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Abstract. In deep classification, the softmax loss (Softmax) is arguably
one of the most commonly used components to train deep convolution-
al neural networks (CNNs). However, such a widely used loss is limited
due to its lack of encouraging the discriminability of features. Recently,
the large-margin softmax loss (L-Softmax [14]) is proposed to explicit-
ly enhance the feature discrimination, with hard margin and complex
forward and backward computation. In this paper, we propose a nov-
el soft-margin softmax (SM-Softmax) loss to improve the discriminative
power of features. Specifically, SM-Softamx only modifies the forward of
Softmax by introducing a non-negative real number m, without changing
the backward. Thus it can not only adjust the desired continuous soft
margin but also be easily optimized by the typical stochastic gradient
descent (SGD). Experimental results on three benchmark datasets have
demonstrated the superiority of our SM-Softmax over the baseline Soft-
max, the alternative L-Softmax and several state-of-the-art competitors.
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1 Introduction

Classification is a fundamental yet still challenging problem in machine learn-
ing and computer vision community. Over the past years, convolutional neural
networks (CNNs) have shown significant improvements in many classification
tasks, such as hand-written digit recognition [4], object recognition [1, 5] and
face recognition [3, 2]. To train a deep CNN model, large scale training set and
the end to end learning framework are indispensable. Facing the increasingly
more complex data, CNNs can continuously be improved with deeper structure
[10], new non-linear activations [11], dropout [1], regularization [12], stochas-
tic pooling [13] and so on. Besides the above efforts, a renewed trend towards
boosting the classification performance is to learn discriminative features with
well-designed loss functions. However, this is non-trivial since a new loss function
usually should be easily optimized by the typical stochastic gradient descent.

Intuitively, the learned features are good if their intra-class compactness and
inter-class separability are well maximized. Based on such idea, the contrastive
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loss [3] and triplet loss [27] were proposed to enlarge the inter-class distinction as
well as alleviate the intra-class variance. However, the number of training pairs
and triplets are needed to be elaborately selected. The complexity can go up to
O(N2) where N is the total number of training samples. Considering that CNNs
often handle large scale training sets, the training processing may be inefficient.
The hinge loss was adopted in [7] for classification. However, it is usually unstable
to learn discriminative features. The softmax loss is widely used in many CNNs
due to its simplicity and probabilistic interpretation. Despite its popularity, cur-
rent softmax loss does not explicitly encourage the intra-class compactness and
inter-class separability. The center loss was introduced in [6] and was combined
with the softmax loss to enhance the intra-class compactness. It has achieved a
promising performance on face recognition task. However, as pointed out in [8],
combing a Euclidean based loss with softmax loss to construct a joint supervi-
sion may not be optimal. The Sparsemax [9] designed a new activation function
similar to the softmax, but able to output sparse probabilities. The L-softmax
loss [14] was developed to explicitly enforce the angle margin between different
classes. However, the angle margin is a hard one since the corresponding param-
eter should be an integer. Moreover, the forward and backward computation of
L-Softmax are complex.

In this paper, inspired by the recent work [14], we propose a novel soft-
margin softmax (SM-Softmax) loss to effectively learn the discriminative fea-
tures. Specifically, rather than introducing a hard angle margin as the work [14]
does, we design a soft distant margin to enlarge the intra-class compactness and
inter-class separability. In this way, we only need to change the forward com-
putation of Softmax, without modifying the backward computation. Thus our
SM-Softmax loss can be easily optimized by the standard stochastic gradient de-
scent. Moreover, the designed soft distant margin theoretically contains all the
hard angle margin in L-Softmax [14] and the degenerative margin (0) in Soft-
max. Thus the proposed SM-Softmax not only inherits all merits from Softmax
and L-Softmax but also learns features with large soft margin between different
classes. For clarity, the contribution of this paper can be summarized as follows:

– We design a new simple and powerful loss function namely SM-Softmax to
strengthen the intra-class compactness and inter-class separability between
learned features.

– We show that the proposed SM-Softmax loss is trainable and can be directly
optimized by the typical stochastic gradient descent (SGD).

– Extensive experiments on MNIST, CIFAR10/CIFAR10+ and CIFAR100
datasets demonstrate the superiority of our SM-Softmax over the baseline
Softmax, the alternative L-Softmax and several state-of-the-art methods.

2 Related work

To learn discriminative CNNs features, existing works can be mainly classified
into two categories: 1) Improving the deep CNN structures; 2) Designing better
loss functions.
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CNN Structures: The NiN [17] was instantiated the misro neural net-
work with a multi-layer perceptron to enhance model discriminability for local
patches within the receptive field. The Maxout [18] was designed for leverag-
ing the dropout technique by enforcing the output to be the max of a set of
inputs. The FitNet [16] was to address the network compression by introduc-
ing intermediate-level hints. The DSN [19] aimed to simultaneously minimizes
classification error while making the learning process of hidden layers direct and
transparent. The All-CNN [22] consisted solely of convolution layers by simply
replacing the max-pooling into convolutional layer with increased layer. The R-
CNN [20] resorted to a recurrent CNN for visual classification by incorporating
recurrent connections into each convolutional layer. The GenPool [21] general-
ized the pooling operations in current CNNs to play a central role. Although
existing CNN structures have achieved promising results for classification, they
still suffer from the limited discrimination problem because of softmax loss.

Loss Functions: Currently many loss functions including contrastive loss
[3], triplet loss [27], center loss [6], L-Softmax loss [14], softmax loss etc. have
been used to train the CNNs. To make inter-class dispension and intra-class
compactness as much as possible. The work [3] combined the softmax loss and the
contrastive loss to jointly supervise the CNNs, with pairs of training samples as
inputs. The work [27] adopted the triplet loss to encourage a distance constraint,
requiring three (or a multiple of three) training samples as input at a time.
The work [6] developed the center loss and fused it with softmax loss to learn
discriminative features. The softmax loss is widely used in many CNNs and it
can be written as follows:

LSoftmax = − log
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where xi denotes the deep feature of the i-th training sample. yi is its corre-

sponding label. W = [W1,W2, . . . ,WK ]
T

is the parameters of the last fully
connected layer, which can be also seen as the classifiers. K is the total number
of classes. θj is the angle between the vector Wj and xi. The L-Softmax [14]
loss employed a hard angle margin constraint in the original softmax loss, en-
couraging angular decision margin between classes to learn more discriminative
features. Specifically, it can be formulated as:
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where a is an integer that is closely related to the classification margin.

3 Soft-Margin Softmax Loss

To formulate our soft-margin softmax (SM-Softmax) loss, we first give a simple
example to describe our intuition. Consider the binary classification and we have
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Algorithm 1: Training a L-layers CNN supervised by SM-softmax loss.

Input: Training data {xi}. Initialized parameters Θ in convolution layers.
Parameters W in SM-Softmax loss layer. Hyperparameter m.

while not converged do
Compute the forward propagation by the modified soft-margin Softmax (5);
Compute the standard backward propagation;
Update the parameters W;
Update the parameters Θ.

end
Output: The parameters Θ and the weight W.

a sample x from class 1. The original softmax classifier is to enforce W T
1 x >

W T
2 x ( i.e., ‖W 1‖‖x‖ cos(θ1) > ‖W 2‖‖x‖ cos(θ2)) to classify x correctly. To

make the classification more rigorous, the work L-Softmax [14] introduces an
angle margin as

‖W 1‖‖x‖ cos(θ1) ≥ ‖W 1‖‖x‖ cos(aθ1) > ‖W 1‖‖x‖ cos(θ2), (3)

and uses the intermediate value ‖W 1‖‖x‖ cos(aθ1) to replace ‖W 1‖‖x‖ cos(θ1)
in the training. In that way, the class 1 and class 2 are explicitly separated.
However, to make cos(aθ1) expand into Taylor series, a should be a positive
integer. In other words, this margin cannot go through all possible angles and is
a hard one. Moreover, the forward and backward computation are complex due
to the angle margin involved. To address these issues, we here introduce a soft
margin and simply let

W T
1 x ≥W T

1 x −m >W T
2 x , (4)

where m is a non-negative real number and is a distant margin. In the training
phase, we employ W T

1 x −m to replace W T
1 x , thus our multi-class soft-margin

softmax (SM-Softmax) classifier can be defined as:
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Finally, the soft-margin softmax (SM-Softmax) loss is formulated as

Li = − log
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Obviously, when m is set to zero, the SM-Softmax loss becomes identical to the
original softmax loss. The advantages of the soft margin (4) can be summarized
into two aspects. One is that the soft margin m can go through all the possible
desired margins, and includes the hard margin a. The other one is that the SM-
Softmax loss is easy to implement since it only changes the forward computation
of softmax. For clarity and completeness, we summarize the major optimization
scheme in Algorithm 1.
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4 Experiments

Following the protocol in [14], we demonstrate the effectiveness of the proposed
SM-Softmax loss on three benchmark datasets and compare it with the baseline
Softmax, the alternative L-Softmax [14] and several state-of-the-art competitors.

4.1 Dataset Description

Three benchmark datasets adopted in the experiments are those widely used for
evaluating the performance of deep classification, including:
MNIST [25] is a dataset of handwritten digits (from 0 to 9) composed of 28×28
pixel gray scale images. It consists 60k training images and 10k test images. We
scaled the pixel values to the [0,1] range before inputting to the CNN architec-
ture.
CIFAR10 [26] is a set of natural color images of 32× 32 pixels. It contains 50k
training samples and 10k test samples. We adopt two commonly used comparison
protocols on this dataset. We first compare our SM-Softmax with others under no
data augmentation. For the data augmentation, we follow the standard technique
in [14] for training, that is, 4 pixels are padded on each side, and a 32×32 crop is
randomly sampled from the padded image or its horizontal flip. In test, we only
evaluate the single view of the original 32×32 image. In addition, we subtract the
per-pixel mean computed over the training set from each image before putting
the images into the network.
CIFAR100 [26] is with the same size and format as the CIFAR10 dataset, ex-
cept it has 100 classes containing 600 images each. There are 500 training images
and 100 testing images per class. The 100 classes in the CIFAR100 are grouped
into 20 superclasses.

Layer Mnist Cifar10/Cifar10+ Cifar100

conv0.X [3×3,64]×1 [3×3,64]×1 [3×3,96]×1

conv1.X [3×3,64]×3 [3×3,64]×4 [3×3,96]×4

Pool1 2×2 Max,Stride 2

conv2.X [3×3,64]×3 [3×3,96]×4 [3×3,192]×4

Pool2 2x2 Max,Stride 2

conv3.X [3×3,64]×3 [3×3,64]×4 [3×3,384]×4

Pool3 2×2 Max,Stride 2

Fully Connected 256 256 512

Table 1: The detailed CNN architecture used in our work. Conv1.X, Conv2.X,
Conv3.X denote convolution units that may contain multiple convolution layers.
E.g., [3×3,64]×4 denotes 4 cascaded convolution layers with 64 filter of size 3×3.
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4.2 Compared Methods

We compare our SM-Softmax loss with the hinge loss, the commonly used Soft-
max loss, the recently proposed L-Softmax [14] and several state-of-the-art meth-
ods including the CNN [15], the DropConnect [4], the FitNet [16], the NiN [17],
the Maxout [18], the DSN [19], the ALL-CNN [22], the R-CNN [20], the ResNet
[5], the GenPool [21]. The results of all the compared methods are cropped from
the original paper [14].

4.3 Implementation Details

We use Caffe [24] libary with our modifications to implement the proposed SM-
Softmax loss. For the adopted CNN architecture, we follow the design philosophy
of VGG-net [23], as the work [14] does. Specifically, for convolution layers, the
kernel size is 3×3 and 1 padding (if not specified) to keep the feature map
unchanged. For pooling layers, if the feature map size is halved, the number of
filter is doubled to keep preserve the time complexity per layer. The detailed
CNN architecture for each dataset are described in Table 1. For all experiments,
We adopt the Relu [28] as the activation function and batch size is 128. We
train all our models on a Nvidia Titan-X GPU and use the Caffe deep learning
framework. CNN training is done with SGD with momentum 0.9 and weight
decay of 0.0005. For the training, two stepwise strategy is adopted. We first
train our CNN network supervised by softmax loss to obtain a good initialization.
Then, we fine tune the CNN network supervised by our SM-Softmax loss based
on the pre-trained model, with a small learning rate 0.01.

Method MNIST CIFAR10 CIFAR10+ CIFAR100

CNN [15] 0.53 N/A N/A N/A
DropConnect [4] 0.57 0.41 9.32 N/A
FitNet [16] 0.5 N/A 8.39 35.04
NiN [17] 0.47 10.47 8.81 35.68
Maxout [18] 0.45 11.68 9.38 38.57
DSN [19] 0.39 9.69 7.97 34.57
ALL-CNN [22] N/A 9.08 7.25 N/A
R-CNN [20] 0.31 8.69 7.09 31.75
ResNet [5] N/A N/A 6.43 N/A
GenPool [21] 0.3 7.62 6.05 32.37
Hingeloss 0.47 9.91 6.96 32.90
Softmax 0.40 9.05 6.50 32.74
L-softmax [14] 0.31 7.58 5.92 29.53

SM-softmax 0.30 7.50 5.73 29.28

Table 2: Recognition error rate(%) on MNIST, CIFAR10 and CIFAR100 dataset-
s. CIFAR10 denotes the performance without data augmentation, while CI-
FAR10+ is with data augmentation.



Soft-Margin Softmax for Deep Classification 7

4.4 Performance Comparison

Table 2 provides the quantitative comparison among all the competitors on three
benchmark datasets. The bold numbers in each column is the best performance.
On MNIST, it is well-known that this dataset is typical and easy in deep classi-
fication. Almost all thee competitors can achieve under 1% error rate. The im-
provement of our SM-Softmax is not visibly big. On CIFAR10 and CIFAr10+, we
can see that our SM-Softmax achieves about 2% improvement over the baseline
Softmax and slightly better than the hard margin L-Softmax. On CIFAR100, a
similar trend as that shown in MNIST and CIFAR10 is provided. In summary,
the experiments have validated that the proposed SM-Softmax is significant bet-
ter than Softmax due to its explicit discrimination on features, and is slightly
better than the hard-margin L-Softmax because of its soft continuous margin.

4.5 Experiments on the Parameter m

The parameter m represent the soft margin between different classes. We in-
vestigate the sensitiveness of m on CIFAR10 and CIFAR100 as an example.
Specifically, we vary the soft margin m from 0 to 0.9, with the stepsize of 0.1.
From the curves in Fig 1, we can observe that, as m grows, the accuracy rate
grows gradually at the beginning and changes very slightly in a relatively large
range of m. Moreover, we can clearly see that it reveals the effectiveness of our
SM-Softmax (m 6= 0) in comparison with the baseline Softmax (m = 0).

(a) CIFAR10 (b) CIFAR100

Fig. 1: Classification accuracy on CIFAR10 and CIFAR100 with different m.

5 Conclusions

This paper has proposed a novel soft-margin softmax (SM-Softmax) loss for deep
classification tasks. The SM-Softmax achieves the discrimination of features by
introducing a soft margin m between different classes. SM-Softmax only changes
the forward of Softmax. Thus it can be easily optimized by the SGD. Extensive
experiments have shown the advantages of our SM-Softmax over the baseline
Softmax, the alternative L-Softmax and several state-of-the-art competitors.
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