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Abstract 
In this paper we present a probabilistic framework for tracking 
objects based on local dynamic segmentation. We view the seg-
mentation to be a Markov labeling process and abstract it as a 
MAP problem. In the Bayesian formulation, we exploit the Fea-
ture-Spatial-Measure distribution of local area as the conditional 
distribution. The Feature-Spatial vector is used to constrain the 
appearance of region while the Measure vector is used to constrain 
the label of the pixels in the region. One drive force to the intro-
duction of FSM distribution is the HMMF model that makes it 
possible to estimate the Measure field by the minimization of a 
differentiable function. Mean-shift procedure and IFGT technique 
are used to further alleviate the computational costs. Very promis-
ing experimental results on synthetic and natural sequences are 
presented to illustrate the performance of the presented algorithm. 

 
1. INTRODUCTION 

 
Object tracking is to monitor an object’s spatial and temporal 
changes during a video sequence, including its presence, position, 
size, shape, etc. This is done by solving the temporal correspon-
dence problem. Among numerous algorithms, one popular method 
is appearance-based region tracking [1, 2, 5], which usually em-
ploys a statistical description of the region or the pixels to perform 
the tracking while ignoring the region structure. These approaches 
have great flexibility to track deformable and non-rigid objects as 
well as being robust to partial occlusion, but they all need some 
predefined motional models and are not self-adapted to scale 
change. 
  In this paper, we further investigate object tracking approaches 
based on appearance but without motion computation. Our goal is 
to present a new probabilistic model that permits the characteriza-
tion of the solution for tracking in terms of dynamic segmentation, 
which is viewed to be a labeling process. The model presented in 
this paper is rigorously based on Bayesian estimation theory. In 
our formulation, we consider the feature, the feature location and 
the label measure vector to be probabilistic random variables. 
Given samples from regions representing objects and background, 
we estimate the Feature-Spatial-Measure (FSM) joint distribution 
servers as conditional distribution in Bayesian estimation. This 
joint distribution can be estimated using kernel density estimation. 
There are two problematic issues in applying the joint FSM distri-
bution: First is the definition of label measure vector , which may 
determine the computational efficiency of the model; Secondly is 
that Feature-Spatial-Measure distribution are nonstandard in shape 
and can be high dimensional, therefore they require a general ap-
proaches to handle the density estimation. The method presented 
in this paper will address these two vital issues. 
 The structure of this paper is organized as follows: In section 2, 
we formulate the tracking problem in a probabilistic framework in 
the joint space and analysis its asymptotic behavior. In section 3, 

we adopt the Hidden Markov Measure Field to improve our model. 
In Section 4, we discuss the scheme for the minimization of the 
objective function and some computational tactics. In section 5, 
some experimental results and comparisons with other tracking 
algorithms are provided. Section 6 is the   conclusions. 
 

2. PROBABILITY TRACKING IN FSM SPACE 
 
2.1 MAP Framework 
 
Let ( )kI represents a sequence of images observed from the pixel 

latticeΩ and indexed by k . Assume that there are 1M − tracking 
regions

1 1{ , , }n n
MR R −…  and one non-tracking region ( background ) 

n
MR  in image nI , such that 

1
M n
l lR=Ω = ∪ ; n n

i jR R φ=∩ ， i j≠ . 

The tracking of 
1 1{ , , }n n

MR R −…  from time interval n  to 

1n+ can be formulated as the problem of segmenting im-

age 1nI + into 1 1
1{ , , }n n

MR R+ +… , given nI , 1nI + and
1{ , , }n n

MR R… . The 
way to achieve this goal can naturally be regarded as a labeling 
process. Let 1nl +  be the discrete label field associated with 1nI + . 
In the classical MRF model { }1( ) 1, ,nl r M+ ∈ … , denoting that 

pixel r∈Ω belongs to the region 1
1
( )n

n
l r

R +
+ . We define the measure 

vector for pixels associated with 1nl +  as 
1 1 1

1( ) ( ( ), , ( ))n n n
Mf r f r f r+ + += … , where 1 1( ) ( ( ) )n n

kf r l r kδ+ += −  and 

( )xδ  is Kronecker delta function. Denote 1nf +  the correspond-
ing measure vector field. The goal of labeling is to maximize a 
posterior probability distribution, where 

1( , , )n n n
MR R R= … . 

Through Bayesian rule, we get 
1 1 1 1 1

1 1 1

1( | , , ) ( | , , ) ( )

1                              ( ( )| , , ) ( )

n n n n n n n n n
f

n n n n n
f

r

P f I I R P I I R f P f
Z

P I r I R f P f
Z

+ + + + +

+ + +

∈Ω

=

= ∏
         (1)           

, where 1( )n
fP f + is the Gibbsian distribution [3], Z is normalized 

constants. The main challenge in the framework is the definition of 
conditional distribution 

1 1( ( ) | , , , )n n n nP I r I R f θ+ +                   (2) 
 
2.2 FSM Distribution 
 
We define the conditional distribution (2) in the joint Fea-
ture-Spatial-Measure space. In this space, we view the vec-
tor ( , , )u x f as a multi-dimension probabilistic variable, here u is 
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the feature vector of a pixel (such as color, gradient, texture, et. cl.), 
x  is the 2D coordinates and f is the discrete measure vector as 

defined above. We can view nI  as a “model image” that in-
cludes objects and background, while 1nI +  as “target image” that 
needs to find the objects. The sample points in the model image 
are denoted by ( ) { ( ), ( ), ( )},n n n nI r u r x r f r r= ∈Ω . The sample 
points in the target image are denoted 
by 1 1 1 1( ) { ( ), ( ), ( )},n n n nI r u r x r f r r+ + + += ∈Ω . The structure of the 
joint FSM space is generally complex and can be analysis only by 
nonparametric methods. We estimate (2) from the following joint 
FSM distribution:  

1 1 1 1 1 1

1 1 1

( ( )| , , ) ( ( ), ( ), ( )| , , )
1 1 ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

n n n n n n n n n n

n n n n n n

s s

P I r I R f P u r x r f r I R f

K u r u s G x r x s T f r f s
N C σ τ η

+ + + + + +

+ + +

∈Ω

=

= − − −∑
                                          

(3) 
, where ( ), ( ), ( )K G Tσ τ ηi i i are RBF kernel functions [2] with 

bandwidth parameters , ,σ τ η  separately, N is the total num-
ber of pixels inΩ ,

sC  is the number of pixels in region
( )n

n
l s

R . We 

absorb the normalization constants into the kernels for conven-
ience. 
 
2.3 Asymptotic Behavior 
 
To see the effect of changing the bandwidth of the kennel func-
tions on the tracking formulation, we consider here the extreme 
case that 0σ → ,τ →∞ and 0η → . In this case, ( )G cτ =i  

is a constant function and ( ), ( )K Tσ ηi i  are Kronecker delta 

functions. Thus the joint probability estimate of equation (3) re-
duces to   

1 1 1

1 1

( ( ), ( ), ( ) | , , )
1 ( ( ) ( )) ( ( ) ( ))

n n n n n

n n n n

s s

P u r x r f r I R f
c u r u s f r f s
N C

δ δ

+ + +

+ +

∈Ω

= − −∑
   (4) 

To maximize probability (4), for each pixel 
r∈Ω , 1( )nf r+ should be set to be some ( )nf s , satisfying that 

1( )nu r+ has the max histogram distribution in region
( )n

n
l s

R . This 

conversed to the histogram tracking.  
 

3 MODEL IMPROVED BY HMMF  
 
We have defined the measure vector for pixel r∈Ω  in a dis-
crete space. Such definition is rather comprehensive but not easy 
for computation, since the discrete MRF optimization problem is 
typically solved by SA-like or EM-like algorithms with high com-
plexity. To overcome this disadvantage, we adopt the Hidden 
Markov Measure Field (HMMF) model [3] to improve our model. 
HMMF constructs a doubly stochastic model with an additional 
hidden Markov random measure field. It has achieved great im-
provement over classical MRF model in both accuracy and com-
putational complexity. In our tracking framework, we can use 
similar hidden measure vector in the FSM space. Let 

1( , , )Mp p p= …  
1

1, 0
M

i i
i

p p
=

= ≥∑ be the hidden measure vector 

associated with the discrete label measure vector f . We view 

( , , )u x p as the probabilistic variable in FSM space. The condi-
tional distribution (3) can be updated by just replac-
ing 1,n nf f+ with 1,n np p+ . The Gibbsian distribution 1( )n

fP f +  in 

model (1) can be modified to be following as is discussed in [3] 
1( )

1 1( )
n

C
C

W p
n

p
p

p p e
Z

+

+
∑

=  

, where
pZ is the normalized constant and 

21 1( ) ( )1 1 1( ) ( ( ), ( ))
n np r p sn n n

C rsW p W p r p s eβ
+ +− −+ + += =  

(5) 
, ,r s< >  are neighboring sites in Ω  and β  is some positive 
constant. Here we choose the potential function 1( )n

CW p +  in the 
form of (5), which is different from that in [3], for the purpose of 
applying mean-shift algorithm in the calculation. We will discuss 
the optimizing calculation in details in the following section. 
 

4 TRACKING ALGORITHM  
 
4.1 Mean-Shift Based Optimization 
 
In this paper, we take Gaussian kernel as RBF kernel in joint FSM 
distribution. Take negative natural logarithm of the right hand of 
(1) (updated by HMMF), we obtain our energy function to be 
minimized:  

2 2 21 1 1( ) ( ) ( ) ( ) ( ) ( )

1

1

1( ) ln

              - ( )

n n n n n nu r u s x r x s p r p s

n

r s s
n

C
C

E p e
C

W p const

σ τ η

+ + +⎛ ⎞− − −⎜ ⎟− + +
⎜ ⎟

+ ⎝ ⎠

∈Ω ∈Ω

+

= −

+

∑ ∑

∑

 (6) 

. To obtain the optimal estimator 1 *( )nl +  for the label field, we 
use the following two-step procedure [3]: 
Step1 Minimize the 1( )nE p + given by (5), subject to the constrains  

1 1

1
1, 0

M
n n
i i i

i
p p+ +

=

= ≥∑ ; 

Step2 Find the mode for each measure 1 *( ( ))np r+  in a decoupled 
way: 

1 * 1 *( ) ( ) arg max( ( ))n n
kk

l r p r+ +=  

We have tried Multi-scale gradient projection Newtonian descent 
(GPND) algorithm [3] to minimize (6). However, we found that 
this kind of iterative gradient descent algorithm is suffering from 
the parameters (such as the time interval of iteration) selection 
inconvenience. On the other hand, the number of iterative steps is 
always relatively large even if convergence is promised.  

Since the energy function (6) is smooth and differentiable, and 
the displacement between the successive frames is small, the 
mean-shift algorithm [1] is a suitable candidate algorithm. The 
profile function of the kernels in (6) is convex and monotonic de-
creasing, hence the convergence can be promised according to the 
theorem 1 in [1]. In our framework, the mean-shift iteration pro-
cedure is as follows: 

2
1 1

2
,

,

2 1 ( )
1( ) 2 ( )12/ +2
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sm n n ms
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r s

s s

p s
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(7) 



, where 
2 2 21 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n m n nu r u s x r x s p r p s

m e
σ τ η

θ

+ + +⎛ ⎞− − −⎜ ⎟− + +
⎜ ⎟
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, and  
21 1( ) ( )m n m np r p sm eρ

+ +− −
=  

. We initially set 0 1( ) ( )n np r p r+ = . As we know, the effect of the 
second term of (6) is to enforce the spatial coherence of 

1 1
1{ , , }n n

MR R+ +… separately. Through our experiments we have found 
out that such enforcement is not quite necessary since the given 
initiative regions 0 0

1{ , , }MR R…  are always singly connected. Fur-
ther more, the FSM distribution has already takes the spatial con-
strains into consideration. Thus, we eliminate this second term and 
simplifies the iteration procedure (7) to be: 
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           (8) 

This simplification can also be viewed to be a kind of greed algo-
rithm and we call it as Greedy FSM (GFSM) tracking model. The 
procedure is rather quick, as will be shown in the experiments. To 
guarantee that the sum of the components of 1 1( )m np r+ + is one, we 
use the unification algorithm presented in [3]. In order to show 
how the Measure vectors evolve during the iteration, we give a 
simple demo that track a synthetic object in two successive frames. 
We focus on the pixel with coordinate (18, 29), which is high-
lighted in red for better visibility as shown in Fig.1. The Feature 
we used here is gray level. Since there is only one object for 
tracking, the Measure vector is 2-dimensional. Totally, the FSM 
variable is 5-dimensional. In the former frame, the focused pixel 
belongs to foreground and changes into background in the latter 
frame. We set the max iteration times to be 8, the Measure vector 
for this pixel in the latter frame changes from (1, 0) to (0.1204, 
0.8796) during the iteration procedure. Fig.2 illustrates the 
evolvement of the 2D Measure vector.  

   
Fig.1 The red pixel is the one we focused on 

 
Fig.2 The 2D Measure vector evolves during the iteration 

 
4.2 Accelerated by IFGT  
 

According to the expression (8) in the above algorithm, the com-
putational complexity per frame is 2( )O P N⋅ , here P is the average 

number of iterations per frame. The algorithm will slow down in 
quadratic speed with the number of sample points. To further alle-
viate the computational cost, we apply the improved fast Gauss 
transform (IFGT) [4] to reduce its complexity from quadratic order 
to linear order ( )qO P N D⋅ ⋅ , here D is the dimensionality of the 
FSM probabilistic variable the and q is the truncate order of Tay-
lor expansions[4, 5].  
 
4.3 Scale Adaptation  
 
In natural tracking problems, the regions of the objects are always 
singly connected and the translation and deformation are small 
between successive frames. The GFSM model can be just applied 
on a rectangle area that surrounds the tracked region in current 
frame. These rectangles are called processing rectangles. One sim-
ple method is to generate a square with size h , centered at the 
centroid of the tracked foreground region. For each frame, h  is 
updated by a certain fraction, which may be chosen as the ratio of 
areas of the tracked object and the processing square in the last 
frame, as we did in our experiments.  
 

5 TRACKING EXPERIMENTS 
 
In this section we present one synthetic and two real-world track-
ing examples to illustrate the performance of the proposed GFSM 
model and discuss some of the related issues. In the synthetic ex-
ample, we generate an 80 60× , 40 frames sequence. The prob-
ability distributions that generate background and objects are 
shown in Fig.3. To show that our model is adaptive to local de-
formation and scale change, we set the shape of the object chang-
ing from circle to ellipse alternatively and the radius of circles are 
unfixed. The partial occlusion is emulated by generating a pink bar 
centered at each synthetic image. The tracking results are shown in 
the form of local foreground/background binary segmentation 
image. The synthetic object has been tracked precisely despite the 
disturbing of partial occlusion, deformation and scale change, as is 
shown in Fig.4. 

  
(a)                      (b) 

Fig.3 (a) foreground distribution (b) background distribution 
 

    
 

    
2            10           24           38 

Fig 4 Track a synthetic objects with partial occlusion 
The second experiment is to track a red ball in the sequence 

“mobile” ( 704 576× , RGB, 31 frames). The highly complex 
scene leaves the appearance-based tracking a real challenge. In this 
experiment, we use a 7 dimension Feature-Spatial-Measure space 
(3D RGB, 2D location and 2D F/B measure vector). The con-
strains on the features, coordinates and measure vectors make our 



tracker performs well under complex background, as is shown in 
Fig.5. The bandwidths are set to be ( , , )=(40,3,1)σ τ η . Different 
from the last experiment, we show the tracked foreground object 
as it looks like while the background all in white. 

   
 

   
2                20               31 

Fig.5 Tracking of a red ball in the sequence “mobile” 
The third experiment is the tracking of a person in a real-world 

sequence captured in our laboratory （ 320 240× ,RGB, 323 
frames）. We also adopt the 7D FSM probabilistic variable. This 
experiment shows the performance of our tracker in the situation 
that the region’s appearance changed in the scene. We track the 
person by following his head region. As can be seen that during 
the first 200 frames, the man is leaving from the lens and the 
tracking region is the black hair. Then, after frame 200, the man 
turn around and moving towards the lens, the tracking region 
changed to be the man’s face. The appearance of the tracking re-
gions is different apparently. However, for our tracker, the FSM 
distribution is updated in each frame, thus the change in appear-
ance can be learned in time. The tracking results are satisfying, as 
shown in Fig.6. The results are shown in the same form as in the 
second experiment. The bandwidths are set to be 
( , , )=(60,26,1)σ τ η , and the average number of mean-shift iterations 
is 5. We use the IFGT to accelerate the calculation, the tracking 
speed is near real-time and the average processing rate is 14.3 fps. 
On the other hand, if we direct calculate the Gaussian kernel, the 
time cost will be unbearable (above 2 seconds for each frame). Fig. 
7 gives the CPU time consumed by each frame during the tracking 
procedure.  

    
       122               140              160 

   
      215               236              254 

   
280               300               310                               

Fig.6 Track the head of a moving person. 
 

 
Fig.7. The CPU time for the tracking of each frame 

 
6 CONCLUSIONS 

 
The method presented in this paper is a general framework for 
tracking non-rigid objects in a sequence of images by local dy-
namic segmentation. In the proposed Feature-Spatial-Measure 
space, it is possible to track the objects that may undergoes almost 
any kind of movement and the tracking is robust to partial occlu-
sion and self-adaptive to the deformation and scale change. One 
drive force to the FSM model is the HMMF model, which converts 
the discrete labeling problem to a continual optimization problem. 
The realization of the framework, the Greedy FSM, is highly effi-
cient thanks to the mean-shift iteration and the IFGT technique.  
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