
ScratchDet: Training Single-Shot Object Detectors from Scratch

Rui Zhu1,4∗, Shifeng Zhang2∗, Xiaobo Wang1, Longyin Wen3, Hailin Shi1†, Liefeng Bo3, Tao Mei1
1JD AI Research, China; 2CASIA, UCAS, China; 3JD Digits, USA; 4Sun Yat-sen University, China
{zhurui10,wangxiaobo8,longyin.wen,shihailin,liefeng.bo,tmei}@jd.com, shifeng.zhang@nlpr.ia.ac.cn

Abstract

Current state-of-the-art object objectors are fine-tuned
from the off-the-shelf networks pretrained on large-scale
classification dataset ImageNet, which incurs some addi-
tional problems: 1) The classification and detection have
different degrees of sensitivity to translation, resulting in the
learning objective bias; 2) The architecture is limited by the
classification network, leading to the inconvenience of mod-
ification. To cope with these problems, training detectors
from scratch is a feasible solution. However, the detectors
trained from scratch generally perform worse than the pre-
trained ones, even suffer from the convergence issue in train-
ing. In this paper, we explore to train object detectors from
scratch robustly. By analysing the previous work on opti-
mization landscape, we find that one of the overlooked points
in current trained-from-scratch detector is the BatchNorm.
Resorting to the stable and predictable gradient brought
by BatchNorm, detectors can be trained from scratch stably
while keeping the favourable performance independent to the
network architecture. Taking this advantage, we are able to
explore various types of networks for object detection, with-
out suffering from the poor convergence. By extensive experi-
ments and analyses on downsampling factor, we propose the
Root-ResNet backbone network, which makes full use of the
information from original images. Our ScratchDet achieves
the state-of-the-art accuracy on PASCAL VOC 2007, 2012
and MS COCO among all the train-from-scratch detectors
and even performs better than several one-stage pretrained
methods. Codes will be made publicly available at https:
//github.com/KimSoybean/ScratchDet.

1. Introduction
Object detection has made great progress in the frame-

work of convolutional neural networks (CNNs). The cur-
rent state-of-the-art detectors are generally fine-tuned from
high accuracy classification networks, e.g., VGGNet [36],
ResNet [12] and GoogLeNet [37] pretrained on ImageNet
∗Equally-contributed and this work was done at JD AI Research.
†Corresponding author.

[29] dataset. The fine-tuning transfers the classification
knowledge learned from the source domain to handle the
object detection task. In general, fine-tuning from pretrained
networks can achieve better performance than training from
scratch.

However, there is no such thing as a free lunch. Fine-
tuning pretrained networks to object detection has some
critical limitations. On the one hand, the classification and
detection tasks have different degrees of sensitivity to transla-
tion. The classification task prefers to translation invariance,
and thus needs downsampling operations (e.g., max-pooling
and convolution with stride 2) for better performance. In
contrast, the local texture information is more critical for
object detection, making the usage of translation-invariant
operations (e.g., downsampling operations) with caution. On
the other hand, it is inconvenient to change the architecture
of networks (even small changes) in fine-tuning process. If
we employ a new architecture, the pretraining should be
re-conducted on the large-scale dataset (e.g., ImageNet), re-
quiring high computational cost.

Fortunately, training detectors from scratch is able to
eliminate the aforementioned limitations. DSOD [32] is the
first to train CNN detectors from scratch, in which the deep
supervision plays a critical role. Deep supervision is intro-
duced in DenseNet [13] as the dense layer-wise connection.
However, DSOD is also limited by the predefined architec-
ture of DenseNet. If DSOD employs other types of network
(e.g., VGGNet and ResNet), the performance decreases dra-
matically (sometimes even crashes in training). Besides, the
currently best performance of trained-from-scratch detectors
still remains in a lower place compared with the pretrained
ones. Therefore, if we hope to take advantage of training
detectors from scratch, it needs to achieve two improvement:
(1) free the architecture limitations for any type of network
while guarantee the training convergence, (2) give perfor-
mance as good as pretrained networks (or even better).

To this end, we study the elements that make major impact
to the optimization of detector given the randomly initialized
network. As pointed out in [30], BatchNorm reparameterizes
the optimization problem to make its landscape significantly
smoother instead of reducing the internal covariate shift.
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Based on this theory, we assume that the lack of BatchNorm
in training detector from scratch is the main reason for poor
convergence. Thus, we integrate BatchNorm into both the
backbone and detection head subnetworks (Figure 2), and
find that BatchNorm helps the detector converge well in any
form of network (including VGGNet and ResNet) without
pretraining and surpass the accuracy of the pretrained base-
lines. Thereby, we are free to modify the architecture without
restrictions from pretrained models. By taking this advan-
tage, we analyze the performance of the ResNet and VG-
GNet based SSD[24] detectors with various configurations,
and discover that the sampling stride in the first convolution
layer has a great impact on detection performance. Based
on this point, we redesign the architecture of the detector
by introducing a new root block, which keeps the abundant
information for detection feature maps and substantially im-
proves the detection accuracy, especially for small objects.
We report extensive experiments on PASCAL VOC 2007 [6],
PASCAL VOC 2012 [7] and MS COCO [23] datasets, to
demonstrate that our ScratchDet performs better than some
pretrained based detectors and all the state-of-the-art train-
from-scratch detectors, e.g., improving the state-of-the-art
mAP by 1.7% on VOC 2007, 1.5% on VOC 2012, and 2.7%
of AP on COCO.

The main contributions of this paper are summarized
as follows. (1) We present a single-shot object detector
trained from scratch, named ScratchDet, which integrates
BatchNorm to help the detector converge well from scratch,
independent to the type of network. (2) We introduce a new
Root-ResNet backbone network based on the new designed
root block, which noticeably improves the detection accu-
racy, especially for small objects. (3) ScratchDet performs
favourably against the state-of-the-art train-from-scratch de-
tectors and some pretrained based detectors.

2. Related Work
Object detectors with pretrained network. Most of CNN-
based object detectors are fine-tuned from pretrained net-
works on ImageNet. Generally, they can be divided into
two categories: the two-stage and the one-stage approach.
The two-stage approach first generates a set of candidate ob-
ject proposals, and then predicts the accurate object regions
and the corresponding class labels. With the gradual im-
provements from Faster R-CNN [28], R-FCN [4], FPN [21]
to Mask R-CNN [11], the two-stage methods achieve top
performance on several challenging datasets, e.g., PASCAL
VOC and MS COCO. Recent developments of two-stage
approach focus on redesigning architecture diagram [20],
convolution form [5], re-ranking detection scores [3], using
contextual reasoning [1] and exploiting multiple layers for
prediction [19].

Pursuing high efficiency, the one-stage approach attracts
much attention in recent years, which simultaneously re-

gresses the object locations and sizes, and the corresponding
class labels. OverFeat [31] is one of the first one-stage
detectors and since then, several other methods have been
proposed, such as YOLO [26, 27] and SSD [24]. Recent re-
searches on one-stage approach focus on enriching features
for detection [8], designing different architecture [39] and
addressing class imbalance issue [41, 22, 40].
Train-from-scratch object detectors. DSOD [32] first
trains the one-stage object detector from scratch and presents
a series of principles to produce good performance. GRP-
DSOD [33] improves the DSOD algorithm by applying the
Gated Recurrent Feature Pyramid. These two methods focus
on deep supervision of DenseNet but lose sight of the effect
of BatchNorm on optimization and the flexibility of network
architecture for training detectors from scratch.
Batch normalization. BatchNorm[14] addresses the in-
ternal covariate shift problem by normalizing layer inputs,
which makes using large learning rate to accelerate network
training feasible. More recently, Santurkar et al. [30] pro-
vides both empirical demonstration and theoretical justifica-
tion for the explanation that BatchNorm makes the optimiza-
tion landscape significantly smoother instead of reducing
internal covariate shift.

3. ScratchDet
In this section, we first study the effectiveness of Batch-

Norm for training SSD from scratch. Then, we redesign the
backbone network by analyzing the detection performance
of the ResNet and VGGNet based SSD.

3.1. BatchNorm for train-from-scratch

Without losing generality, we consider to apply Batch-
Norm in SSD which is the most common framework of one
stage. SSD is formed by the backbone subnetwork (e.g.,
truncated VGGNet-16 with several additional convolution
blocks) and the detection head subnetwork (i.e., the predic-
tion blocks after each detection layer, which consists of one
3 × 3 bounding box regression convolution layer and one
3× 3 class label prediction convolution layer). Notice that
there is no BatchNorm in the original SSD framework. Moti-
vated by recent work [30], we believe that using BatchNorm
is helpful to train SSD from scratch. BatchNorm makes
the optimization landscape significantly smoother, inducing
a more predictable and stable behaviour of the gradients
to allow for larger searching space and faster convergence.
DSOD successfully trains detectors from scratch, however,
it attributes the results to deep supervision of DenseNet with-
out emphasizing the effect of BatchNorm. We believe that it
is necessary to study the impact of BatchNorm on training
detectors from scratch. To verify our argument, we train
SSD from scratch using batch size 128 without BatchNorm
as our baseline. As listed in the first column of Table 1, our
baseline produces 67.6% mAP on VOC 2007 test set.
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Figure 1. Optimization landscape analysis. (a) The training loss value. (b) L2 Norm of gradient. (c) Fluctuation of L2 Norm of gradient
(smoothed). Blue curve is the original SSD, red and green curves represent the SSD trained with BatchNorm in head subnetwork with 1×
and 10× base learning rate, respectively. The BatchNorm makes smoother optimization landscape and has more stable gradients (red v.s
blue). With this advantage, we are able to set larger learning rate (green) to search larger space and converge faster, and thus better solution.

BatchNorm in the backbone subnetwork. We add Batch-
Norm in each convolution layer in the backbone subnetwork
and then train it from scratch. As shown in Table 1, us-
ing BatchNorm in the backbone network improves 5.2%
of mAP. More importantly, adding BatchNorm in the back-
bone network makes the optimization landscape significantly
smoother. Thus, we can use larger learning rates (0.01 and
0.05) to further improve the performance (i.e., mAP is im-
proved from 72.8% to 77.8% and 78.0%). Both of them out-
perform SSD fine-tuned from the pretrained VGG-16 model
(77.2% [24]). These results indicate that adding BatchNorm
in the backbone subnetwork is one of the critical issues to
train SSD from scratch.
BatchNorm in the detection head subnetwork. To ana-
lyze the effect of BatchNorm in the detection head subnet-
work, we plot the training loss value, L2 Norm of gradient,
and fluctuation of L2 Norm of gradient v.s training steps.
As shown by the blue curve in Figure 1(b) and 1(c), train-
ing SSD from scratch with default learning rate 0.001 has
a large fluctuation of L2 norm of gradient, especially in the
initial phase of training, which makes the loss value suddenly
change and converge to a bad local minima (i.e., relatively
high loss at the end of training process in Figure 1(a) and
bad detection result 67.6% mAP). These results are useful
to explain the phenomenon that using large learning rate
to train SSD with the original architecture from scratch or
pretrained networks usually leads to gradient explosion, poor
stability and weak prediction of gradients (see Table 1) .

In contrast, integrating BatchNorm in the detection head
subnetwork makes the loss landscape smoother (see red
curves in Figure 1), which improves mAP from 67.6% to
71.0% (listed in Table 1). The smooth landscape allows us to
set larger learning rate, which brings about larger searching

space and faster convergence (see Figure 1(a) and 1(c)). As
a result, the mAP improves from 71.0% to 75.6%. Besides,
with BatchNorm, larger learning rate is also helpful to jump
out of the bad local minima and produce stable gradients
(green curve in Figure 1(b) and 1(c)).
BatchNorm in the whole network. We also study the per-
formance of the detector using BatchNorm in both the back-
bone and detection head subnetworks. After using Batch-
Norm in the whole network of detector, we are able to use
a larger base learning rate (0.05) to train the detector from
scratch, which produces 1.5% higher mAP comparing to the
detector initialized with the pretrained VGG-16 backbone
(78.7% v.s 77.2%). Please see Table 1 for more details.

3.2. Backbone Network

As described above, we train SSD with BatchNorm from
scratch and achieve better accuracy than the pretrained SSD.
This encourages us to train detector from scratch while keep-
ing the performance independent to the network architecture.
By taking this advantage, we are able to explore various
types of network for the object detection task.
Performance analysis of ResNet and VGGNet. The trun-
cated VGG-16 and ResNet-101 are two popular backbone
networks used in SSD (a brief structure overview in Figure 2).
In general, ResNet-101 produces better classification results
than VGG-16 (e.g., 5.99% v.s 8.68%, 2.69% top-5 classi-
fication error lower on ImageNet). However, as indicated
in DSSD [8], the VGG-16 based SSD performs favourably
than the ResNet-101 based SSD with relatively small in-
put size (e.g., 300× 300) on PASCAL VOC. We argue that
this phenomenon is caused by the downsampling operation
in the first convolution layer (i.e., conv1 x with stride 2)
of ResNet-101. This operation significantly affects the de-



Figure 2. Brief overview of SSD based on VGG-16 and ResNet-
101. The BatchNorm is covered for clearness. As shown in Figure
3 and Table 2, the first stride 2 of ResNet makes worse performance
on PASCAL VOC with small input size.

tection accuracy, especially for small objects (see Table 2).
After we remove the downsampling operation in conv1 x of
ResNet-18 to form ResNet-18-B in Figure 3(c), the detection
performance improves by a big margin from 73.1% to 77.6%
mAP. We also remove the second downsampling operation
to form ResNet-18-A in Figure 3(b), whose improvement is
relatively small. In summary, the downsampling operation in
the first convolution layer has a bad impact on the detection
accuracy, especially for small objects.
Backbone network redesign for object detection. To over-
come the disadvantages of ResNet based backbone network
for object detection while retaining its powerful classification
ability, we design a new architecture, named Root-ResNet,
which is an improvement of the truncated ResNet in the
original SSD detector, shown in Figure 3(d). We remove the
downsampling operation in the first conv layer and replace
the 7× 7 convolution kernel by a stack of 3× 3 convolution
filters (similar as the stem block in DSOD[32], but denoted
as the root block due to the large influence from the first
stride). With abundant inputs, Root-ResNet is able to exploit
more local information from the image, so as to extract pow-
erful features for small object detection. Furthermore, we
replace the four convolution blocks (added by SSD to extract
the feature maps with different scales) with four residual
blocks to the end of the Root-ResNet. Each residual block is
formed by two branches. One branch is a 1× 1 convolution
layer with stride 2 and the other one consists of a 3×3 convo-
lution layer with stride 2 and a 3× 3 convolution layer with
stride 1. The number of output channels in each convolution
layer is set to 128. These residual blocks bring efficiency in
parameters and computation without performance dropout.

4. Experiment
We conduct several experiments on the PASCAL VOC

and MS COCO datasets, including 20 and 80 object classes.
The proposed ScratchDet is implemented in Caffe library
[15] and all the codes and the trained models will be made
publicly available.

4.1. Training details

All models are trained from scratch using SGD with
0.0005 weight decay and 0.9 momentum on 4 NVIDIA

Figure 3. Illustration of networks in Section 4.2.2. (a) ResNet-18:
original structure. (b) ResNet-18-A: removing the first max-pooling
layer. (c) ResNet-18-B: changing the stride size in the first conv
layer from 2 to 1. (d) Root-ResNet-18: replacing the 7 × 7 conv
layer with three stacked 3 × 3 conv layers in ResNet-18-B. The
corresponding mAPs on PASCAL 2007 test (training on “07+12”
from scratch) are 73.1%, 75.3%, 77.6% and 78.5%, respectively.
Notably, for a fairy comparison, no matter how we modify the
structure, the spatial sizes of our selected detection layers are the
same as SSD300 and DSOD300 (i.e., 38× 38, 19× 19, 10× 10,
5× 5, 3× 3, 1× 1).

Tesla P40 GPUs. For a fair comparison, we use the same
training settings as the original SSD, including data augmen-
tation, anchor settings and loss function. We remove the
L2 normalization [25]. Notably, all experiments select the
detection layers with the fixed spatial size same as SSD300
and DSOD300, i.e., do not use larger-size feature maps for
detection. Following DSOD, we use a relatively large batch
size 128 to train our ScratchDet from scratch, in order to
ensure the stable statistical results of BatchNorm in training
phase. Meanwhile, we use the default batch size 32 for the
pretrained model based SSD (We also try 128 batch size for
the pretrained model, but the performance has not improved).

Notably, we use the “Root-ResNet-18” redesigned from
ResNet-18 as the backbone network in the model analysis by
considering the computational cost in experiments. Whereas,
in comparison with the state-of-the-art detectors, we use



Table 1. Analysis of BatchNorm and learning rate for SSD trained from scratch on VOC 2007 test set. All the networks are based on the
truncated VGG-16 backbone network. The best performance (78.7% mAP) is achieved when three conditions are satisfied: (1) BatchNorm
in backbone and head, (2) non pretraining, (3) larger learning rate. “NAN” indicates that the training is non-convergent.

Component lr 0.001 lr 0.01 lr 0.05
pretraining ! ! ! ! ! !

BN in backbone ! ! ! ! ! ! ! ! !

BN in head ! ! ! ! ! ! ! ! ! ! ! !

mAP (%) 67.6 71.0 72.8 71.8 77.1 77.6 NAN 75.6 77.8 77.3 76.9 78.2 NAN NAN 78.0 78.7 NAN 75.5

a deeper backbone network “Root-ResNet-34” for better
performance. All the parameters in our ScratchDet are ini-
tialized by the “xavier” method [10]. Besides, all the models
are trained with the 300× 300 input size and we believe that
the accuracy of ScratchDet can be further improved using
larger input size.

4.2. PASCAL VOC 2007

For PASCAL VOC 2007, all models are trained on the
VOC 2007 and VOC 2012 trainval sets (16, 551 images),
and tested on the VOC 2007 test set (4, 952 images). We
use the same settings and configurations except for some
specified changes of model components.

4.2.1 Analysis of BatchNorm

We construct several variants of the original SSD and evalu-
ate them on VOC 2007 to demonstrate the effectiveness of
BatchNorm in training SSD from scratch, shown in Table 1.
Without BatchNorm. We train the original SSD from
scratch with the batch size 128. All the other settings are
the same as that in [24]. As shown in the first column of
Table 1, we get 67.6% mAP, which is 9.6% worse than the
detector initialized by the pretrained classification network
(i.e., 77.2%). In addition, due to the unstable gradient and
unsmooth optimization landscape, the training is able to
successfully converge only with the learning rate 0.001 and
goes to a bad local minima (see blue curves in Figure 1). As
shown in Table 1, if we use larger learning rates (0.01 and
0.05), the training process will not converge.
BatchNorm in the backbone subnetwork. BatchNorm is
a widely used to enable fast and stable training of deep neu-
ral networks. To validate the effectiveness of BatchNorm in
the backbone subnetwork, we add the BatchNorm operation
to each convolution layer in the truncated VGG-16 network,
denoted as VGG-16-BN, and train the VGG-16-BN model
based SSD from scratch. As shown in Table 1, using Batch-
Norm in the backbone network with relative large learning
rate (0.05) improves mAP from 67.6% to 78.0%.
BatchNorm in the detection head subnetwork. We also
study the effectiveness of BatchNorm in the detection head
subnetwork. As described before, the detection head subnet-
work in SSD is used to predict the locations, sizes and class
labels of objects. The original SSD method [24] do not use
BatchNorm in detection head subnetwork. As presented in

Table 1, we find that using BatchNorm only on the detection
head subnetwork improves 3.4% mAP from 67.6% to 71.0%.
After using the 10 times larger base learning rate 0.01, the
performance can be further improved from 71.0% to 75.6%.
This noticeable improvement (8.0%) demonstrates the impor-
tance of using BatchNorm in the detection head subnetwork.
BatchNorm in the whole network. We use BatchNorm on
every convolution layer in SSD and train it from scratch with
three different base learning rates (0.001, 0.01 and 0.05). For
the 0.001 and 0.01 base learning rates, we achieve 71.8%
and 77.3% mAPs, respectively. When we use the largest
learning rate 0.05, the performance will be further improved
by 1.4% mAP to 78.7%, which outperforms the pretrained
network based SSD detector (78.7% v.s 77.2%). These re-
sults indicate that using BatchNorm on each convolution
layers in SSD is critical to train it from scratch.
BatchNorm for the pretrained network. To validate the
effect of BatchNorm for SSD finetuning from pretrained net-
works, we construct a variant of the original SSD, i.e., adding
the BatchNorm operation to every convolution layer. The
layers in backbone network are initialized by the pretrained
VGG-16-BN model from ImageNet, which is converted from
the PyTorch official model. As shown in Table 1, we ob-
serve that the best result achieves 78.2% with learning rate
0.01. Comparing to the original SSD fine-tuned from the
pretrained network, BatchNorm improves only 1.0% mAP
(77.2% v.s 78.2%) of the detector, which is rather small com-
pared to the improvement of the trained-from-scratch detec-
tor (i.e., 11.1% mAP improvement from 67.6% to 78.7%)1.
We would also like to emphasize that ScratchDet produces
better performance than the BatchNorm based SSD trained
from the pretrained network (i.e., 78.7% v.s 78.2%). The
results demonstrate that BatchNorm is more critical for SSD
trained from scratch than fine-tuned from pretrained models.
BatchNorm in DSOD. DSOD attributes its success to deep
supervision of DenseNet and ignores the effect of Batch-
Norm. After removing all BatchNorm layers in DSOD, the
mAP drops 6.2% from 77.7% to 71.5% on VOC 2007. Thus,
we argue BatchNorm rather than deep supervision is the key
to train detectors form scratch and experiments in Table 1
validate this point. Besides, training VGG16-based Faster
R-CNN without BatchNorm from scratch cannot converge

1we also try the batch size 128 with default settings of SSD, produc-
ing 78.2% mAP for VGG-16-BN and 76.8% mAP for VGG-16 without
improvement.



in the DSOD paper, but with BatchNorm it can converge
successfully to 67.2% mAP, although it is still lower than
the pretrained one (73.2% mAP).

4.2.2 Analysis of the backbone subnetwork.

We analyze the pros and cons of the ResNet and VGGNet
based SSD detectors and redesign the backbone network,
called Root-ResNet. Specifically, all the models are designed
based on the ResNet-18 backbone network in experiments.
We also use BatchNorm in the detection head subnetwork.
In the training phase, the learning rate is set to 0.05 for the
first 45k iterations, and is divided by 10 successively for
another 30k, 20k and 5k iterations, respectively. As shown
in Table 2, training SSD from scratch based on ResNet-
18 only produces 73.1% mAP. We analyze the reasons as
follows.
Kernel size in the first layer. In contrast to VGG16, the first
convolution layer in ResNet-18 uses relatively large kernel
size 7 × 7 with stride 2. We aim to explore the effect of
the kernel size of the first convolution layer on the detector
trained from scratch. As shown in the first two rows of Table
2, the kernel size of convolution layer has no impact on the
performance (i.e., 73.1% for 7×7 v.s 73.2% for 3×3). Using
smaller kernel size 3 × 3 produces a slightly better results
with faster speed. The same conclusion can be obtained
when we set the stride size of the first convolution layer to
1 without downsampling, see the fifth and the sixth row of
Table 2 for more details.
Downsampling in the first layer. Compared to VGGNet,
ResNet-18 uses downsampling on the first convolution layer,
leading to considerable local information loss, which greatly
impacts the detection performance, especially for small ob-
jects. As shown in Table 2, after removing the downsampling
operation in the first layer (i.e., ResNet-18-B in Figure 3),
we can improve 4.5% and 4.6% mAPs for the 7×7 and 3×3
kernel sizes, respectively. When we only remove the second
downsampling operation and keep the first stride = 2 (i.e.,
ResNet-18-A in Figure 3), the performance achieves 75.3%
mAP, 2.3% lower than modifying the first layer (77.6%
mAP). These results demonstrate that the downsampling
operation in the first convolution layer is the obstacle for
good results. We need to remove this operation when train-
ing ResNet based SSD from scratch.
Number of layers in the root block. Inspired by DSOD
and GoogLeNet-V3 [38], we use several convolution layers
with kernel size 3× 3 to replace the 7× 7 convolution layers
(i.e., Root-ResNet-18 in Figure 3). Here, we study the impact
of number of stacked convolution layers in the root block
on the detection performance in Table 2. As the number of
convolution layers increasing from 1 to 3, the mAP scores
are improved from 77.8% to 78.5%. However, the accuracy
decreases as the number of stacked layers becoming larger

Table 2. Analysis of backbone network for SSD trained from scratch
on VOC 2007 test set. All models are based on the ResNet-18
backbone. FPS is measured on one Tesla P40 GPU.

First conv layer Root block FPS mAP

with downsmapling
1: 7×7 59.5 73.1
1: 3×3 62.9 73.2
2: 3×3 58.1 74.9
3: 3×3 54.5 75.4

without downsmapling

1: 7×7 37.0 77.6
1: 3×3 37.2 77.8
2: 3×3 31.5 78.1
3: 3×3 26.9 78.5
4: 3×3 24.3 78.4
5: 3×3 21.8 78.5

than 3. We believe that three 3 × 3 convolution layers in
the root block are enough to learn the information from
raw images, and adding more 3 × 3 layers cannot boost
the accuracy any more. Empirically, we use three 3 × 3
convolution layers for detection task on PASCAL VOC 2007,
2012 and MS COCO datasets with 300× 300 input size.

The aforementioned conclusions can be also extended
to deeper ResNet backbone network, e.g., ResNet-34. As
shown in Table 3, using Root-ResNet-34, the mAP of our
ScratchDet is improved from 78.5% to 80.4%, which is
the best results with 300 × 300 input size. In comparison
experiments on the benchmarks, we use Root-ResNet-34 as
the backbone network.

4.2.3 Results

We compare ScratchDet to the state-of-the-art detectors
in Table 3. With small input 300 × 300, ScratchDet pro-
duces 80.4% mAP without bells and whistles, better than
several state-of-the-art one-stage pretrained object detec-
tors (e.g., 80.0% mAP of RefineDet320 and 79.7% mAP
of DES300). Note that we keep most of original SSD
configurations and the same epochs with DSOD. The re-
sult is much better than SSD300-VGG16 (80.4% v.s 77.2%
and 3.2% mAP higher) and SSD321-ResNet101 (80.4% v.s
77.1%, 3.3% mAP higher). ScratchDet outperforms the
state-of-the-art train-from-scratch detector with 1.7% im-
provements on mAP score (i.e., 80.4% v.s 78.7% of GRP-
DSOD). In the multi-scale testing, our ScratchDet achieves
84.1% (ScratchDet300+) mAP, which is the state-of-the-art.

4.3. PASCAL VOC 2012

Following the evaluation protocol of VOC 2012, we use
VOC 2012 trainval set, and VOC 2007 trainval and
test sets (21, 503 images) to train our ScratchDet from
scratch, and test on VOC 2012 test set (10, 991 images).
The detection results of ScratchDet are submitted to the
public testing server for evaluation. The learning rate and
batch size are set the same as that in VOC 2007.

Table 3 reports the accuracy of ScratchDet as well



Table 3. Detection results on the PASCAL VOC datasets. For VOC 2007, all methods are trained on the VOC 2007 and 2012 trainval sets
and tested on the VOC 2007 test set. For VOC 2012, all methods are trained on the VOC 2007 and 2012 trainval sets plus the VOC
2007 test set, and tested on the VOC 2012 test set. The FPS of ScratchDet is measured on one TITAN X GPU for the fair comparison.
†: http://host.robots.ox.ac.uk:8080/anonymous/0HPCHC.html ‡: http://host.robots.ox.ac.uk:8080/anonymous/JSL6ZY.html

Method Backbone Input size FPS mAP (%)
VOC 2007 VOC 2012

pretrained two-stage:
HyperNet [19] VGG-16 ∼ 1000× 600 0.88 76.3 71.4

Faster R-CNN[28] ResNet-101 ∼ 1000× 600 2.4 76.4 73.8
ION[1] VGG-16 ∼ 1000× 600 1.25 76.5 76.4

MR-CNN[9] VGG-16 ∼ 1000× 600 0.03 78.2 73.9
R-FCN[4] ResNet-101 ∼ 1000× 600 9 80.5 77.6

CoupleNet[43] ResNet-101 ∼ 1000× 600 8.2 82.7 80.4
pretrained one-stage:

RON384[18] VGG-16 384× 384 15 74.2 71.7
SSD321[8] ResNet-101 321× 321 11.2 77.1 75.4

SSD300∗[24] VGG16 300× 300 46 77.2 75.8
YOLOv2[27] Darknet-19 544× 544 40 78.6 73.4
DSSD321[8] ResNet-101 321× 321 9.5 78.6 76.3
DES300[42] VGG-16 300× 300 29.9 79.7 77.1

RefineDet320[39] VGG-16 320× 320 40.3 80.0 78.1

trained from scratch:
DSOD300[32] DS/64-192-48-1 300× 300 17.4 77.7 76.3

GRP-DSOD320[33] DS/64-192-48-1 300× 300 16.7 78.7 77.0
ScratchDet300 Root-ResNet-34 300× 300 17.8 80.4 78.5†

ScratchDet300+ Root-ResNet-34 - - 84.1 83.6‡

as the state-of-the-art methods. Using small input size
300 × 300, ScratchDet produces 78.5% mAP, surpass-
ing some one-stage methods with similar input size, e.g.,
SSD321-ResNet101 (75.4%, 3.1% higher mAP), DES300-
VGG16 (77.1%, 1.4% higher mAP), and RefineDet320-
VGG16 (78.1%, 0.4% higher mAP). Meanwhile, comparing
to the two-stage methods based on pretrained networks with
∼ 1000 × 600 input size, ScratchDet also produces better
results than R-FCN (77.6%, 0.9% higher mAP). In addition,
our ScratchDet outperforms all the train-from-scratch de-
tectors. It outperforms DSOD by 2.2% mAP with 60 less
training epochs and surpasses GRP-DSOD by 1.5% mAP.
Notably, in the multi-scale testing, ScratchDet obtains 83.6%
mAP, much better than the state-of-the-arts of both one-stage
and two-stage methods.

4.4. MS COCO

We also evaluate ScratchDet on MS COCO dataset.
The model is trained from scratch on the MS COCO
trainval35k set and tested on the test-dev set. We
set the base learning rate to 0.05 for the first 150k iterations,
and divide it by 10 successively for another 100k, 60k and
10k iterations respectively.

Table 4 shows the results on the MS COCO test-dev
set. ScratchDet produces 32.7% AP that is better than all
the other methods with similar input size by a large mar-
gin, such as SSD300 (25.1%, 7.6% higher AP), SSD321
(28.0%, 4.7% higher AP), GRP-DSOD320 (30.0%, 2.7%
higher AP), DSSD321 (28.0%, 4.7% higher AP), DES300
(28.3%, 4.4% higher AP), RefineDet320-VGG16 (29.4%,

3.3% higher AP), RetinaNet400 (31.9%, 0.8% higher AP)
and RefineDet320-ResNet101 (32.0%, 0.7% higher AP).
Notably, with the same input size, DSOD300 trains on
the trainval set, which contains 5000 more images
than trainval35k (i.e., 123, 287 v.s 118, 287), and our
ScratchDet produces a much better result (32.7% v.s 29.3%,
3.4% higher AP). Some methods use much bigger input
sizes for both training and testing (∼ 1000 × 600) than
our ScratchDet300, e.g., CoupleNet, Faster R-CNN and De-
formable R-FCN. For a fair comparison, we also report the
multi-scale testing AP results of ScratchDet300 in Table 4,
i.e., 39.1%, which is currently the best result, surpassing
those prominent two-stage and one-stage approaches with
large input image sizes.

Comparing to the state-of-the-art methods with similar
input image size, ScratchDet300 produces the best APS

(13.0%) for small objects, outperforming SSD321 by 6.8%.
The significant improvement in small object demonstrates
the superiority of our ScratchDet architecture for small ob-
ject detection.

4.5. From MS COCO to PASCAL VOC

We also study how the MS COCO dataset help the detec-
tion on PASCAL VOC. Since the object classes in PASCAL
VOC are from an subset of MS COCO, we directly fine-
tune the detection models pretrained on MS COCO by sub-
sampling parameters. As shown in Table 5, ScratchDet300
achieves 84.0% and 82.1% mAP on the VOC 2007 test set
and VOC 2012 test set, outperforming other train-from-
scratch methods. In the multi-scale testing, the detection

http://host.robots.ox.ac.uk:8080/anonymous/0HPCHC.html
http://host.robots.ox.ac.uk:8080/anonymous/JSL6ZY.html


Table 4. Detection results on the MS COCO test-dev set.
Method Data Backbone AP AP50 AP75 APS APM APL

pretrained two-stage:
ION[1] train VGG-16 23.6 43.2 23.6 6.4 24.1 38.3

OHEM++ [34] trainval VGG-16 25.5 45.9 26.1 7.4 27.7 40.3
R-FCN[4] trainval ResNet-101 29.9 51.9 - 10.8 32.8 45.0

CoupleNet[43] trainval ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8
Faster R-CNN+++ [12] trainval ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [21] trainval35k ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w TDM[35] trainval Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

Deformable R-FCN[5] trainval Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN[11] trainval35k ResNet-101-FPN 38.2 60.3 41.7 20.1 43.2 51.2

pretrained one-stage:
YOLOv2[27] trainval35k DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD300∗[24] trainval35k VGG16 25.1 43.1 25.8 6.6 25.9 41.4

RON384++[18] trainval VGG-16 27.4 49.5 27.1 - - -
SSD321[8] trainval35k ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3

DSSD321[8] trainval35k ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6
DES300[42] trainval35k VGG-16 28.3 47.3 29.4 8.5 29.9 45.2

DFPR300 [17] trainval VGG-16 28.4 48.2 29.1 8.2 30.1 44.2
RefineDet320[39] trainval35k VGG-16 29.4 49.2 31.3 10.0 32.0 44.4

DFPR300 [17] trainval ResNet-101 31.3 50.5 32.0 10.5 33.8 49.9
PFPNet-R320 [16] trainval35k VGG-16 31.8 52.9 33.6 12.0 35.5 46.1
RetinaNet400[22] trainval35k ResNet-101 31.9 49.5 34.1 11.6 35.8 48.5
RefineDet320[39] trainval35k ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4

trained from scratch:
DSOD300[32] trainval DS/64-192-48-1 29.3 47.3 30.6 9.4 31.5 47.0

GRP-DSOD320[33] trainval DS/64-192-48-1 30.0 47.9 31.8 10.9 33.6 46.3
ScratchDet300 trainval35k Root-ResNet-34 32.7 52.0 34.9 13.0 35.6 49.0

ScratchDet300+ trainval35k Root-ResNet-34 39.1 59.2 42.6 23.1 43.5 51.0

Table 5. Detection results on PASCAL VOC dataset. All models
are pretrained on MS COCO, and fine-tuned on PASCAL VOC.
†: http://host.robots.ox.ac.uk:8080/anonymous/ZVCMYN.html
‡: http://host.robots.ox.ac.uk:8080/anonymous/OFHUPV.html

Method Backbone mAP (%)
VOC 2007 VOC 2012

pretrained two-stage:
Faster R-CNN[28] VGG-16 78.8 75.9

OHEM++[34] VGG-16 - 80.1
R-FCN[4] ResNet-101 83.6 82.0

pretrained one-stage:
SSD300[24] VGG-16 81.2 79.3

RON384++[18] VGG-16 81.3 80.7
RefineDet320[39] VGG-16 84.0 82.7

trained without ImageNet:
DSOD300[32] DS/64-192-48-1 81.7 79.3
ScratchDet300 Root-ResNet-34 84.0 82.1†

ScratchDet300+ Root-ResNet-34 86.3 86.3‡

accuracies are promoted to 86.3% and 86.3%, respectively.
By using the training data in MS COCO and PASCAL VOC,
our ScratchDet obtains the top mAP scores on both VOC
2007 and 2012 datasets.

4.6. Comparison of the training time

ScratchDet uses obviously more time than fine-tuning
a pretrained classifier on the 4 NVIDIA Tesla P40 GPUs
workstation with the 300 × 300 input image size for the
MS COCO dataset (i.e., 84.6 vs. 29.7 hours). However,

considering several weeks and millions of images involved
in the pretraining phase, training detectors from scratch is
more attractive than the pretrained detector. Notice that
the comparison of training time is based on mmdetection
framework [2].

5. Conclusion

In this work, we focus on training object detectors from
scratch in order to tackle the problems caused by fine-tuning
from pretrained networks. We study the effects of Batch-
Norm in the backbone and detection head subnetworks, and
successfully train detectors from scratch. By taking the
pretaining-free advantage, we are able to explore various
architectures for detector designing. After analyzing the
performance of the ResNet and VGGNet based SSD, we
propose a new Root-ResNet backbone network to further
improve the detection accuracy, especially for small objects.
As a consequence, the proposed detector sets a new state-
of-the-art performance on the PASCAL VOC 2007, 2012
and MS COCO datasets for the train-from-scratch detectors,
even outperforming some one-stage pretrained methods.
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