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Abstract—Object detection is a fundamental task in computer
vision. Deformable part based model has achieved great suc-
cess in the past several years, demonstrating very promising
performance. Many papers emerge on part based model such as
structure learning, learning more discriminative features. To help
researchers better understand the existing visual features’ poten-
tial for part based object detection and promote the deep research
into part based object representation, we propose an evaluation
framework to compare various visual features’ performance for
part based model. The evaluation is conducted on challenging
PASCAL VOC2007 dataset which is widely recognized as a
benchmark database. We adopt Average Precision (AP) score to
measure each detector’s performance. Finally, the full evaluation
results are present and discussed.

I. INTRODUCTION

Object detection receives more and more attention in recent
years owing to its fundamental role in many applications
such as video surveillance, content based image retrieval (e.g.
Flickr, Google, Baidu) and driver assistance. Accurate object
detection is a very challenging task due to appearance defor-
mation, large intra-class variation and cluttered background
[1].

Despite these difficulties, there has been a surge of work and
significant advancement in object detection. These progresses
can be roughly categorized into three groups: 1) building visual
feature [2], [3], [4], [5], [6], [7]. 2) Learning object structure
[8], [9], [10], [11], [12]. 3) Learning context information [13],
[14]. Visual feature and object structure are the two key factors
for general object detection. As for visual feature, one of the
most representative work is Histogram of Oriented Gradients
(HOG) proposed in [2]. Local Binary Patterns (LBP) proposed
in [15] is another widely used feature for object detection
especially in face detection and human detection [3]. Besides,
there are some other types of features such as edgelet feature
[16], Region Covariance [17] and shapelet features [18],
which have been proposed for some specific object detection.
Meanwhile, based on these visual features, there is much work
on addressing the problem of modeling object structure at
topological level [8], [9], [12]. One of the most promising
methods is part based model [9] due to its good performance
when handling deformation and occlusion. Therefore, part
based model has attracted more and more researchers’ interest.
In the past several years, the most representative work should
be Felzenszwalb et al.’s deformable part based model [9].
The method in [9], [19] has been a key component in many

applications such as object classification, action recognition
and image segmentation.

This paper aims to provide the empirical evaluations of
most frequently used low-level visual features for deformable
part based model. To our best knowledge, there is no similar
work on this topic. The main contributions of this paper are
as follows.

• The evaluation can help researchers better understand the
potentials of existing low-level visual features and part
based model.

• Furthermore, the evaluations should motivate the re-
searchers to build more discriminative visual feature and
learning better object structure model.

• The empirical evaluation experiments are conducted to
find both the advantages and shortcomings of different
features on different categories. These evaluations enable
us to design the proper detector with optimal configura-
tion.

The rest of this paper is organized as follows. Section 2
gives a brief introduction to deformable part based model.
Section 3 discusses the detailed configuration of different types
of visual features. Section 4 presents the evaluation framework
including dataset and criterion. Section 5 gives the evaluation
results and discussion. Section 6 concludes this paper and
discusses the future work.

II. DEFORMABLE PART BASED MODEL
This section primarily focuses on the case of star-structured

model (see Fig. 1) proposed by Felzenszwalb et al. in [9],
[19]. This method keeps state-of-the-art performance in the
past several years. In star-structured part based model, an
object is represented by a root model plus several part models.
Especially, quadratic displacement is used to describe the
appearance deformation. In a word, the model consists of three
elements: root model, parts models and deformation model.
A latent SVM is proposed to train the part based model
from partially labeled data (only bounding box). The latent
information refers to the locations of parts. Once the latent
information is determined, the optimization becomes a tradi-
tional SVM optimization problem. Moreover, the stochastic
gradient descent technique is used to optimize the parameters.
Distance transform and dynamic programming techniques are
adopted to solve fast matching problem which reduces the
complexity from O (np) to O (np), where n is the number of
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Fig. 1. Overview of deformable part based model.

possible part locations and p is the number of parts. In the
final inference step, the score of each sub-window is defined
by [9], [20].

score (w, p1, · · · , pn) = m0 (w)

+
n∑

i=1

mi (pi)−
n∑

i=1

di (pi)
(1)

w specifies a sub-window, pi and mi denote the ith part and
its score for each hypothesis respectively. di represents the de-
formation cost function penalizing the ith part’s displacement.

III. EVALUATION FEATURES

There are a large number of visual features for object
detection. Therefore, we adopt a research methodology under
which we gradually evaluate those various kinds of features
for part based model. Limited by the space of this paper,
we choose HOG, LBP, color histogram and their different
variants, which are the most frequently used in general object
detection to do the evaluation. We’d like to explain why we do
not evaluate those salient edge based visual features such as
PAS [6]. One one hand, these features are not widely used
in general object detection. More important, due to those
feature’s special computation scheme, they are not flexible
enough to be associated with the pixel based feature driven
part models [9]. Therefore, considering the generality and
flexibility, HOG, LBP and color feature are adopted in this
paper.
Histogram of Oriented Gradients (HOG).
HOG is first proposed by Dalal et al. in [2] for human detec-
tion. Afterwards, HOG has been widely applied in general
object detection. In [2], the HOG only includes unsigned
gradient information. But the HOG in [9] contains both
unsigned gradient and signed information. Let G1 (x, y) and
G2 (x, y) denotes the signed gradient feature and unsigned
gradient feature at pixel (x, y), respectively. In mathematics
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Fig. 2. The computation of LBP. We threshold the neighbor pixels by the
center pixel. The larger ones are denoted by “1”, others are denoted by “0”.

[9],

G1 (x, y) = round

(
pθ (x, y)

2π

)
mod p (2)

G2 (x, y) = round

(
pθ (x, y)

π

)
mod p (3)

where p is the quantization level for gradient orientation and
θ(x, y) is the orientation at pixel (x, y).

Additionally, in [9], they use extra four dimensions com-
puted from the four adjacent cell’s gradient energy as texture
information. In this paper, we evaluate four variants of HOG.

(1) HOG with signed gradient orientation.
(2) HOG with unsigned gradient orientation.
(3) HOG with both signed and unsigned gradient orienta-

tion.
(4) HOG from [9].

Local Binary Patterns (LBP).
LBP was originally developed for texture classification. During
the past decade, LBP has been widely applied in general object
detection. Similar to HOG, we build a cell structured LBP
feature. The original LBP method is illustrated in Fig. 2. It
operates with 3× 3 neighboring pixels using the center pixel
as a threshold. The ones larger than threshold are marked as
“1”, otherwise as “0”. This produces a 8 bit binary number.
The histogram of these 28 = 256 is then used as the basic
LBP feature. This coding scheme of LBP can be very effi-
ciently implemented and is invariant to monotonic changes in
intensity. Another significant extension to the original LBP is
the uniform LBP which is designed to reduce affect caused by
the non-uniform pattern. One more benefit from uniform LBP
is the reduction of length of the feature vector. The uniform
pattern is such a concept that has a limited number of 0 − 1
transitions [15]. We use the notation LBPp,r (u) to denote
LBP feature that takes p sampling points on sampling circle
with radius r, and the limited number of 0−1 transitions is u.
Usually we set u = 2. For an example (as is shown in Fig. 2),
the patterns 00011100 with 2 transitions are uniform patterns,
and 01010110 with 6 transitions is non-uniform pattern. For
those good properties, uniform LBP [15] is chosen to construct
the feature map at each cell with 59 bins. We can construct the
LBP feature at each cell independent from others. On the other
hand, the feature map can be built with spatial aggregation as
well as [2], [9]. In this paper, we evaluate the two different
types of LBP.

(1) LBP without spatial aggregation.

220



sofaaeroplane

bicycle

bird boat

bottle

bus

car cat

chair

cow

table dog

horse

motorbike person plant

sheep train

TV

Fig. 3. Some samples from PASCAL VOC2007. There are 20 categories covering vehicles, animals, household objects and people. These images are
downloaded from Flickr.

(2) LBP with spatial aggregation.
Color histogram.

The last type of evaluation feature is color histogram. An
image is divided into cells and then a color histogram is
constructed for each cell. For each color channel, we quantize
the color value into 8 bins. Thus, the dimensionality of the
color histogram at each cell is 3 × 8 = 24. Finally, the color
histogram are concatenated and L2 normalized. In this paper,
two types of color histogram are evaluated: color histogram
in HSV color space and color histogram in RGB space.

(1) Color histogram in HSV color space.
(2) Color histogram in RGB color space.

IV. EVALUATION METHODOLOGY

As mentioned previously, we choose the state-of-the-art part
based model [9], [19] as our testbed. The goal of the proposed
evaluation is to provide an empirical and fair insight into each
feature’s performance for deformable part based model. To
accomplish the goal, we should consider: 1) the evaluation
should be conducted on public and well acknowledged chal-
lenging dataset. 2) The evaluation should adopt a fair criterion
which can predict the real detection performance in practice.

A. Evaluation dataset

There exist many datasets for various kinds of object detec-
tion such as MIT LableMe data [21], PASCAL VOC dataset
[1] and ImageNet [22]. Among these datasets, PASCAL VOC
dataset have been widely applied for the purpose of general
object detection. The database increases every year. There
are four subclasses [1] in this database including: vehicles,
animals, household objects and people. The dataset is divided
into two parts: training/validation (trainval) and test data

(test). During the past several years, most of the dominant
object detection algorithms have been tested on this dataset.
Therefore, to make a convincing evaluation of each visual
feature, we choose PASCAL VOC2007 dataset as our eval-
uation dataset. The other reason why we choose this dataset is
that VOC2007 provides full annotations for training and test
images. Fig. 3 gives some samples from PASCAL VOC2007.

B. Evaluation criterion

We should follow the principle: the criterion should reflect
the detection performance on whole image in practice. This
indicates we cannot adopt the commonly used criterion False
Positive Per-Window (FPPW) in the area of human detection.
FPPW requires the cropped positive windows and assumes
that better per-window scores are equal to better detection
performance on whole image in practice. But, FPPW only
considers cropped positive windows and cannot predict the
real detection performance [1], [23]. To measure the real
performance, the trade-off between false positives and false
negatives should be evaluated. Therefore, we choose the
widely used average precision (AP) as the evaluation criterion
[1]. AP score is computed from precision/recall curve. Recall
represents the correct objects detected from the ground truth.
Precision denotes the proportion of correct matches in the all
detected objects.

recall =
|{relevant objects} ∩ {retrieved objects}|

|{relevant objects}|
(4)

precision =
|{relevant objects} ∩ {retrieved objects}|

|{retrieved objects}|
(5)
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abbreviation description
SHOG HOG with signed gradient

orientation
UHOG HOG with unsigned gradient

orientation
SUHOG HOG with both signed and

unsigned gradient orientation
FHOG HOG from [9]
LBPS LBP without spatial aggregation

LBPWS LBP with spatial aggregation
HSV Color histogram in HSV color space
RGB Color histogram in RGB color space

TABLE I
SOME ABBREVIATIONS USED IN THE FOLLOWING EXPERIMENTS.

In PASCAL VOC2007 challenge, the AP score is achieved by
the mean precision of eleven equally spaced recall points:

AP =
1

11

∑
i∈{0,0.1,··· ,1}

pin (i) (6)

As explained in [1], we use the maximum precision to rep-
resent pin (i), when the corresponding recall exceeds i. This
kind of processing has an advantage of stability especially
it can reduce the impact of the ”wiggles” in precision/recall
curve [1].

The next problem is how to determine a detected bounding
box is correct or not. The overlap ratio measure is commonly
used to measure the correctness [1], [23]. Suppose the detected
bounding box is BBdt and a ground truth BBgt. Then, the
overlap ratio is defined by

O(BBdt, BBgt) =
area (BBdt ∩ BBgt)

aera (BBdt ∪BBgt)
(7)

In the proposed evaluation, we use the PASCAL VOC mea-
sure, which considers the correct detection’s overlap ratio must
exceed 50%.

C. Evaluation configuration

To make a fair comparison among different features, the
object models are all configured with six components, and
each component has eight parts. It should be mentioned that
we only train three of these six component models, and the
other three component models can be inferred from the learnt
models according to its left-right horizontal symmetry [9],
[19]. Besides, at feature level, the feature map is all configured
with 8× 8 cell size.

V. EVALUATION RESULTS

To investigate each visual feature’s potential performance,
we evaluate four variants of HOG , two variants of LBP
and two types of color histogram as mentioned in Section3.
We use the criterion described in Section 4, plotting the
precision/recall curve to obtain the AP score. The symbols
are defined in Table 1. The full evaluation results on PASCAL
VOC2007 are plotted in Table II.

HOG. As is shown in Table II, FHOG obtains the best AP
score in 15 of 20 classes. SUHOG has the best score in 3 of
20, in which train’s score is equal to FHOG’s. These results
indicate that the extra four dimensional texture information
helps classification on most categories. This observation can

motivates us to build more discriminative low-level feature in
a similar way. Compared with UHOG, SHOG exceeds UHOG
on 15 categories. Therefore, we can conclude that the signed
gradient orientation provides more expressive information than
unsigned gradient orientation. It should be noted that the
performance of UHOG on bird and dog exceeds SHOG
significantly, which can help researcher build the detector
with optimal configuration. Furthermore, SUHOG has better
performance on 16 out of 20 categories with a mean improve-
ment by 1.7%, compared with SHOG. Compared with UHOG,
SUHOG obtains an increase by 4.4% in mean AP. This means
augmented gradient orientation is more discriminative.

LBP. It can be seen from Table II that LBPWS obtains
better results in 16 of 20 categories, compared with LBPS.
This result proves that spatial aggregation is helpful in cell-
structured histogram feature. This can be explained by that
spatial aggregation can reduce the negative effect caused by
small deformation or aliasing. Therefore, the paradigm can
be applied in other block based histogram features. It should
be noted that LBPWS performs inferior to SUHOG on most
categories except dog and pottedplant. Based on the
results, we can use LBP as the complementary feature for
HOG with optimal configuration.

Color histogram. As is shown in Table II, color information
performs poor on most categories for detection task except
several categories with salient color characteristics such as
horse, car, motorbike and train, etc. This result
can be easily understood because color information can be
inconsistent for the same category. For example, when people
wear different color clothes, the color histogram differs much.
However, for those categories with salient consistent color
information (e.g., horse), color histogram still can be used
for recognition.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the commonly used visual
features for part based model. To help researchers better
understand each feature’s potential performance, several vari-
ants of HOG, LBP and color histogram have been tested on
PASCAL VOC2007 dataset. From the results, we can conclude
that HOG outperforms LBP feature and color histogram on
most classes except dog. Specially, signed gradient orientation
provides more discriminative power than unsigned gradient
orientation. On the other hand, based on the evaluation results,
we believe that LBP feature can provide complementary
information for HOG feature. Additionally, color information
is also a very useful cue for some categories especially in some
special application environment. Based on the evaluations, in
the future work, we can train a specific detector with optimal
configuration. On the other hand, some other visual features
will be tested to provide a benchmark performance for further
research.

VII. ACKNOWLEDGEMENT

This work is supported by National Natural Science Foun-
dation of China (Grant No.61135002,61175007).

222



plane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv meanAP
FHOG [9] 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

SHOG 24.3 59.5 3.4 11.4 20.4 49.8 57.0 18.9 19.9 21.0 21.5 3.8 57.1 44.8 39.2 12.5 16.2 29.5 44.1 37.9 29.6
UHOG 20.9 56.7 9.7 10.8 24.0 45.3 53.1 18.2 16.3 20.5 15.9 11.0 54.5 39.6 40.0 6.5 4.7 28.8 25.4 36.9 26.9

SUHOG 26.9 60.2 9.8 14.1 22.6 53.6 57.5 17.2 20.8 24.1 22.8 10.9 55.9 46.8 40.8 9.9 15.5 32.6 45.1 40.0 31.4
LBPS 23.6 48.4 2.7 11.2 14.0 42.6 50.0 17.0 12.6 17.7 19.4 10.1 51.0 38.3 32.2 9.7 11.7 21.9 35.3 30.1 25.0

LBPWS 23.9 49.7 4.9 8.7 16.6 43.8 51.2 16.6 13.6 20.4 17.1 13.4 52.9 39.9 33.6 10.0 12.3 21.8 35.8 32.4 25.9
LBPL1 27.7 51.1 9.8 10.4 14.8 43.3 50.0 16.6 13.7 21.6 19.2 14.1 53.5 43.8 34.0 10.2 17.0 27.5 39.0 33.9 27.6

HSV 13.3 11.0 0.3 0.0 1.3 13.4 22.7 9.6 1.0 4.8 12.3 0.8 33.9 18.0 14.0 5.0 6.7 1.1 18.1 14.0 10.1
RGB 13.3 11.0 0.3 4.7 0.6 12.7 22.9 3.6 0.2 2.1 6.4 1.0 33.1 19.5 17.1 9.6 6.2 1.3 18.2 14.0 9.9

TABLE II
EMPIRICAL EVALUATION RESULTS ON PASCAL VOC2007 DATASETS.
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