitative comparison among the
competitors on the Extended Yale-B dataset. It can be ob-
served that most of the comparisons have relatively low per-
formances. The major reason is the large variation of illu-
mination of this dataset. However, our proposed ECMSC
algorithm still achieves significant improvements around
12.2%, 15.7%, 8.5%, 7.6%, 2.8% and 17.9% over the most
competitive method LT-MSC in terms of NMI, ACC, AR,
F-score, Precision and Recall, respectively. Compared the
work in [2] (DiMSC) with ECMSCβ=0, the main difference
between these two methods is the diversity evaluation crite-
ria, the former adopts the value-aware HSIC criterion while
the latter is the proposed position-aware exclusivity crite-
rion. From the results, we can see that the position-aware
exclusivity criterion is much better than value-aware HSIC
criterion for multi-view subspace clustering task.

Table 2 displays the clustering results on the Yale dataset.
Similar trend to Table 1, most of the competitors achieve
lower performance than the proposed ECMSC. From the
values, we can see that ECMSC excels all the baselines,
both single-view and multi-view methods. The main reason
is the exploitation of representation exclusivity and indica-
tor consistency simultaneously. The most two competitive
multi-view subspace clustering methods LT-MSC and DiM-
SC, have achieved a relatively promising results. However,
compared ECMSCβ=0 with DiMSC, we find that the exclu-
sivity is better than HSIC. Further, compared ECMSCβ=0

with ECMSC, it can be concluded the indicator consistency
(i.e., unify the process of subspace clustering) can further
gain improvements.

Table 3 shows the performance comparison on the OR-
L dataset, from which we notice that all of SPC, SSC, S3C,
FeaCon, Min-Dis, Co-Reg SPC, ConReg SPC perform rela-
tively poorly. The methods LT-MSC produce more promis-
ing results on this dataset. It seems that the low-rank rep-
resentation model are more suitable for constructing the
similarity matrix on this dataset. And the improvement of

Figure 4. From left to right: The columns are the visualiza-
tion of subspace representations Z1, Z2 and the indicator matrix
Θ, respectively. From top to bottom: The rows are the results
of ECMSCα=0 (ACC = 0.701), ECMSCβ=0 (ACC = 0.689) and
ECMSC (ACC = 0.781), respectively.

ECMSC over LT-MSC is not very significant. Compared
our ECMSCβ=0 with DiMSC, due to the case of magnitude
of element values is not obvious, our position-aware term
do not shows its advantages, and the improvement is slight.
However, our intact ECMSC draws the merits of comple-
mentary representation and consistent indicator. Therefore,
it could achieve higher performance in general.

5. Conclusion

In this paper, we have proposed a novel multi-view sub-
space clustering model namely ECMSC. Different from
previous works, we simultaneously consider the comple-
mentary representation and consistent indicator into one
framework. Moreover, a novel position-aware exclusivity
term has been introduced to measure the diversity between
different representations. In addition, an efficient alterna-
tive based algorithm has been proposed to seek the optimal
solution. Extensive experimental results on several datasets
have demonstrated the significant advantage of our method.
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