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Abstract

Theoretical understanding and extension of mean shift
procedure has received much attention recently [8, 18, 3].
In this paper, we present a theoretical exploration and an al-
gorithm development on mean shift. In the theory part, we
point out that convex profile based mean shift can be jus-
tified from the viewpoint of half-quadratic (HQ) optimiza-
tion. Such analysis facilitates the convergence study and
uni-mode bandwidth selection for the latest variation, an-
nealed mean shift [18]. In the algorithm development part
of this paper, we extend annealed mean shift inside our HQ
framework to a novel method, namely adaptive mean shift
(Ada-MS), to detect multiple data modes sequentially from
an arbitrary starting point in linear running time. To vali-
date the performance, we couple the investigation with two
applications: image segmentation and color constancy. Ex-
tensive experiments show that the proposed method is time
efficient and initialization invariant.

1. Introduction

Mean shift is a density mode-seeking technique [9, 4, 5].
As a nonparametric iterative procedure, mean shift algo-
rithms use kernels to compute the weighted average of the
observations within a smoothing window. This computa-
tion is repeated until convergence is attained at a local den-
sity mode. This way, the density modes can be elegantly
located without explicitly estimating the density. Among
different kernels, the special case of profile based kernels
are mostly studied [5, 8]. Mean shift algorithm is widely
used in computer vision applications, including tracking [7]
and image segmentation [20]

Despite the popularity of mean shift, few attempts have
been made since Cheng [4] to understand the procedure
theoretically. Cheng [4] shows that mean shift is funda-
mentally a gradient ascent algorithm with an adaptive step

size. Fashing et al. show the connection between mean
shift and the Newton optimization algorithm [8]. They
also find that mean shift is actually a quadratic bound op-
timization both for stationary and evolving sample sets.
Carreira-Perpinan [3] proves that mean shift is equivalent
to EM algorithm when kernel is Gaussian, and the quotient-
convergence rate is generally linear. One inherent drawback
for mean shift is that it can only be used to find local modes.
Shen et al. developed a multi-bandwidth procedure, namely
annealed mean shift, to solve global density mode localiza-
tion problem [18]. Since kernel density estimation is ac-
tually a M-estimator [5], the annealed mean shift can be
viewed as a special case of deterministic annealing based
robust M-estimation [12].

In this paper, we present a theoretical exploration and an
algorithm development on mean shift. The motivation for
the theoretical part is to justify the current understanding
of convex profile based mean shift from the half-quadratic
(HQ) optimization viewpoint. HQ is a standard optimiza-
tion technique in convex analysis [17, 1]. By introducing
dual variables, non-quadratic convex objective functions
can be maximized in a quadratic-like way inside the HQ
framework. We show, in the case of convex profiles, that
mean shift is actually HQ optimization for density mode
detection. This implies that mean shift algorithm converges
and the rate is at least linear. We also explicitly give an
analytic form of upper-bound for uni-mode promising ker-
nel bandwidth, which makes the bandwidth initialization for
annealed mean shift [18] more accurate and operable.

In the algorithm development part, we extend annealed
mean shift to a novel sequential method, namely Ada-MS,
for multiple data modes seeking from arbitrary starting
point. This is achieved by making full use of the dual
variables introduced by HQ analysis to re-weight all the
samples adaptively, guiding the search for remaining sig-
nificant modes. The time complexity for multiple data
modes seeking is accelerated from quadric to linear, and
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this is compared to commonly used exhaustive initialization
method [5].

We apply the results of the Ada-MS work to two appli-
cations: image segmentation and color constancy, validated
using real-world data. For image segmentation, a compar-
ative test shows that Ada-MS is at least twice as faster as
IFGT [20], which to our knowledge is one of the fastest im-
age segmentation method based on mean shift. We then
point out that, although derived from the kernel density
mode-seeking problem, Ada-MS is also applicable to some
other kernel based optimization problems. Convex kernel
based linear color constancy is adopted as an example, and
comparison to the state of the art [13] is done to clearly
demonstrate advantages of Ada-MS over EM solution. At
the same time, by piecewise linear assumption, the non-
linear color constancy problem can also be approximately
solved in the Ada-MS framework.

The remainder of the paper is organized as follows. In
section 2 we briefly survey the background of mean shift
procedure. In section 3, we derive convex profile based
mean shift procedure with HQ optimization formulation
and discuss its convergence property. An up-bound for uni-
mode promising bandwidth is then elegantly derived for an-
nealed mean shift. In section 4, we develop Ada-MS al-
gorithm for fast multiple data modes seeking and test its
numerical performance. In section 5, we evaluate practical
performance of Ada-MS by two groups of experiments. We
conclude our work in section 6.

2. Background of Mean Shift Algorithm

One of the most popular nonparametric density estima-
tors is kernel density estimation. Given a Data set X with N
data points xi, i = 1, ..., N , drawn from a population width
density function f(x), x ∈ R

D, the general multi-variable
kernel density estimate at x is defined by

f̂K(x) =
1
N

N∑
i=1

wiKH(x− xi) (1)

where KH(x) = |H|− 1
2 K(H− 1

2 x). Here, K(·) is a ker-
nel function with a symmetric positive defined bandwidth
matrix H ∈ R

D×D. Sample prior weight wi satisfies∑N
i=1 wi = 1. Employing the profile definition, the gen-

eral kernel density estimator becomes

f̂K(x) =
ck

N |H| 12
N∑

i=1

wik(M2(x, xi, H)) (2)

where k(·) is a profile of the kernel K(·), M2(x, xi, H) =
(x− xi)T H−1(x− xi) is the Mahalanobis distance from x
to xi, wi is the weight for sample xi, and ck is a normal-
ization constant. The mean shift optimization procedure is

performed by setting gradient equal to zero and the incre-
mental iteration scheme is obtained immediately:

x←
∑N

i=1 wig(M2(x, xi, H))xi∑N
i=1 wig(M2(x, xi, H))

(3)

where g(x) = −k
′
(x) and k(·) is called as the shadow of

the profile g(·) [5].

3. Half Quadratic Analysis For Mean Shift

3.1. Basic Descriptions

In this section, we will build on the convex profile based
mean shift as HQ optimization. The results follow directly
from standard material in convex analysis (e.g. [17, 14]) and
we will omit the technical proofs for page limit. All the con-
ditions we impose on profile k(·) are summarized as below:

1. k(x) is a continuous monotonously decreasing and
strictly convex function

2. limx→0+ k(x) = β > 0, limx→+∞ k(x) = 0

3. limx→0+ k
′
(x) = −γ < 0, limx→+∞ k

′
(x) = 0,

limx→+∞(−xk
′
(x)) = α < β

4. k′(x) is continuous with finite discontinuous points.

The following theorem 3.1 founds the base for optimiz-
ing density function in a half quadratic way.

Theorem 3.1 Let k(.) be a profile satisfying all above con-
ditions, then there exists a strictly monotonously increasing
concave function ϕ : (0, γ) �→ (α, β), such that

k(M2(x, xi, H)) = sup
p

(−pM2(x, xi, H) + ϕ(p))

and for a fixed x, the supmum is reached at p =
−k

′
(M2(x, xi, H)).

To study kernel density estimator (2), we introduce a new
objective function F : R

D × (0, γ)N �→ (0,+∞)

F̂ (x, p) =
ck

N |H| 12
N∑

i=1

wi(−piM
2(x, xi, H)+ϕ(pi)) (4)

where p = (p1, ..., pN ). According to theorem 3.1, we get

f̂K(x) = sup
p

(F̂ (x, p)) (5)

It is straight forward to see that

max
x

f̂K(x) = max
x

sup
p

(F̂ (x, p)) (6)



From (6) we tell that maximizing f̂K(x) is equivalent to
maximizing F̂ (x, p)), which is quadratic w.r.t. x when p
is fixed. The maximizer (x̂, p̂) of F̂ is calculated by alter-
nate maximization as follows (superscript l denotes the time
stamp):

pl
i = −k

′
(M2(xl−1, xi, H)), i = 1, ..., N (7)

xl =
∑N

i=1 wip
l
ixi∑N

i=1 wipl
i

(8)

It is obvious to see that the above two-step iterative pro-
cedure is equivalent to the mean shift procedure. The dual
variables p play the role of g(·) in (3).

3.2. Relation to Bound Optimization and EM

There is an interesting relation with the result of Fashing
and Tomasi [8],which builds on the mean shift as a quadratic
bound maximization. For a fixed point xl−1 ∈ R

D, de-
note the quadratic function ρ̂(x) = F̂ (x, pl) (pl is ob-
tained by (7)). We can get from theorem 3.1 and (5) that
f̂K(xl−1) = ρ̂(xl−1) and f̂K(x) ≥ ρ̂(x) for ∀x, i.e. ρ̂(x)
defines a lower bounding function for f̂K(x) at point xl−1.
It is easy to see that iteration step (8) maximizes quadratic
function ρ̂(x). In this way, the proposed HQ analysis can
also be viewed as a quadratic bound optimization for mean
shift. This is tightly related to [8], and the quadratic lower
bound given by (15) in [8] can be proved equivalent to ρ̂(x)
defined here. The improvement lies in that, instead of lo-
cally computing coefficients ((18) in [8]), our HQ based
approach allows a ”global” bound expression ( 6), which
is suitable for numerical study on convergence and global
mode-seeking.

When kernel is Gaussian, our HQ optimization is also
equivalent to the recent result of Carreira-Perpinan [3],
which shows that Gaussian mean shift is an EM algorithm
on a properly defined Gaussian-mixture density model,
when trying to fit a sample at the origin. In our notation,
in the E-step, the posterior distribution p(i|xl−1) ∝ pl

i and
the expectation w.r.t. the current posterior is proportional to
the above defined ρ̂(x). In the M-step, the new mode xl is
obtained from old xl−1 by (8).

3.3. Convergence Study

The HQ formulation also facilities the convergence proof
of mean shift procedure. We first introduce two concepts
that will be used in the context.

Definition The Mahalonobis diameter of data set X is de-
fined as DH(X) = max{√M2(xi, xj , H))|xi, xj ∈ X}.

Definition The convex-hull of data set X is defined as
S(X) = {∑N

i=1 sixi|
∑N

i=1 si = 1, si > 0}.

Proposition 3.1 Denote F̂ l = F̂ (xl−1, pl), the sequences
{F̂ l, l = 1, 2, ...}, {xl, l = 1, 2, ...} and {pl, l = 1, 2, ...}
generated by (7) and (8) converge on S(X).

The proof is trivial, we omit it from this conference paper
for page limit.

Until now, the convergence rate of mean shift has been
scarcely addressed. In [3], it is established that the quotient-
convergence order of the Gaussian kernel mean shift is gen-
erally linear 1. On the other hand, the convergence rate of
HQ is deeply studied in literature [1, 14], rather relies on
root-convergence 2 factors. Since our work bridges the gap
between mean shift and HQ optimization, the discussion
on convergence rate for mean shift is facilitated. Denote

spectral σ = λmax

(
I + H�2f̂K(x̂)

2
∑ N

i=1 p̂i

)
, λmax(.) is the largest

eigenvalue of a given square matrix. I is the identity matrix.
If kernel band matrix H is isotropic (H = h2I), then σ < 1
since f̂K is negatively defined at local maximizer x̂. The
main result on convergence rate for mean shift is:

Proposition 3.2 The root-convergence of convex kernel
based mean shift scheme (7) and (8) is at least linear with
rate σ

The proof is based on linear convergence theorem [15].

3.4. Global Mode-Seeking

Since the standard mean shift is essentially a gradient
ascending method, it will converge to local maximum. Re-
cently, Shen et al. [18] developed a multi-bandwidth vari-
ation of mean shift, namely annealed mean shift, to solve
global kernel density mode-seeking problem. In this work,
we revisit annealed mean shift inside the HQ optimization
framework (see algorithm 1 for a formal description in our
notation). The key contribution is that we explicitly give
an up bound of the critical uni-mode-promising bandwidth
(proposition 3.3), which makes the bandwidth initialization
more accurate and operable in practice.

Here, we just equivalently discuss uni-mode property of
(4). We consider a special case that H = η2H0, H0 is a
fixed matrix, e.g. the second moment of data set X . Then
(4) can be rewritten as

F̂η(x, p) =
ck

N |H0| 12 ηD+2

N∑
i=1

wi(−piM
2(x, xi, H0)+η2ϕ(pi))

(9)
Proposition 3.3 shows that (9) is concave (hence is uni-
mode) on the convex-hull S(X) for a large enough η.

1We say that the convergence in quotient is linear if there exists a ε ∈
(0, 1) such that ‖xl+1 − x̂‖ ≤ ε‖xl − x̂‖ for all l sufficiently large.

2We say that the convergence in root is linear if there exists a σ ∈ (0, 1)
such that supl→∞ ‖xl − x̂‖1/l ≤ σ.



Proposition 3.3 One sufficient condition guarantees that
F̂η(x, p) is concave on S(X) is

η >

(
2 sup

v

(
−k′′(v)

k′(v)

)) 1
2

DH0(X) (10)

Remark Given the η setting condition presented in propo-
sition 3.3, it is easy to see from (6) that the estimated density
function f̂K(x) is also uni-mode. Further more, proposi-
tion 3.3 implies that the critical uni-mode-promising band-
width, defined as ηcrit=inf{ηum > 0: f̂K is uni-mode for
all η > ηum} [16], is up bounded by the right side of in-
equality (10). We give some commonly used kernels and
their corresponding uni-mode-promising bandwidths in ta-
ble 1 to further clarify proposition 3.3.

Table 1. Kernels and bandwidths
k(x) uni-mode-promising bandwidth
e−x/2 > DH0(X)

1
1+x > 2DH0(X)

π
2 − arctan(x) >

√
2DH0(X)

From proposition 3.3 and 3.1, we can tell that if η is
large enough , then from any initial estimation, the two-step
iteration (7) and (8) will converge to a unique maximizer
of the over-smoothed density function. We may then grad-
ually decrease η (in this paper, by multiplying a constant
θ ∈ (0, 1) ) and run the same iterations again, taking the
previous maximizers as current initializations. This proce-
dure is repeated until a certain termination condition is met
(e.g. ηm reaches AMISE optimal bandwidth [6] for the con-
sidered data set), and the final obtained maximizer is very
likely to be the global maximum point of density function.
In this way we revisit the annealed mean shift stated in [18].

Algorithm 1 Annealed Mean shift
1: m ← 0, Initialize ηm satisfying the condition presented in

proposition 3.3
2: Randomly select an initial starting location from S(X)
3: while Terminate condition is not met do
4: Run the iteration (7) and (8) till converge.
5: m← m + 1
6: ηm ← (ηm−1 ∗ θ).
7: Initialize x and p with the maximizers obtained in 4.
8: end while

To summarize the theoretical exploration so far, we jus-
tify the understanding of convex profile based mean shift on
the viewpoint of half-quadratic optimization. The state of
the art variation, annealed mean shift, is more rigourously
rivisited in our HQ framework. In the following subsec-
tions, we will further develop a novel multiple data modes

seeking method based on above analysis. For presenta-
tion clarity, we denote x∗ and p∗ be the convergent points
reached in algorithm1, and η∗ be the corresponding band-
width. We also call the global maximizer x∗ to be global
data mode (GDM) of set X associated with current prior
weights w.

4. Extension: Ada-MS For Sequential Data
Mode-Seeking

In many applications, e.g. discontinuity preserving
smoothing and image segmentation [5], mean shift proce-
dure is often used for multiple data modes seeking and clus-
tering. Typically, to detect all the significant modes, the
basic mean shift algorithm stated in Section 3.1 should be
run multiple times with initializations that cover the entire
feature space [5]. Given N data sample points, direct es-
timation of local modes from all these initializations will
take O(N2) evaluation. For large data set, such an exhaus-
tive mechanism leads to severe requirements for computa-
tional time and/or storage. Yang et al. [20] accelerated the
mode-seeking speed to linear running time by using im-
proved fast gaussian transform (IFGT). Although very ef-
ficient for the special case of Gaussian kernel, IFGT seems
difficult to be generalized for other convex kernels. At the
same time, it remains an exhaustive initialization scheme.
In this section, for general convex kernels, we develop a
novel method, namely adaptive mean shift (Ada-MS), to se-
quentially detect the significant data modes in linear time
complexity. The method can be viewed as an extension of
annealed mean shift inside our HQ analysis framework.

4.1. Algorithm Description

The core idea of Ada-MS algorithm is to find multiple
data modes one after another by adaptively changing the
prior weight vector w. Points closer to currently found
modes receive lower weights, allowing the others to guide
the search in the next iteration. With current sample prior
weight, we run annealed mean shift to locate GDM x∗,
and then taking it as starting point to find local maximizer
x∗′

for the density function (2) estimated under equal prior
weight (remind that our purpose is to find the modes for
original data set). Dual variable vector p is calculated as
pi = −k

′
(M2(x∗′

, xi, η
∗2H0), i = 1, ..., N . We then re-

weight all the samples by wi ← wi/(1 + pi) and normal-
ize them. This procedure is repeated until some ever-found
mode reappears. Suppose L modes are eventually obtained,
taking them as centers, the clustering can be done by naive
nearest-neighbor scheme. The running time is accelerated
to linear complexity O(LN) (L 	 N ). The formal and
detailed description of Ada-MS is given in algorithm 2.



Algorithm 2 Ada-MS for Mode-Seeking and Clustering

1: Initialization: Start with weights w0
i = 1/N , i = 1, ..., N

and l = 0. Set mode set L = ∅.
2: while 1 do
3: GDM Estimation: Find GDM x∗ by annealed mean shift

for f̂K(x) estimated under prior weight wl.
4: Mode Locolization: Starting from x∗, find the local maxi-

mizer x∗′ by mean shift for f̂K(x) estimated under η∗ and
w0.

5: if x∗′ ∈ L then
6: break
7: else
8: Dual Variables: Get pi = −k

′
(M2(x∗′ , xi, η

∗2H0)).
9: Sample Reweight: Set wl+1

i ← wl
i/(1 + pi). Normal-

ize wl+1
i ← wl+1

i /
∑

i wl+1
i

10: l← l + 1
11: end if
12: end while
13: Clustering: the data set X are grouped via naive nearest-

neighbor algorithm, taking the L (= ‖L ‖) modes in L as
centers

4.2. Numerical Test

We give in this section an 1D data mode-seeking exper-
iment to more clearly illustarte the numerical procedure of
the Ada-MS. Galaxies data set (1-D, size 11264) from [10]
is adopted for this test. Ada-MS successfully found the 3
significant modes appeared in this data set.
GDM Estimation: Firstly, we estimate the GDM under
initial equal prior weights. The kernel profile used here is
k(x) = e−x/2. Fig. 1(a) shows that GDM is successfully
located with a rough 4-step iteration.
Sequential mode-seeking: fig.1(b) shows the multiple
modes seeking results by Ada-MS. Estimated density
curves under sequentially changed sample prior weights are
shown. Corresponding GDM’s and data modes are gradu-
ally located in this procedure. Eventually, three significant
modes are all correctly located. The sample prior weight
curves (from initial one to the 4th re-weighting iteration)
are shown in fig.1(c) ∼1(f)

5. Applications of Ada-MS

To further evaluate the practical performance of the pro-
posed Ada-MS data mode-seeking method, we couple this
investigation with two real-world applications: image seg-
mentation and color constancy.

5.1. Static Image Segmentation

Firstly, we present an experiment for static image seg-
mentation, aiming to show the computational efficiency of
the proposed Ada-MS on high dimensional data set. Image
segmentation is a fundamental component in many com-

(a) (b)

(c) (d) (e) (f)

Figure 1. (a) Annealed mean shift for GDM detection. In this
case, the estimated initial bandwidth by proposition 3.3 is set to be
η0 = 8.3470 and shrinking factor is θ = 0.5. Curves from outside
to inside indicate the evolving process with successively decreas-
ing bandwidths (η0, η1, η2, η3). The evolution of the modes is
clearly shown and the GDM is located without being distracted by
local modes. (b) Multiple modes seeking result by Ada-MS. The
green curve is the estimated density curve under initial equal sam-
ple weights, while the red, blue and pink curves are those under
sequentially re-weighted prior. The GDM’s are marked as cir-
cles on the corresponding curves. The estimated local data modes
are shown on the initial green density curve. On the 4th sample
re-weighting iteration (pink dotted curve), the estimated mode is
overlapped with the 3rd mode, hence the iteration stopped with
eventually three modes found. For each iteration, the initial band-
width η0 estimated by proposition 3.3 is 8.3470. The correspond-
ing sample prior weight curves are shown in (c) ∼ (f).

puter vision applications, and can be addressed as an image
data clustering problem [11]. We use several test images
from the Berkeley Segmentation Dataset [2] and from [20]
for evaluation. We adopt the L*U*V* color features to form
a 3-dimensional raw feature space. Ada-MS with Gaussian
profile is applied to all these test images in such a 3D color
space. The code is written in C++ with Matlab interface,
and run on a 3.0G Hz P4 CPU. We also assume that H0 is
isotropic. The results are shown in fig.3. The running time
of the algorithm 2 in seconds and the sizes of the images are
shown in table 2. As a comparison, we also list in table 2 the
corresponding computational time by the above mentioned
linear time algorithm IFGT [20]. On our test environment,
IFGT is already twice faster than its original version devel-
oped in [20]. From the comparison, we can see that our
Ada-MS based method is more efficient than IFGT. This
is mainly due to the fact that IFGT remains an exhaustive
searching mechanism while our method is a sequential one.

5.2. Color Constancy

The development and applications of Ada-MS so far are
just restricted in the context of kernel density mode-seeking



Figure 2. Image segmentation results: Column 1 ∼ 3: House im-
age ( η0 = 3.292, θ = 0.6, L = 4), Zebra image (η0 = 5.269,
θ = 0.6, L = 3), and Bird image (η0 = 4.341, θ = 0.6, L = 2).

Table 2. Image sizes v.s. the running time
House Zebra bird

size 255×192 481×321 481×321

IFGT [20] 2.063 6.516 6.640
Time (s) Ada-MS 1.062 3.406 1.485

problem. In this application, we relieve this restriction and
show how it can be used for other kernel based optimization
problems. We take color constancy problem as an example
and use Ada-MS to optimize the diagonal render model dis-
cussed in [13]. The main purpose of this group of experi-
ments is to validate that Ada-MS is an initialization invari-
ant optimization framework, thus is superior to EM solution
adopted in [13].

As is well known that light sources, shadows, transducer
non-linearities, and camera processing can all affect the fi-
nal image of a scene. Color constancy, which addresses the
variability of images due to above photic parameters, is an
important problem in machine vision. A large body of work
(see [19] and the refs there in) has been presented for this
research topic. Recently, [13] presented a diagonal render-
ing model for outdoor color compensation and classification
problem, in which only one image containing the color sam-
ples under a certain ”canonical” illumination is needed for
training. The trained colors seen under different illumina-
tions in the test image can be robustly recognized via MAP
estimation. The key assumptions for this model are:

• One hand-labeled image is available for training the
class-conditional color distributions under the ”canon-
ical” illuminant.

• The class-conditional color surface likelihood under
the canonical illumination is a Gaussian density, with
mean µj and covariance Σj

• The illuminant-induced color transformation in the test
image can be modeled as F (Ci) = Cid, where d =
(d1, d2, d3)T is the color render vector to be deter-
mined. Ci = diag(ri, gi, bi) is a diagonal matrix that

stores the observed RGB colors for pixel i in the test
image.

Suppose S color surfaces with distributions yj ∼
N (µj ,Σj),j = 1, ..., S are trained. Also, assume given
a test image with N pixels Ci, i = 1, ..., N , which con-
tains L illuminants linearly parameterized by vectors dl,
l = 1, ..., L. The goal is to estimate these dl from image
data (both training and test) and then get the assignments of
surface class labels j(i) and illuminant type labels l(i) for
each pixel i according to:

(j(i), l(i)) = arg min
j,l

(dist(Cidl, yj)) (11)

dist(·) is some properly selected distance measurement
metric (e.g. Mahalanobis distance in this work).

Due to the advantage of fewer training images require-
ments, we also adopt this render model for our color con-
stancy application. The main difference between our solu-
tion and that of [13] lies in the definition of objective func-
tion and the associated optimization method to estimate pa-
rameters d. In [13], compensation error based image like-
lihood and model priors are integrated into a MAP formu-
lation and possible existing d’s are optimized through EM
algorithm. This algorithm works well when L is known
a prior and all the render vectors are properly initialized.
However, in practice, such information is not always avail-
able or accurate. We successfully overcome this drawback
by properly defining the following convex kernel based cri-
terion function to measure the illumination compensation
accuracy:

f̂K(d) =
N∑

i=1

S∑
j=1

wijk(M2(Cid, µj , Hj)) (12)

where Hj = η2Σj and wij is the prior weight for pixel i
belonging to color surface j. Profile k(.) also satisfies all
the conditions provided in 3.1. The larger (12) is, the better
test image is compensated by d.

Ada-MS algorithm is applied to find the significant
modes of criterion function (12). A slightly revision is that
the two-step iteration (7) and (8) is now derived as

pl
ij = −k

′
(M2(Cidl−1, µj , Hj))

dl =


 N∑

i=1

S∑
j=1

wijp
l
ijC

T
i H−1

j Ci



−1 

 N∑
i=1

S∑
j=1

wijp
l
ijC

T
i H−1

j µj




Similar results to proposition 3.3 on uni-mode-promising
bandwidth can also be derived .

Suppose eventually L number of modes dl are found via
Ada-MS, we may naturally view these modes as significant
illumination transformations in the scene. Color and illu-
minant type classification can be done according to ( 11).



We present two sets of experiments on color compensation
and classification for real scene images to show the perfor-
mance of our method. Gaussian kernels are used in these
experiments.

The first experiment is done to show the initialization in-
variant property of our algorithm. For comparison purpose,
we adopt one set of image data used in [13]. Fig.3(a) is the
training image with selected sample colors under ”canon-
ical” light. The test image is shown in fig.3(b). Fig.3(c)
and 3(d) are compensation results achieved by [13] with
EM based optimization, from starting point P1 and P2 (see
table3) separately. It is obviously to see that fig.3(c) is much
more satisfying than fig.3(d), hence the algorithm is highly
initialization relevant. The results by our Ada-MS mode-
seeking algorithm are shown in fig.3(e)∼3(h). Detailed nu-
merical comparison results are listed in table 3. Note that,
for Ada-MS, the calculated d3 = (2.054, 1.565, 1.401) is
equivalent to d2 , hence we get L = 2, which coincides
the observation that two significant illuminant (light and
shadow) exist in the scene. Fig. 4 more clearly visualize
the global mode-seeking and sample re-weighting process
during optimization.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. A comparison example with EM based method [13]. (a)
training image; (b) test image; (c) and (d): compensation results by
EM optimization [13], from starting point P1 and P2 separately;
(e) and (f): the compensation and illumination classification re-
sults by our Ada-MS (η0 = 2.478 and θ = 0.6, L = 2), which
are invariant to starting point; (g) and (h): weight maps (for each
pixel wi =

∑S
j=1 wij) for the 2nd and 3rd sample re-weighting

iteration.

The second experiment will show the ability of our
method to handle non-linear illumination changes based on
current linear render model. To do this, we make piece-
wise linear assumption to approximate the general nonlin-
ear cases. Our method can automatically find the transfor-
mation vectors for each linear piece. We give here one ex-

Figure 4. Visualization of the compensation accuracy function (12)
in domain (0, 2.5)3 under different prior sample weight. (a) ∼ (c)
are for initial equaling prior weights while (d) ∼ (f) are for the
2nd round of re-weighted prior. The radius of each dot indicates
compensation accuracy at that point. Graphes from left to right
indicate the evolving process with successively decreasing band-
widths (η0, η1, η4). Global modes (in red) are located via Ada-MS
from given initializations (in green).

Table 3. Numerical results, Ada-Mean-Shift vs. EM
d1 d2

Starting point P1 (1.0,1.0,1.0) (2.0,2.0,2.0)
Result by EM [13] (0.946,0.988,1.072) (2.202, 1.737,1.546)
Result by Ada-MS (0.899,0.968,1.038) (2.057,1.567,1.404)

Starting point P2 (0.5,0.5,0.5) (1.0,2.0,1.0)
Result by EM [13] (0.499,0.754,0.508) (1.627, 1.486,1.247)
Result by Ada-MS (0.899,0.968,1.038) (2.057,1.567,1.404)

periment on a pair of ”map” images to validate this inter-
esting property. We used Canon A550 with automatic ex-
posure, taking care to compensate for the camera’s gamma
setting. The training image fig.5(a) and test image fig.5(b)
are shot under two very different camera settings. The se-
lected 6 sample colors from the training image and their
ground truth counterparts in the test image are shown in
fig.5(c) (left). To test whether the illumination change in
the test image is linear or not, we calculate the ground
truth transformation vectors for the sample colors and plot
them in fig.5(c)(right). Obviously two clusters (bounded
by dotted ellipses) appear from these vectors, thus the il-
lumination change is nonlinear. A reasonable assumption
is that such a change is piecewise linear and we may just
feed the image data into Ada-MS to let it find all the sig-
nificant pieces sequentially, from arbitrary initializations.
EM based method [13] can hard to achieve this goal sim-
ply because the number of pieces and accurate initializa-
tion for each linear piece is required to be known a prior,
which is not always available in practice. On the other
hand, our Ada-MS successfully found two vectors d1 =
(0.638, 0.836, 1.611) and d2 = (0.765, 0.977, 3.022) with
arbitrary starting points (parameters are set as η0 = 1.934
and θ = 0.5). The image results are shown in fig.5(d)
∼5(h).



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. Piecewise linear color constancy. (a)training image;
(b)test image; (c) left: 6 selected sample colors and their ground
truth counterparts in the test image; right: the ground truth trans-
formation vectors for the 6 sample colors; (d) and (e): color com-
pensation and color classification results. The black part in (e)
represents unseen colors in the test image. (f): color compensa-
tion result by render vector d1 only, which obviously introduces
very large compensation error, visually. (g) and (h): weight maps
for the 2nd and 3rd sample re-weighting iteration.

6. Conclusion

We investigated into the mechanism behind the mean
shift procedure and explained convex profile based mean
shift in terms of half-quadratic (HQ) optimization and dis-
cussed its convergence rate. We applied the HQ analysis to
solve the uni-mode bandwidth selection problem associated
with annealed mean shift [18]. We further developed Ada-
MS method for fast multiple data modes seeking, from ar-
bitrary starting point. The computational complexity is re-
duced from quadratic to linear. Extensive experiments val-
idate the time efficiency and initialization invariance prop-
erty of Ada-MS.
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