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Abstract—In this letter, we focus on how to boost the perfor-5
mance of person re-identification by exploring the discriminative6
information among person pairs. A novel dependence-aware fea-7
ture coding framework is proposed for this task. Specifically, we8
employ the Hilbert–Schmidt independence criterion as the discrim-9
inative term, which is to explore the dependence between different10
kinds of person pairs, i.e., the same person pairs should be depen-11
dence maximized, while the different ones should be dependence12
minimized. Theoretical discussion and analysis on the convexity13
of the proposed constraint, as well as the convergence of our al-14
gorithm, are provided. Experimental results on two benchmark15
datasets have demonstrated the advantages of our method over the16
state-of-the-art alternatives.17

Index Terms—Feature coding, Person re-identification.18

I. INTRODUCTION19

P ERSON re-identification is the problem of matching people20

across several disjoint camera views, which has recently21

attracted much attention due to its potential applications such22

as forensic search [1], long-term multicamera tracking [2], and23

crowd movements analysis in public places [3]. To address this24

task, a commonly used pipeline is first to extract the appearance-25

based person representation [4]–[7], and then a metric is em-26

ployed for matching them [8]–[12]. In practice, due to large27

viewpoint changes, illumination, different poses, background28

clutter, and occlusions, there is often large intraclass appearance29

variations, which make the extracted representations unstable.30

For instance, the descriptive features extracted in KISSME [13],31

the symmetry-driven accumulation of local features [14], color32

invariants [15], salient color names based descriptors [16]–[18],33

mid-level filters [19], and fusion of color models [20], are hard34

to describe the transitions among different camera views and35

are often with less discriminative power.36
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Recently, to reduce the intraclass variations in feature space, 37

various coding methods to encode the image-level features into 38

high-level ones have been developed. The work [21] proposes 39

a Soft-Assignment Coding (SAC) method, which uses all the 40

bases to encode the image-level features. Wang et al. [22] used 41

the Locality-constrained Linear Coding (LLC) method to ex- 42

ploit the locality between different samples and assign smaller 43

coefficients to the bases that are farther away from each other in 44

the Euclidean space. Huang et al. [23] by using the Salient Cod- 45

ing (SC) method enforce that the nearest code is much closer 46

than others based on the saliency. However, these methods are 47

unsupervised and simply employing the k-means to construct the 48

dictionary to encode features may reduce the dictionary discrim- 49

inability. To learn a good dictionary, Guo et al. [24] introduce 50

pairwise constraints to enhance the dictionary discrimination 51

for face verification. Gangeh et al. [25] propose a kernelized 52

supervised dictionary learning for classification. However, all 53

of them learn that a synthesis dictionary and an extra coding 54

step are needed to obtain coding features. To address the issue, 55

the dual Analysis Dictionary Learning (ADL) has drawn much 56

attention recently. 57

The goal of ADL [26], [27] is to learn a transformation and di- 58

rectly obtain the high-level features. Instead of utilizing off-the- 59

shelf transformations like Fast Fourier Transformation (FFT), 60

Discrete Cosine Transform (DCT), etc., Gu et al. [28] try to 61

enforce the class-specific dictionaries to well represent a certain 62

class as well as to be ineffectual on the other classes. Wang 63

et al. [29] aim to learn analysis subdictionaries by integrating a 64

max-margin regularization term to enhance the discrimination 65

of coding features. Yang et al. [30] enforce a linear classifier 66

on the coding coefficient to jointly learn the dictionary pair. 67

Guo et al. [31] incorporate a code consistent term and a triplet 68

constraint-based local topology preserving term to improve the 69

dictionary discriminability. However, all these works are de- 70

signed for multiclass classification problem. It is not suitable 71

for the weak labels in the person re-identification task [32]. Re- 72

cently, Li et al. [33] employ the analysis dictionary for the person 73

re-identification task. However, they only consider the positive 74

pairs as the discriminative regularization, without considering 75

the effect of negative pairs. 76

Based on the above analysis, in this letter, we aim to learn an 77

analysis dictionary by exploiting a more powerful discriminative 78

criterion to boost the task of person re-identification. For clarity, 79

the main contributions are summarized as follows: 80

1) We propose a novel dependence-aware feature coding 81

framework for the person re-identification task. Specif- 82

ically, the proposed model employs the Hilbert–Schmidt 83

Independence Criterion (HSIC) as the discriminative 84

term, which is to make the same person pairs dependence 85
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maximized, while the different ones dependence mini-86

mized.87

2) Theoretical discussion and analysis on the discriminative88

term (i.e., the convexity of subproblems and the conver-89

gence of our algorithm) are provided.90

II. PRELIMINARY KNOWLEDGE91

A. Discriminative Dictionary Learning (DDL)92

Let X = [x1 , . . . ,xn ] ∈ Rd×n be the original image-level93

features of persons. Each column xi is a feature vector, d is94

the dimensionality, and n is the total amount of data points.95

The core idea of DDL is to learn an optimized dictionary that96

can effectively represent each sample with sufficient discrimina-97

tive ability. We denote Z = [z1 , . . . , zn ] ∈ Rm×n as the coding98

features of X over the learned dictionary.99

Synthesis Dictionary Learning (SDL): The SDL aims to learn100

a synthesis dictionary D = [d1 ,d2 , . . . ,dm ] ∈ Rd×m by solv-101

ing the following problem:102

min
D ,Z

‖ X − DZ ‖2
F +λ1 ‖ Z ‖p + λ2L(Z) (1)

where λ1 and λ2 are the tradeoff parameters, ||X − DZ||2F103

stands for the reconstruction error of SDL model, p denotes104

the parameter of the �p -norm regularizer (e.g., �1-norm or �2-105

norm) to avoid the overfitting, and L denotes the discrimination106

term for Z. Moreover, to avoid the scaling issue, additional107

constraints (e.g., DT D = I or ||di ||2 ≤ 1) on D are needed.108

Analysis Dictionary Learning (ADL): As a dual analysis view-109

point of the commonly used SDL, ADL learns an analysis dic-110

tionary P = [p1 ;p2 ; . . . ;pm ] ∈ Rm×d by111

min
P ,Z

‖ PX − Z ‖2
F + λ1 ‖ Z ‖p + λ2L(Z). (2)

Similarly, constraints (e.g., ||P||F or ||pi ||2 ≤ 1) on P are em-112

ployed for a well-regularized solution. The refined coding fea-113

tures can be directly obtained as PX.114

B. Hilbert–Schmidt Independence Criterion115

The HSIC is proposed in [34] to measure the (in)dependence116

of two random variables X and Y . It has the following empirical117

definition.118

Definition 1 (HSIC): Consider a series of n independent ob-119

servations drawn from pxy , Z := {(x1 ,y1), . . . , (xn ,yn )} ⊆120

X × Y , an empirical estimator of HSIC(Z,F ,G), is given by121

HSIC(Z,F ,G) = (n − 1)−2 tr(K1HK2H) (3)

where K1 and K2 are the Gram matrices with k1,ij =122

k1(xi ,xj ), k2,ij = k2(yi ,yj ). k1(xi ,xj ) and k2(yi ,yj ) are123

the kernel functions defined in the kernel space F and G, re-124

spectively. H = I − n−111T is a center matrix, which centers125

the Gram matrix to have zero mean.126

It is important to note that according to (3), to maximize127

the dependence between two variables X and Y , the empirical128

estimate of HSIC, i.e., tr(K1HK2H), should be maximized.129

III. PROBLEM FORMULATION130

To formulate our feature coding model, we start from the131

reconstruction error. Specifically, each person is expected to be132

well represented by the learned dictionary, and according to133

the definitions of SDL and ADL, the reconstruction model can134

be typically formulated as follows [28]: 135

min
D ,P

||X − DPX||2F s.t. ∀ i, ||di ||2 ≤ 1. (4)

We now focus on our discriminative term. In the person re- 136

identification task, it usually does not provide the strong class 137

labels, but the weak pairwise labels, i.e., the same person pairs 138

and the different person pairs. To utilize such the discrimina- 139

tive information, we assume that each transformed data sample 140

Pxi has maximum dependence to the ones from the same per- 141

son pairs and minimum dependence to the ones from different 142

persons. Thus, we can employ HSIC to address it. Specifically, 143

in the transformed data space, we adopt the linear inner product 144

K = (PX)T PX as its kernel. In the weak pairwise label space, 145

we define a new kernel matrix W. Obviously, such a new kernel 146

matrix W should satisfy that wij ≥ 0 when the samples xi and 147

xj are from the same person, and wij ≤ 0 otherwise. Besides 148

this, two additional properties are also beneficial. One is that 149

the kernel matrix W should be symmetric (i.e., wij = wji), 150

which means that the dependence/similarity between xi and xj 151

is undirected. The other one is that the matrix W should satisfy 152

∀i,
∑n

j wij = 0, which is to balance the contributions of same 153

person pairs and different person pairs because the number of 154

different person pairs is in general much larger than the same 155

ones. Based on these properties, we simply define the matrix W 156

as follows: 157

wij =

{
1/nk , (xi ,xj ) ∈ S
− 1/(n − nk ), (xi ,xj ) ∈ D (5)

where S means that xi and xj are from the same person, D oth- 158

erwise. nk denotes the number of samples from the kth person. 159

Obviously, this definition satisfies the above three properties. 160

Thus, we can exploit the discriminative term as 161

max
P

tr((PX)T PXHWH) = min
P

tr(PXLXT PT ) (6)

where the data X is centered (i.e., X = XH) and L = −W. 162

Putting every concern together, say (4) and (6), the proposed 163

dependence-aware feature coding (DAFC) model turns out to 164

be like 165

min
D ,P

||X − DPX||2F + λtr(PXLXT PT )

s.t. ∀ i, ||di ||2 ≤ 1, ||pi ||2 ≤ 1
(7)

where λ is the tradeoff parameter. The constraints {∀ i, ||di ||2 ≤ 166

1, ||pi ||2 ≤ 1} are to avoid the scale issue. 167

IV. OPTIMIZATION 168

For the proposed model (7), it is generally not a jointly convex 169

optimization problem for {D,P}, but is convex with respect 170

to each variable.1 Therefore, we adopt the alternative convex 171

search (ACS) [35] to address it. To make the objective function 172

easy to solve, we introduce an auxiliary variable Z to make 173

all the subproblems separable. In the sequel, the objective (7) 174

becomes the following optimization problem: 175

min
Z ,D ,P

||X − DZ||2F + τ ||PX − Z||2F + λtr(PXL(PX)T )

s.t. ∀ i, ||di ||2 ≤ 1, ||pi ||2 ≤ 1 (8)

1We will analyze this fact in the next section.
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Algorithm 1: DAFC.

Input: Centered training samples X ∈ Rd×n , Dinit , Pinit ,
kernel matrix W, dictionary size m, parameter λ.

Output: Discriminative analysis dictionary P.
while unreached the terminal condition do

Update Z via (9);
Update D via (11);
Update P via (12);

end

where τ is a positive scalar constant. Hence, there are three176

variables, including Z, D, and P, to solve.177

Z-subproblem: Taking derivative of the objective with re-178

spect to Z and setting it to zero reads179

Z = argminZ ||X − DZ||2F + τ ||PX − Z||2F
= (DT D + τI)−1(τPX + DT X).

(9)

D-subproblem: By discarding the unrelated terms to D180

min
D

||X − DZ||2F s.t. ∀i, ||di ||2 ≤ 1. (10)

By Alternating Direction Method of Multipliers (ADMM) al-181

gorithm [28], [36], the optimal solution is182
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(r+1) =argminD ||X − DZ||2F + ρ||D − S(r) + T(r) ||2F
=(XZT + ρ(S(r) − T(r)))(ZZT + ρI)−1

S(r+1) =argminSρ||D(r+1) − S + T(r) ||2F , s.t. ||si ||22 ≤ 1

T(r+1) =T(r) + D(r+1) − S(r+1)

(11)
where ρ is a penalty scalar and is updated if appropriate.183

P-subproblem: Fixing the other variables gives184

min
P

τ ||PX − Z||2F + λtr(PXLXT PT )

s.t. ∀i, ||pi ||2 ≤ 1.
(12)

Similarly, this optimization can also be solved by ADMM.185

The entire algorithm of DAFC is summarized in186

Algorithm 1, which terminates when the relative change of ob-187

jective value between two neighboring iterations is sufficiently188

small (| f (t+1)−f (t)
f (t) | ≤ 10−3) or the maximal iterative number189

(T = 100) is reached. For the initializations, similar to [32],190

we use k-means to initialize the synthesis dictionary Dinit . The191

analysis dictionary Pinit is directly assigned as DT
init .192

V. THEORETICAL ANALYSIS193

According to the ACS algorithm [35], each subproblem of194

DAFC need to be convex. It is easy to verify that the subproblems195

of Z and D are convex. For the subproblem of P, i.e., (12),196

obviously, its constraints {∀i, ||pi ||2 ≤ 1} are convex and its197

objective function is198

f(P) = τ ||PX − Z||2F + λtr(PXLXT PT ). (13)

The term tr(PXLXT PT ) is generally nonconvex and unstable199

due to the nonpositive similarity values involved. This leads to200

another question: Is the holistic function f(P) convex? Before201

answering it, we would like to prove a theorem.202

Lemma 1 (Gerschgorin theorem [37]): Let A = [aij ] be 203

an arbitrary n × n complex matrix, and let Ri = 204∑n
j=1;j �=i |aij |, 1 ≤ i ≤ n, where Ri := 0 if n = 1. If λ is 205

an eigenvalue of A, then there is a positive integer r, with 206

1 ≤ r ≤ n, such that 207

|λ − arr | ≤ Rr (14)

Hence, all eigenvalues λ of A lie in the union of the disks. 208

We refer readers to the work [37] for the detailed proof of 209

Lemma 1. With Lemma 1, we can prove the following theorem. 210

Theorem 1: For a matrix B = A + αI ∈ Rn×n , where A = 211

[aij ] is an arbitrary n × n complex matrix and α is a nonnegative 212

value. B is semipositive definite when the parameter α satisfies 213

the following constraint: 214

α ≥ max
1≤i≤n

⎛

⎝
n∑

j=1;j �=i

|aij | − aii

⎞

⎠ . (15)

Proof: To make the matrix B to be semipositive definite, 215

according to the work [38], it means that the minimal eigenvalue 216

of B needs to be nonnegative. Fortunately, based on the Lemma 217

1, we know that all the eigenvalues η of B lie in |η − aii − α| ≤ 218∑n
j=1;j �=i |aij |, 1 ≤ i ≤ n. To make the minimal eigenvalue 219

ηmin to always be nonnegative, after some transformations, it is 220

easy to verify that the value of α has to satisfy the constraint 221

(15). � 222

To answer the above question, we know that the convexity 223

of f(P) depends on whether its Hessian matrix ∇2f(P) is 224

semipositive definite or not [38]. Fortunately, the Hessian matrix 225

∇2f(P) can be easily computed as follows: 226

∇2f(P) = λXLXT + τXXT . (16)

Let C = L + τI/λ. To guarantee the Hessian matrix 227

∇2f(P) = λXCXT to be semipositive definite, C should 228

be semipositive definite. Thus, we can obtain τ/λ ≥ 229

max1≤i≤n (
∑n

j=1;j �=i |lij | − lii). More concretely, according to 230

the replacement L = −W and the definition of W [i.e., (5)], 231

we know that the lower bound of τ/λ is 2. Thus, we set τ = 2λ 232

in all the experiments. 233

In this way, we know that each subproblem of our DAFC is 234

convex. By fixing Z, the variables D and P are separable, and 235

they can be termed as a single variable. Thus, the optimization 236

problem in (8) is a biconvex problem of minZ{f(Z, (Dt ,Pt))} 237

and min(D ,P){f(Zt , (D,P))}. In the training, we alternatively 238

solve the two convex optimization problems, and the whole 239

function f(Z, (D,P)) generally has a lower bound. Therefore, 240

according to the ACS algorithm [35], we know that the proposed 241

DAFC algorithm is guaranteed to converge monotonically in 242

terms of objective value. 243

VI. EXPERIMENTS 244

We strictly follow all the experimental settings as the work 245

[32], including the adopted datasets, the data processing method, 246

and the evaluation criteria. 247

Dataset description: In this section, we apply the proposed 248

DAFC algorithm on the person re-identification task. Two pub- 249

licly available VIPeR and PRID450S datasets are adopted in 250

this letter. VIPeR dataset is composed of 632 persons and 251

each person has two images captured in outdoor environments. 252

It mainly suffers from arbitrary viewpoints and illumination 253
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TABLE I
TOP-RANKED MATCHING RATES ON VIPER DATASET, COMPARED WITH

DIFFERENT TYPICAL CODING METHODS. BEST IN BOLD

Rank 1 5 10 20

Unsupervised SAC [21] 0.393 0.695 0.811 0.901
LLC(5) [22] 0.128 0.325 0.456 0.609

LLC(120) [22] 0.393 0.696 0.813 0.902
SC(5) [23] 0.116 0.313 0.453 0.615

SC(120) [23] 0.395 0.700 0.816 0.904

Supervised CPDL [33] 0.360 0.642 0.755 0.843
KSDL [25] 0.392 0.684 0.807 0.898
DPL [28] 0.394 0.698 0.812 0.902

DADL [31] 0.404 0.703 0.825 0.901
MEDVL [32] 0.411 0.717 0.832 0.917

Our DAFC 0.449 0.743 0.841 0.914

variations between two disjoint cameras. PRID450S dataset is254

another challenging dataset that is captured with different view255

changes, background interference, and occlusion variations and256

consists of 450 person pairs.257

Raw features: We employ the image-level features provided258

by the work [32] as the inputs. Moreover, as suggested by the259

work [32], the dimensions of the image-level features of both260

two datasets are reduced to 70 by Principal Components Anal-261

ysis (PCA).262

Settings: Following the standard protocol in [32], with the263

learned analysis dictionary P, we can directly obtain the coding264

features as PX. Then, the metric learning method KISSME [13]265

is employed to guide the final person pairs matching. For both266

datasets, half person pairs are randomly selected as the training267

set and the remaining as testing. For the evaluation criterion, the268

average of Rank-k recognition rates over ten independent runs269

are reported.270

A. Comparison With Different Coding Methods271

To validate whether the high-level features learned by our272

coding methods are more discriminative than other alternatives273

or not, we employ three unsupervised coding methods including274

SAC [21], LLC [22], and SC [23] to encode the input image-275

level features. For these methods, the k-means technique is used276

to construct the dictionary. Moreover, four supervised dictionary277

learning methods including Kernelized Supervised Dictionary278

Learning (KSDL) [25], Dictionary Pair Learning (DPL) [28],279

Discriminative Analysis Dictionary Learning (DADL) [31],280

and Metric Embedding Discriminative Vocabulary Learning281

(MEDVL) [32] and one supervised Cross-view Pair Dictionary282

Learning (CPDL) method [33] are2 are also compared to283

show the advantages of our method. To all the compared284

methods, their source codes can be downloaded from the github285

or from authors’ webpages, and the parameters are tuned286

according to their suggestions. From Tables I and II, we can287

observe that all unsupervised coding methods including SAC,288

LLC(120),3 and SC(120) perform relatively promising. Among289

them, the SC(120) seems to be the best. This is consistent290

with the intuition that the saliency of person images is important291

in the person re-identification task. Additionally, it notes that292

on both datasets, LLC(5) and SC(5) perform poorly; this means293

2We only use the image-level part of CPDL [33] for fair comparison.
3(5) and (120) are the corresponding dictionary sizes.

TABLE II
TOP-RANKED MATCHING RATES ON PRID450S DATASET, COMPARED WITH

DIFFERENT TYPICAL CODING METHODS. BEST IN BOLD

Rank 1 5 10 20

Unsupervised SAC [21] 0.434 0.704 0.805 0.890
LLC(5) [22] 0.094 0.278 0.406 0.569

LLC(120) [22] 0.433 0.706 0.805 0.891
SC(5) [23] 0.085 0.265 0.397 0.560

SC(120) [23] 0.440 0.713 0.814 0.898

Supervised CPDL [33] 0.380 0.670 0.765 0.869
KSDL [25] 0.421 0.698 0.798 0.882
DPL [28] 0.429 0.704 0.802 0.889

DADL [31] 0.443 0.721 0.816 0.907
MEDVL [32] 0.459 0.730 0.829 0.911

Our DAFC 0.465 0.744 0.847 0.915

that when encoding the image-level features into the high-level 294

semantic ones, the locality constraint may harm the perfor- 295

mance of person re-identification. Compared the supervised 296

method MEDVL with these unsupervised competitors, it can be 297

observed that MEDVL generally performs better, due to the in- 298

volved weak pairwise labels. For the compared method DADL, 299

its performance is promising but lower than the alternative 300

MEDVL. For the method CPDL, it only uses the positive person 301

pairs as the discriminative regularization and its performance is 302

lower than MEDVL. For the competitor DPL, as it is designed 303

for the multiclass classification task, its performance in the 304

person re-identification task is not promising, and is comparable 305

with the unsupervised methods, but is lower than the method 306

MEDVL. For the compared method KSDL, it only uses the 307

pairs from the same person and ignores the different ones. 308

Its performance is also limited in the person re-identification 309

task. For the proposed method DAFC, it employs the HSIC as 310

the discriminative term. From the experimental results in the 311

tables, we can clearly see that our method outperforms all the 312

competitors in most of cases. We have achieved about 5.4% 313

Rank 1 improvement on VIPeR and 2.5% Rank 1 improvement 314

on PRID450S over the most promising unsupervised competitor 315

SC(120). In addition, compared with the supervised coding 316

method MEDVL, we can achieve about 3.8% Rank 1 improve- 317

ment on VIPeR and 0.6% Rank 1 improvement on PRID450S. 318

Therefore, we can conclude that the employed HSIC is more 319

discriminative than the previous alternatives and is more suit- 320

able for the person re-identification task. In all the experiments, 321

the parameters are chosen by ten-fold cross validation. The 322

best parameter λ on VIPeR and PRID450S datasets is 0.6 and 323

0.5, respectively. The running times of the proposed DAFC on 324

VIPeR and PRID450S datasets are 6.5 and 3.5 s, respectively. 325

VII. CONCLUSION 326

In this letter, we have proposed a novel dDFAC framework, 327

which employs the HSIC as a regularization to improve the 328

dictionary discriminability, and is applicable to the person re- 329

identification task. Moreover, theoretical discussion and analy- 330

sis on the convexity of the proposed constraint, as well as the 331

convergence of DAFC algorithm, are provided. Experimental 332

results on two benchmark datasets VIPeR and PRID450S have 333

shown the advantages of our method over the state-of-the-art 334

alternatives. 335



IEE
E P

ro
of

WANG et al.: DEPENDENCE-AWARE FEATURE CODING FOR PERSON RE-IDENTIFICATION 5

REFERENCES336

[1] R. Vezzani, D. Baltieri, and R. Cucchiara, “People reidentification in337
surveillance and forensics: A survey,” ACM Comput. Surveys, vol. 46,338
no. 2, 2013, Art. no. 29.339

[2] B. Song, A. T. Kamal, and C. Soto, “Tracking and activity recognition340
through consensus in distributed camera networks,” IEEE Trans. Image341
Process., vol. 19, no. 10, pp. 2564–2579, Oct. 2010.342

[3] M. Hirzer, P. M. Roth, and M. Kostinger, “Relaxed pairwise learned343
metric for person re-identification,” in Proc. Eur. Conf. Comput. Vis.,344
2012, pp. 780–793.345

[4] C. Tian, M. Zeng, and Z. Wu, “Person re-identification based on spa-346
tiogram descriptor and collaborative representation,” IEEE Signal Pro-347
cess. Lett., vol. 22, no. 10, pp. 1595–1599, Oct. 2015.348

[5] Y. Xie, H. Yu, and X. Gong, “Learning visual-spatial saliency for multiple-349
shot person re-identification,” IEEE Signal Process. Letters, vol. 22,350
no. 11, pp. 1854–1858, Nov. 2015.351

[6] Y. Chen, W. Zheng, and J. Lai, “Mirror representation for modeling view-352
specific transform in person re-identification,” in Proc. 24th Int. Conf.353
Artif. Intell., 2015, pp. 3402–3408.354

[7] X. Jing, X. Zhu, F. Wu, and X. You, “Super-resolution person re-355
identification with semi-coupled low-rank discriminant dictionary learn-356
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 695–704.357

[8] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable358
person re-identification: A benchmark,” in Proc. IEEE Int. Conf. Comput.359
Vis., 2015, pp. 1116–1124.360

[9] D. Chen, Z. Yuan, B. Chen, and N. Zheng, “Similarity learning with spatial361
constraints for person re-identification,” in Proc. IEEE Conf. Comput. Vis.362
Pattern Recog., 2016, pp. 1268–1277.363

[10] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-364
identification with k-reciprocal encoding,” in Proc. IEEE Conf. Comput.365
Vis. Pattern Recog., 2017, pp. 3625–3661.366

[11] W. Li, X. Zhu, and S. Gong, “Person re-identification by deep joint learning367
of multi-loss classification,” in Proc. Int. Joint Conf. Artif. Intell., 2017.368

[12] K. Liu, Z. Zhao, and A. Cai, “Datum-adaptive local metric learning for369
person re-identification,” IEEE Signal Process. Letters, vol. 22, no. 9,370
pp. 1457–1461, Sep. 2015.371

[13] M. Koestinger, M. Hirzer, P. Wohlhart, and H. Bischof, “Large scale metric372
learning from equivalence constraints,” in Proc. IEEE Conf. Comput. Vis.373
Pattern Recog., 2012, pp. 2288–2295.374

[14] M. Farenzena, L. Bazzani, and A. Perina, “Person re-identification by375
symmetry-driven accumulation of local features,” in Proc. IEEE Conf.376
Comput. Vis. Pattern Recog., 2010, pp. 2360–2367.377

[15] I. Kviatkovsky, A. Adam, and E. Rivlin, “Color invariants for person378
reidentification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7,379
pp. 1622–1634, Jul. 2013.380

[16] Y. Yang, J. Yang, and J. Yan, “Salient color names for person re-381
identification,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 536–551.382

[17] R. Zhao, W. Oyang, and X. Wang, “Person re-identification by saliency383
learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 2,384
pp. 356–370, Feb. 2017.385

[18] S. Iodice and A. Petrosino, “Salient feature based graph matching for386
person re-identification,” Pattern Recog., vol. 48, no. 4, pp. 1074–1085,387
2015.388

[19] R. Zhao, W. Ouyang, and X. Wang, “Learning mid-level filters for person389
re-identification,” in Proc. IEEE Conf. Comput. Vision Pattern Recog.,390
2014, pp. 144–151.391

[20] Y. Yang, S. Liao, and Z. Lei, “Color models and weighted covariance 392
estimation for person re-identification,” in Proc. Int. Conf. Pattern Recog., 393
2014, pp. 1874–1879. 394

[21] G. Van, J. M. Geusebroek, and C. J. Veenman, “Kernel codebooks 395
for scene categorization,” in Proc. Eur. Conf. Comput. Vis., 2008, 396
pp. 696–709. 397

[22] J. Wang, J. Yang, and K. Yu, “Locality-constrained linear coding for 398
image classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 399
2010. 400

[23] Y. Huang, K. Huang, and Y. Yu, “Salient coding for image classi- 401
fication,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2011, 402
pp. 1753–1760. 403

[24] H. Guo, Z. Jiang, and L. S. Davis, “Discriminative dictionary learning 404
with pairwise constraints,” in Proc. Asian Conf. Comput. Vis., 2012, 405
pp. 328–342. 406

[25] M. J. Gangeh, A. Ghodsi, and M. S. Kamel, “Kernelized supervised 407
dictionary learning,” IEEE Trans. Signal Process., vol. 61, no, 19, 408
pp. 4753–4767, Oct. 2013. 409

[26] E. M. Eksioglu and O. Bayir, “K-SVD meets transform learning: Trans- 410
form K-SVD,” IEEE Signal Process. Lett., vol. 21, no. 3, pp. 347–351, 411
Mar. 2014. 412

[27] V. Abolghasemi, M. Chen, and A. Alameer, “Incoherent dictionary pair 413
learning: Application to a novel open-source database of chinese num- 414
bers,” IEEE Signal Process. Lett., vol. 25, no. 4, pp. 472–276, Apr. 2018. 415

[28] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Projective dictionary pair learning 416
for pattern classification,” in Proc. Advances Neural Inform. Process. Syst., 417
2014, pp. 793–801. 418

[29] J. Wang, Y. Guo, and J. Guo, “Class-aware analysis dictionary learning 419
for pattern classification,” IEEE Signal Process. Letters, vol. 24, no. 12, 420
pp. 1822–1826, Dec. 2017. 421

[30] M. Yang, H. Chang, and W. Luo, “Discriminative analysis-synthesis dic- 422
tionary learning for image classification,” Neurocomputing, vol. 219, 423
pp. 404–411, 2017. 424

[31] J. Guo, Y. Guo, X. Kong, M. Zhang, and R. He, “Discriminative 425
analysis dictionary learning,” in Proc. AAAI Conf. Artif. Intell., 2016, 426
pp. 1617–1623. 427

[32] Y. Yang, L. Zhen, S. Zhang, H. Shi, and S. Li, “Metric embedded discrim- 428
inative vocabulary learning for high-level person representation,” in Proc. 429
AAAI Conf. Artif. Intell., 2016, pp. 3648–3654. 430

[33] S. Li, M. Shao, and Y. Fu, “Cross-view projective dictionary learning for 431
person re-identification,” in Proc. 24th Int. Joint Conf. Artif. Intell., 2015, 432
pp. 2155–2161. 433

[34] A. Gretton, O. Bousquet, and A. Smola, “Measuring statistical dependence 434
with Hilbert-Schmidt norms,” in Proc. Int. Conf. Algorithmic Learning 435
Theory, 2005, pp. 63–77. 436

[35] W. Richard and A. Hurter, “Minimization of a non-separable objec- 437
tive function subject to disjoint constraints,” Oper. Res., vol. 24, no. 4, 438
pp. 643–957, 1976. 439

[36] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with 440
adaptive penalty for low-rank representation,” in Proc. 24th Int. Conf. 441
Neural Inf. Process. Syst., 2011, pp. 612–620. 442

[37] R. Varga, Matrix Iterative Analysis. Berlin, Germany: Springer-Verlag, 443
2009. 444

[38] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: 445
Cambridge Univ. Press, 2004. 446


