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ABSTRACT

Subspace clustering refers to the problem of grouping data in-
to their underlying groups. To address this task, spectral clus-
tering based technique is arguably one of the most popular
approaches, and its performance largely depends on the con-
structed similarity. However, most existing works merely em-
ploy the primary representation (e.g., sparse or low-rank rep-
resentation) as the similarity. In this paper, we propose to ex-
plore a high-level co-referenced similarity by employing the
Hilbert-Schmidt Independence Criterion (HSIC). Moreover,
geometry interpretation of the advantage of our co-referenced
similarity is provided. Representation-induced kernels such
as Mahalanobis metric, can also be easily embedded into the
formulation. Extensive experiments on both synthetic and
real-world data are conducted to show the superiority of the
proposed method over the state-of-the-art alternatives.

Index Terms— Subspace clustering, similarity

1. INTRODUCTION

In real-world data analysis tasks, the data are usually of some
certain structures. To characterize the given data according
to the structure as different groups such that the data in the
same group are highly similar to each other, the subspace is
the most commonly used container. Subspace clustering tech-
nique has shown its significance as a theoretic foundation in
many computer vision and machine learning tasks, such as
face recognition [1], image representation and compression
[2], motion segmentation [3] and saliency detection [4].

Over the past years, methods based on spectral clustering
[5, 6, 7, 8, 9, 10, 11] have become dominant, whose frame-
work can be summarized into two pipelined steps, i.e., sub-
space learning and spectral clustering. Arguably, the first step
(i.e., learning representation) is of the most importance, as
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the success of the spectral clustering algorithms heavily de-
pend on constructing an informative similarity. A majority of
schemes on the market devote to learn a “good” representa-
tion. Concretely, Sparse Subspace Clustering (SSC) [5] seeks
a sparse representation for each data. Low-Rank Represen-
tation (LRR) [6] is to find a global low-rank one. To simul-
taneously consider the global grouping effect and local spar-
sity of the representation, group sparse coding [8] and multi-
subspace clustering [7] have been developed. While Least
Squares Regression (LSR) [9] offers a much more efficien-
t technique for computing the representation than LRR with
a similar grouping effect. Moreover, some kernelized works
[12, 13, 14, 15], which aim to find a good kernel on the orig-
inal data X space to guide the representation learning, have
also been developed in last decade. After obtaining the rep-
resentation Z, the above methods directly form the similarity
as S = (|Z|+ |ZT |)/2, then utilize a spectral clustering algo-
rithm, e.g. Normalized Cuts [16], to partition the data into the
underlying groups. However, sequentially dealing with each
step may suffer from suboptimal performance due to the fact
that these two pipelined steps highly depend on each other.

Recently, several works [17, 18, 11, 19] try to jointly op-
timize these two steps. Feng et al. [17] introduce a block
diagonal constraint to the self-expressiveness model. Nie et
al. [18] develop a more sophisticated method namely CAN
to learn the similarity matrix by adaptively assigning neigh-
bors to each data point based on the locality, and integrate the
similarity learning into the following spectral clustering. Li et
al. [11, 19] propose a Structured Sparse Subspace Clustering
(S3C) model, which unifies subspace learning and spectral
clustering by using a structured sparse norm.

Although the above approaches have achieved reasonable
results, they share a common shortcoming, i.e., only exploit-
ing the primary representation as similarity. In this paper, we
propose a novel method, namely CRSC/KCRSC, by explor-
ing a high-level co-referenced similarity to boost the perfor-
mance. The main contributions can be summarized as:

• We exploit a high-level co-referenced similarity based
on the primary representation by adopting the Hilbert-
Schmidt Independence Criterion (HSIC).
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• Geometry interpretation and representation-induced k-
ernelized version of our high-level co-referenced simi-
larity are provided.

• Extensive experiments on both synthetic data and real-
world data are conducted to demonstrate the efficacy
and the superior performance of the proposed algorithm
over the state-of-the-art alternatives.

Notation: For a matrix U, the i-th row and the j-th column of
U are denoted by Ui and Uj , respectively. 1 is the all-ones
matrix with appropriate sizes.

2. PROBLEM FORMULATION

2.1. Structured Sparse Subspace Clustering (S3C [11])

As aforementioned, spectral clustering based methods involve
two key factors, i.e., subspace learning and spectral cluster-
ing. Given a set of data points X = [X1, . . . ,Xn] ∈ Rd×n,
where d is the feature dimension and n is the total amount of
data points. Each sample Xi ∈ Rd can be approximated by
a linear combination of the reference samples XZi, where Zi
is the representation of sample Xi. For all data points, the
matrix form can be denoted as X ≈ XZ. Thus the subspace
learning can be formulated as: minZ ||X−XZ||K +λ||Z||l,
where ||·||K and ||·||l are two properly chosen norms, λ is the
trade-off parameter. After obtaining Z, most existing works
[5, 6, 13, 14] directly construct the similarity S as follows:

S = (|Z|+ |ZT |)/2. (1)
Then, spectral clustering is performed on similarity S as:
minF tr(FTLSF) s. t. FTF = I, where F ∈ Rn×c is
the cluster indicator matrix. LS is the Laplacian matrix of
S. Considering the above two pipelined steps depend on each
other, directly fusing them leads to the Structured Sparse Sub-
space Clustering (S3C) [11, 19] model:

min
Z,F

||X−XZ||K + λ1||Z||l + λ2 tr(FTLSF)

s. t. FTF = I.
(2)

2.2. Co-Referenced Subspace Clustering

Most works [5, 6, 11] can be viewed as a special case of model
(2). However, the similarity in Eq. (1) mainly has two short-
comings. One is that the representation may be negative. As
criticized in [20], it has already changed the meaning of simi-
larity. The other one is that it does not consider the high-level
information. [21] adopts the co-linkage to exploit a second-
order random walk on the primary representation. However,
it ignores the connection to the following spectral clustering.

In this paper, we also explore the high-level information
of the representation. But differently, we adopt the Hilbert-
Schmidt Independence Criterion (HSIC). Specifically, the tar-
get high-level representation should be maximal dependence
with the primary one since both of them can be viewed as
similarities. To measure such the dependence, we employ

Fig. 1. Comparison of the primary similarity (left) and our
high-level co-referenced similarity (right). The points Xi and
Xj are dissimilar according to the primary representation Zij
(solid line). But considering the co-reference information,
they may be similar with a large probability (dotted line).

the HSIC [22]. For simplicity, we adopt the linear inner k-
ernel for Z ∈ Z , say K1 = ZTZ, and adopt the kernel
K2 = W

1
2
T
W

1
2 = W, where W � 0 for the co-referenced

representation W ∈ W . Accordingly, the similarity in the tar-
get representation W space is defined as S = (W+WT )/2.
As aforementioned, the target high-level representation W
should be maximal dependence with their primary Z. Thus,
we naturally introduce the following HSIC [22] constraint:

max
W

HSIC(Z,W) = max
W

tr(K1HK2H), (3)

where H = I − n−111T is a center matrix. Besides, we en-
force WT

i 1 = 1 to make W lie in a union of affine subspaces.
Thus, DW = diag(

∑
jWij) = I, and tr(K1HK2H) =

tr(ZTZHWH) = tr(ZTZH(W−DW)H)+tr(HZTZH).
Consequently, we minimize the following objective:

min
W

tr(ZTZHLWH), s. t.WT
i 1 = 1;Wi � 0, (4)

where Wi � 0 is to guarantee the similarity value to be non-
negative and LW = DW −W.

Prior to formulating our algorithm, we analyze the advan-
tage of our high-level similarity. Specifically, the objective
(4) can be rewritten as:

min
W

tr(ZTZHLWH) = min
W

∑
ij

||Zi − Zj ||22Wij , (5)

where Z = ZH. This demonstrates that a smaller Eu-
clidean distance of centered primary representation ||Zi −
Zj ||22 should be assigned a larger high-level Wij , and vice
versa. In other words, if two points Xi and Xj employ almost
the same reference samples during the subspace learning, the
Euclidean distance of their primary representations will be s-
maller in general, thus their similarity will be larger. Accord-
ingly, we call this high-level information as the co-reference.
Compared with the primary similarity, which only adopts the
linear self-representation model Xi = XZi and directly uses
the representation Z as the similarity, the high-level one W is
more powerful and robust due to the co-reference information
exploited. Figure 1 shows their geometric comparison.

2.3. Kernelized Co-Referenced Subspace Clustering

In this part, we demonstrate that kernelizing the proposed co-
referenced term (3) is straightforward. Different from existing



Algorithm 1: ADMM for solving problem (8)
Input: Matrices X, F0,Z0, Q0 and M, parameters λ1, λ2, k.
Initialize: F = F0, Z = Z0, Q = Q0, C = 0, ρ = 1.1.
while not convergence do

Update Z, Q via (9), (10), respectively;
Update Wi via Eq. (12), where i ∈ {1, . . . , n};
Update the multiplier C and the penalty µ via Eq. (14);
Check the convergence condition ||X−XZ||∞ ≤ 10−6.

end
Output: Z and W.

works [12, 13, 15], which aim to find a kernel on the data X,
we embed a kernel in Z. Suppose that Ψ is a kernel function
on Z: Ψ : Z 7→ Ψ(Z). For simplicity, we employ the linear
transformation, i.e., Ψ(Z) = PZ. Thus, the co-referenced
term (3) can be kernelized as:

max
W

tr(Ψ(Z)TΨ(Z)HWH) = max
W

tr(ZTMZHWH),

(6)
where M = PTP. Similarly, it measures the co-reference
information by Mahalanobis distance ||PZi −PZj ||22, rather
than Euclidean distance ||Zi − Zj ||22. In this paper, the main
motivation does not focus on how to learn the kernel. We pre-
determine the representation-induced kernel M. Now, putting
every concern (Eqs. (2) and (6)) together leads to the Kernel-
ized Co-Referenced Subspace Clustering (KCRSC) as1:

min
Z,W,F

||X−XZ||2F + λ2 tr(ZTMZHLWH) + γ||W||2F

λ1 tr(FTLSF) s. t.WT
i 1 = 1;Wi � 0;FTF = I.

(7)
where γ||W||2F is to avoid the trivial solution (i.e., W = I),
λ1, λ2 and γ are trade-off parameters. Obviously, when M =
I, the kernelized version KCRSC degenerates into CRSC.

3. OPTIMIZATION

3.1. Update Representation Z and W

Given F, we design an ADMM based algorithm [23] for con-
quering the subproblems of Z and W. Specifically, we in-
troduce an auxiliary variable Q to replace M

1
2Z in the trace

term of (7). Accordingly, Q = M
1
2Z acts as the additional

constraint. The augmented Lagrangian function of (7) is:
L{WT

i 1=1;Wi�0}(Z,Q,W) = ||X−XZ||2F + γ||W||2F
+ λ1 tr(FTLSF) + λ2 tr(QLWQT ) + Φ(C,Q−M

1
2Z),

(8)
where LW = HLWH and Φ(C,Y) = µ

2 ||Y||
2
F + 〈C,Y〉.

〈·, ·〉 denotes the matrix inner product, µ is a positive penalty
scalar and, C is the Lagrangian multiplier.

1Empirically we choose ||X−XZ||K as the Frobenius norm and dropout
the ||Z||l (e.g., ||Z||1) for computational efficiency.

Algorithm 2: KCRSC Algorithm
Input: Data matrix X, kernel matrix M, cluster number c,

parameters λ and k.
Initialize: F = 0, λ1 = λαt, λ2 = λ, α = 1.2, t = 0.
while not converged do

Given F, solve problem (8) via Algorithm 1;
Given (Z,W), solve problem (15);
Check the convergence condition
||Θ(t+1) −Θ(t)||∞ < 1, where Θij = 1

2
||Fi − Fj ||22;

end
Output: Segmentation matrix F.

Z-subproblem:

Z = argmin
Z

||X−XZ||2F + Φ(C,Q−M
1
2Z)

= (2XTX + µM)−1(2XTX + M
1
2
T

(µQ + C)).

(9)

Q-subproblem:

Q = argmin
Q

λ2 tr(QLWQT ) + Φ(C,Q−M
1
2Z)

= (µM
1
2Z−C)(2λ2LW + µI)−1.

(10)

W-subproblem:
min
W

λ1 tr(FTLSF) + λ2 tr(QHLW(QH)
T

)+

γ||W||2F s. t. ∀i, WT
i 1 = 1; Wi � 0.

(11)

For each Wi, the closed-form solution is [18, 20]:

Wi =

(
1 +

∑k
j=1 d̃ij

k
1− di

)
+

, (12)

where di ∈ Rn is a vector, the j-th element of which is
(λ2||(QH)i − (QH)j ||22 + λ1||Fi −Fj ||22)/(4γ). Please no-
tice that the parameter k ∈ {1, ..., n} is introduced to control
the number of nearest neighbors Xj that could have chance to
connect to Xi. The elements of d̃ij are those of dij but with
the ascending order. The parameter γ is determined by [18]:

γ =
1

n

n∑
i=1

(
k

2
di,k+1 −

1

2

k∑
j=1

di,j). (13)

Multiplier:
C(t+1) = C(t) + µ(Q−M

1
2Z); µ(t+1) = µ(t)ρ, ρ > 1.

(14)
For initializations, Z, Q and W are all zero matrices. The
representation-induced metric M is identity matrix I (CRSC)
or computed based on the S3C [11] (i.e., Eq. (2)) by the work
[24] (KCRSC).

3.2. Update Indicator F

The second step is to update the indicator matrix F by:
min
F

tr(FTLSF) s.t. FTF = I. (15)

The solution is the eigenvectors corresponding to the smallest
c eigenvalues of LS [25]. The rows of F are then used as the
input to the k-means algorithm, which produces a clustering
of the rows of F that can be used to produce a binary matrix



(a) level=0 (ACC=1.000) (b) level=0.1 (ACC=0.995) (c) level=0.3 (ACC=0.975) (d) Convergence

Fig. 2. From Left to Right: (a)-(c) The visual similarity of KCRSC on four-independent data with different levels of noise. (d)
Convergence analysis. Most of the KCRSC models converge in 2∼8 iterations.

F ∈ {0, 1} ∈ Rn×c such that F1 = 1. We summarize the
whole scheme in Algorithm 1 and Algorithm 2.

4. EXPERIMENTS

In this section, we conduct experiments on both synthetic
and real-world data to validate the superior performance of
CRSC/KCRSC over the state-of-the-art alternatives including
SSC [5], LRR [6], LSR [9], CAN and PCAN [18], LS3C [13],
RSS [20] and the baseline S3C [11]. Three evaluation metrics
including Accuracy (ACC), Normalized Mutual Information
(NMI), Purity are utilized.

4.1. Synthetic Data

4.1.1. Mahalanobis vs. Euclidean

To visualize the advantages of the Mahalanobis distance, we
randomly generate two-moon data. There are two clusters of
data distributed in the two-moon shape. Our goal is to con-
struct a similarity matrix to divide data points into exact two
clusters. In Figure 3, we set the color of the two clusters to
be red and blue separately and let the width of the connecting
line denote the similarity weight of two corresponding points.
In the similarity graph constructed by CRSC, several pairs
of points from different clusters are connected. While in the
learned similarity graph by the proposed KCRSC, there is not
even a single line across the two clusters. In other words, the
diagonal-block property is well preserved.

4.1.2. Robustness to Noise

Similar to [20], to verify the robustness to noise, we gener-
ate four independent subspaces {Si}4i=1 of four-dimensional
data. There are 100 unit data points randomly sampled from
each subspace, which are chosen to be corrupted with differ-
ent levels of white Gaussian noise N (0, 1). Figure 2 shows
the diagonal-block property of the similarity matrix with dif-
ferent levels of noise. The left to right subfigures (2(a)-2(c))
show the visual variations of similarity matrix with respect to
0, 0.1 and 0.3 noise, respectively. With the increase of noise

(a) Original Data (b) Graph by CRSC (c) Graph by KCRSC

Fig. 3. The visual comparison of CRSC and KCRSC.

in a certain range, the diagonal-block of our method is nicely
kept, which reveals the robustness of our method to noise.

4.1.3. Convergence Analysis

Similar to [11, 19], we show the convergence of our method
empirically. Using the same synthetic four independent data,
we independent run KCRSC 400 times, each time with ran-
domly generated points, and show the histogram of the num-
bers of iterations (i.e., the statistics of how many iterations has
been taken when the algorithm meets the convergence condi-
tion.) for KCRSC to converge. As observed in Figure 2(d),
our algorithm converges in 2 ∼ 8 iterations on average.

4.2. Real-World Data

4.2.1. Face and Handwritten Digits Clustering

We first evaluate the competitors on the Extended Yale-B2

[26] and ORL[27] datasets. The Extended Yale-B database
consists of 2,414 frontal face images of 38 individuals. While
the ORL database contains 400 face images of 40 distinct sub-
jects. The left part of Table 1 provides the quantitative com-
parison among the competitors on face datasets. The bold
numbers in each column represent the best result of all the
methods. On Extended Yale-B dataset, it can be observed
that most of competitors achieve relatively low performances.
The major reason is that the large variation of illumination
involves in this dataset. Even so, our method still reaches sig-
nificant improvements around 8.1%, 4.5% and 2.9% over the

2Downloaded from the work [20].



Table 1. Results of different methods for face and handwritten digits clustering.
Extended Yale-B ORL USPS MNIST

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity
SSC [5] 0.454 0.528 0.608 0.483 0.568 0.757 0.723 0.732 0.851 0.404 0.525 0.693

LRR1 [6] 0.565 0.373 0.461 0.692 0.783 0.690 0.744 0.575 0.665 0.564 0.158 0.895
LRR21 [6] 0.581 0.280 0.355 0.706 0.802 0.740 0.744 0.555 0.727 0.586 0.458 0.558
LSR1 [9] 0.559 0.355 0.420 0.682 0.791 0.802 0.724 0.501 0.677 0.590 0.459 0.575
LSR2 [9] 0.577 0.275 0.505 0.679 0.770 0.775 0.722 0.358 0.936 0.535 0.464 0.630
CAN [18] 0.382 0.401 0.751 0.570 0.766 0.785 0.716 0.730 0.901 0.578 0.556 0.832

PCAN [18] 0.409 0.456 0.635 0.600 0.748 0.787 0.743 0.716 0.942 0.582 0.624 0.870
LS3C [13] 0.534 0.498 0.524 0.598 0.679 0.741 0.745 0.602 0.617 0.543 0.420 0.684
RSSS [20] 0.735 0.822 0.803 0.687 0.778 0.743 0.804 0.752 0.870 0.534 0.510 0.841

RSSS�Z [20] 0.730 0.836 0.788 0.687 0.809 0.740 0.810 0.795 0.876 0.538 0.564 0.750
S3C [11] 0.622 0.706 0.772 0.648 0.772 0.790 0.801 0.782 0.854 0.578 0.556 0.832

CRSC 0.816 0.876 0.832 0.716 0.841 0.805 0.846 0.816 0.965 0.623 0.645 0.918
KCRSC 0.814 0.881 0.831 0.723 0.863 0.818 0.857 0.824 0.948 0.647 0.643 0.921

Table 2. Motion segmentation on Hopkins155.
#Motions 2 3 total
S3C [11] 0.978 0.947 0.969

CRSC 0.980 0.954 0.972
KCRSC 0.984 0.962 0.978

most competitive method RSS in terms of ACC, NMI, and
Purity, respectively. On ORL dataset, we notice that the per-
formance of CAN, PCAN and SSC are relatively poor while
LRR, LSR, RSS and S3C are attractive. However, due to the
co-referenced similarity, our KCRSC achieves better perfor-
mance over the best competitor LSR. Then, we attempt to test
the abilities of different approaches on two challenging hand-
written datasets, i.e. USPS [28] and MNIST [29]. The USP-
S is composed of 10 classes corresponding to 10 handwrit-
ten digits, {0, 1, . . . , 9}. We randomly sample 100 examples
from each subject. The original MNIST handwritten digits
contains 70,000 samples from 10 subjects. We randomly sam-
ple 200 images from each digit as the dataset. From the right
part of Table 1, on both the USPS and MNIST datasets, our
KCRSC consistently outperforms the competitors owning to
the exploited high-level co-referenced similarity. The experi-
mental results indicate that at least 2% improvement over the
others in terms of all three evaluation metrics has achieved.

4.2.2. Motion Segmentation

Due to the limited space, we report the accuracy of our CRSR,
KCRSC, and the competitor S3C [11] on Hopkins155. Hop-
kins155 database consists of 155 video sequences with 2
or 3 motions in each video corresponding to 2 or 3 low-
dimensional subspaces. The corresponding experimental re-
sults are presented in Table 2. From which, we can see that
our CRSC algorithm outperforms S3C, however, due to the
fact that the Hopkins155 database has a relatively low noise
level, the improvement over S3C is relatively minor.

Table 3. Different classes of Extended Yale-B.
#Class 2 5 10 20 30

S3C [11] 0.722 0.958 0.902 0.846 0.701
CRSC 1.000 0.997 0.966 0.937 0.826

KCRSC 1.000 0.997 0.966 0.946 0.865

4.2.3. Comparison against different classes

To analyze the superiority of our co-referenced similarity a-
gainst different number of classes, we report the performance
of the baseline S3C and our CRSC/KCRSC on Extended
Yale-B dataset with different numbers of subject, including
2, 5, 10, 20 and 30. The corresponding clustering accuracies
are reported in Table 3. From the results, we can see that our
CRSC/KCRSC remarkably outperform the competitor S3C.

4.2.4. Parameter Setting

Our method involves parameters λ1, λ2, and γ. Inspired by
[18, 11], its convergence can be improved by using λ1 ←
λ1α. Moreover, for γ, it is determined by the parameter k ac-
cording to Eq. (13). Therefore, we set λ1 = λαt−1, λ2 = λ
to balance the corresponding terms, where α = 1.2, t is the
iteration index. In this way, we only have two parameter-
s λ and k to tune. For simplicity, we tune the correspond-
ing λ ∈ {0.1, 0.5, 1}, k ∈ {3, 5, 7} for all the experiments.
The detailed parameter settings (λ, k) are (0.5, 5), (1.0, 5),
(0.5, 3), (0.5, 7) and (0.1, 7) on Extended Yale-B, ORL, USP-
S, MNIST and Hopkins155, respectively.

5. CONCLUSION

This paper has proposed a novel subspace clustering mod-
el to explore a high-level co-referenced representation W by
Hilbert-Schmidt Independence Criterion (HSIC) for spectral
clustering. Geometry interpretation and a kernelized version



of the proposed constraint have been provided. Experimen-
tal results on several synthetic and real-world datasets have
demonstrated the significant advantages of our method.
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