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ABSTRACT

An effective image representation is important to an image

classification task. The most popular image representation

framework utilizes a feature coding algorithm to encode the

extracted low-level feature descriptors into a vector represen-

tation. In this paper, we analyze the recently developed fea-

ture coding methods in a general way. According to their

common characteristics, we propose a new coding scheme

to perform feature coding based on the vector difference in

a high-dimensional space which is obtained by explicit fea-

ture maps. As we illustrate, our method has promising results

with small codebook sizes and generalizes most existing cod-

ing methods in a unified form.

Index Terms— Image classification, Feature coding,

Vector difference, Additive kernel

1. INTRODUCTION

Image classification is a fundamental problem in computer

vision. To do an image classification task, it is necessary to

have an effective image representation. The Bag-of-Features

(BoF) [1] model is one of the most popular models that are

used for image representation. For a given image, the BoF

based method extracts a set of local patches by interest point

detection or dense sampling, and represents them as local fea-

ture descriptors (e.g., SIFT [2]). Then, the descriptors are

voted on the codebook which is obtained by clustering. At

last, the voting results are represented as a histogram vector

for classification. BoF model is a simple and effective model

for image representation.

Recently, Fisher kernel (FK) [3] has gained much interest

to do image representation. Fisher vector (FV) utilizes FK,

where the feature distribution is taken into account in [4, 5].

To simplify the use of FV, the authors in [6] propose an ap-

proach that uses the vector of locally aggregated descriptors

(VLAD). VLAD approach has the advantages of both BoF

and FV. In order to further improve the VLAD approach, Pi-

card et al. in [7] combine the second-order information for

representation by using the vector of locally aggregated ten-

sors (VLAT). In spite of many low-level feature coding meth-

ods, they have a common purpose that is to do a nonlinear fea-

ture mapping through the relationships between the extracted

descriptors and the codebook [8]. After feature mapping, the

similar patches may be close to each other in the transformed

feature space and vice versa. In [8], the nonlinear feature

mapping which is termed super-vector coding (SVC) has both

properties of VLAD and BoF.

In this paper, we propose to do the nonlinear feature map-

ping by considering the vector differences between descrip-

tors and codebook in a high-dimensional space by explicit

feature maps. We represent each low-level feature descriptor

by using the vector differences between the descriptor and the

codebook as the new feature vector. In order to get a more dis-

criminative representation, we use the explicit feature maps

of additive kernels [9] in our method to transform descriptors

and codebook into a high-dimensional space. Then, the vector

differences between descriptors and codebook are computed

in the high-dimensional space. Our final feature coding result

has a similar form with the introduced coding methods, espe-

cially [6, 8]. Thus, our method is a general image represen-

tation method that can capture the properties of the existing

coding methods in an intuitive way. At the same time, the

proposed coding method has many kinds of representations

since we can choose different kinds of additive kernels (e.g.,
histogram intersection, Hellinger’s and χ2 kernels) for the ex-

plicit feature maps. This work makes the following contribu-

tions: 1) Our work provides a new analysis to the existing

coding methods. 2) We propose a coding method based on

vector difference in a high-dimensional space by explicit fea-

ture maps. 3) The proposed coding method provides a more

unified view on most existing coding methods.

The remainder of the paper is organized as follows. In

Section 2, we will analyze the existing methods for image

representation. Then, the details of the proposed method will

be introduced in Section 3. The experimental results and dis-

cussions will be shown in Section 4. At last, we will conclude

our work in Section 5.

2. IMAGE REPRESENTATION

In an image classification task, a set of low-level feature de-

scriptors X = {xi ∈ R
D, i = 1, · · ·, N} (e.g., SIFT [2]) is ex-

tracted to represent local patches of an image. Inspired by text

categorization, the BoF model [1] votes the extracted descrip-

tors to the codebook C = {cj ∈ R
D, j = 1, · · ·,K} which
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can be generated by a clustering method (e.g. K-means). The

final image representation is a histogram vector whose ele-

ments are the responses on the codebook. We will briefly

introduce some extensions of the BoF and analyze their prop-

erties in this section. The introduced methods are the state-

of-the-art approaches for image classification tasks.

2.1. Fisher vector
In order to utilize the advantages of both generative and dis-

criminative models, Perronnin et al. [4] propose to use FK [3]

to construct Fishier vector (FV) for a new image represen-

tation method. Instead of using BoF, FV [4, 5] includes the

high-order statistic information which describes the probabil-

ity distribution of low-level feature descriptors.

The above ideas are achieved by modeling the whole ex-

tracted descriptors of m images I = {I1, · · ·, Im} using a

Gaussian Mixture Model (GMM). Suppose there are K Gaus-

sians, Θ = {αj , μj ,Σj , j = 1, · · ·,K} denote the param-

eters of the GMM. In the parameters, αj , μj and Σj de-

note the weight, the mean vector and the covariance matrix

of the j-th Gaussian, respectively. According to the rationale

of FK, the log-likelihood of the descriptors in image Ip is

L(Xp) =
∑N

i=1 log γ(xi). Herein, γ(xi) =
∑K

j=1 αjγj(xi)
is a GMM and the descriptors are assumed to be generated

by the GMM independently. The goal of FK is that the sim-

ilar images Ip and Iq should have similar partial derivatives

Gp =
∂L(Xp)

∂θ and Gq =
∂L(Xq)

∂θ where ∀θ ∈ Θ. The FK

score of the images Ip and Iq can be constructed as

K(Xp,Xq) = GT
p M

−1Gq, (1)

where M is the Fisher information matrix. Since M is

symmetric and positive definite, M−1 can be represented as

WTW where W is the Cholesky decomposition of M−1.

In [5], Gp = WGp is defined as FV for image representation.

FV has a closed-form solution which is the concatenation of

the following D-dimensional gradient vectors with respect to

the mean and the variance vector of j-th Gaussian,

Gj
p,μ =

1

N
√
αj

∑N

i=1
wi,j(

xi − μj

σj
), (2)

Gj
p,σ =

1

N
√
2αj

∑N

i=1
wi,j [

(xi − μj)
2

σ2
j

− 1], (3)

where wi,j is the soft-assignment of the i-th descriptor xi to

the j-th Gaussian of image Ip and σj is the variance vector

of the diagonal covariance matrix Σj as we assumed. Thus,

the final representation of FV in [5] is a 2DK-dimensional

vector where D is the dimensionality of the low-level feature

descriptors and K is the number of Gaussians of the GMM.

2.2. Extensions of Fisher vector
In this subsection, we will introduce two kinds of extensions

of Fisher vector. The first one is designed to simplify the

use of Fisher vector for large scale problems. The second

one is a well-established reconstruction based feature coding

method which achieves promising performance on PASCAL

VOC datasets.

2.2.1. Aggregated local feature descriptors

Considering the efficiency in large scale problems, Jégou et
al. [6] propose an approach which is termed vector of locally

aggregated descriptors (VLAD) to simplify FV. Instead of us-

ing GMM to model the feature distribution, VLAD uses a

clustering algorithm (K-means in [6]) to generate a codebook.

Then, the descriptors are voted on their nearest codewords.

The response on each codeword is the accumulation of the

differences between the nearest descriptors of the codeword

and itself. The response on the j-th codeword can be denoted

as follows:

rj =
∑

xi|NN(xi)=j
xi − cj , (4)

where NN(xi) is the nearest codeword of xi. At last, VLAD

concatenates the whole responses on the codebook and gen-

erates a DK-dimensional vector representation.

Further extension of VLAD has been proposed in [7] by

using the combination of VLAD with high-order information.

VLAT approach has two sub-terms which represent the first-

order and the second-order information respectively. These

two sub-terms have closed-form solutions as follows:

r1j =
∑

xi|NN(xi)=j
xi − cj , (5)

r2j =
∑

xi|NN(xi)=j
(xi − cj)(xi − cj)

�
. (6)

Concatenating the responses on all codewords, the VLAT ap-

proach has a 2DK-dimensional vector which has the same

dimensionality as FV for final representation.

2.2.2. Super-vector coding

Reconstruction based low-level feature coding is another

point of view for image representation. In [8], the authors

propose a SVC approach to extend Vector Quantization (VQ)

by a function approximation scheme. The algorithm uses K-

means clustering algorithm to obtain the codebook. The goal

is to learn a smooth nonlinear function Ψ(xi) of the extracted

descriptor xi ∈ X and this function can be approximated as

Ψ(xi) ≈ Ψ(cj) +∇Ψ(cj)
�(xi − cj) ≡ ω�Φ(xi), (7)

where cj ∈ C is the nearest codeword of xi and Φ(xi) is a

nonlinear feature mapping of xi.

Therefore, the super-vector coding is equivalent to the

nonlinear feature mapping Φ(xi) which can be written as

Φ(xi) = [sλj(xi), λj(xi)(xi − cj)
�]�, (8)

in which s is a small constant and λj(xi) = 1 when cj is the

nearest codeword to the descriptor xi and λj(xi) = 0 oth-

erwise. Eq. 8 can also be considered as the response of the

descriptor xi on the codeword cj . Thus, the final represen-

tation of xi is a (D + 1)K-dimensional vector which is the

concatenation of the responses of xi on the codebook.
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3. OUR METHOD

Through the introductions of FV, VLAD, VLAT and SVC, we

can conclude that all of them depend on the relationships be-

tween descriptors and codebook. For example, the codebook

in FV can be the means of GMM and we denote cj = μj , j =
1, · · ·,K. As shown in Eq. 2 and 3, the final representation

of FV is the function of (xi − cj) where i = 1, · · ·, N ; j =
1, · · ·,K. Therefore, the FV mainly depends on the relation-

ships between descriptors X and codebook C. The same con-

clusions can be obtained in the other methods. Moreover, all

the methods actually map descriptors to new transformed fea-

ture spaces by the nonlinear functions respectively.

The universality of the existing methods motivates us to

reconsider the low-level feature coding in a more general way.

In this section, we will give the details of our method and an-

alyze its relations to the existing methods. Then, our method

will be generalized to a unified form. As we will explain,

based on the vector differences between descriptors and code-

book, most existing feature coding methods can be considered

as the special cases of our method.

3.1. Vector difference based feature coding
The goal of low-level feature coding is to force the simi-

lar patches to be close to each other in the transformed fea-

ture space after coding and vice versa. As we have analyzed

in Section 2, the above idea is also captured by the exist-

ing coding methods, and they mainly depend on the relation-

ships between descriptors and codebook. Intuitively, we de-

scribe those relationships by utilizing their vector differences.

Therefore, it is important to choose an effective method to

compute the vector difference.

As shown in the introduced methods, the normal vector

difference between the descriptor xi and the codeword cj is

xi − cj . In order to get a more discriminative vector dif-

ference, we use a feature map to transform descriptors and

codebook into a high-dimensional space. Then, the vector

differences of descriptors and codebook are computed in the

mapped high-dimensional space. We denote D(xi, cj) ∈ R
M

as the vector difference between the descriptor xi and the

codeword cj in a mapped M -dimensional (M ≥ D) space.

Considering the purpose of feature coding, we propose

to perform a nonlinear feature mapping of descriptors by us-

ing the vector differences between descriptors and codebook

as new features. For a descriptor xi, the vector differences

between xi and K codewords are calculated. Then, the vec-

tor difference based coding result is constructed as a MK-

dimensional feature vector

Φ(xi) = [λ1(xi)D(xi, c1)
�, · · ·, λK(xi)D(xi, cK)�]� (9)

where λj(xi) = 1 if cj is the nearest codeword of xi and

λj(xi) = 0 otherwise. Under the nonlinear mapping ΦK, the

similar patches may be close to each other in the transformed

space and vice versa.

3.2. Explicit feature maps and generalization
After the nonlinear feature mapping, the extracted descriptors

are mapped to a transformed space. This is achieved by using

the vector differences between descriptors and codebook as

new features. However, most of the popular visual descrip-

tors are based on histogram (e.g., SIFT). It is proved that ad-

ditive kernels [9] are effective to map the histogram feature to

a high-dimensional space implicitly. In this work, we choose

the explicit maps of additive kernels in [9] for feature maps.

An additive kernel is a positive definite kernel. It is de-

signed to measure the similarity between two histogram fea-

ture vectors x and y. It can be formulated as

K(x,y) =
∑D

k=1
κ(xk, yk). (10)

The positive semi-definite function κ̂(xk, yk) is used to com-

pute the similarity between the k-th elements of x and y. Take

χ2 kernel for instance, it is an additive kernel obviously, since

it has the form as κ(xk, yk) =
(xk−yk)

2

xk+yk
.

Normally, kernel function is calculated through an im-

plicit feature map ψ(x) of data points from a low-dimensional

space to a high-dimensional space. Inspired by [9], we use an

explicit feature map to approximate additive kernels as

κ(xk, yk) =< ψ̂K(xk), ψ̂K(yk) >, (11)

ψ̂χ2(x) = eiτ log x
√
xsech(πτ), (12)

in which ψ̂χ2(x) ∈ R
M is a M -dimensional explicitly

mapped feature vector with χ2 kernel and τ is considered

as the index of the implicitly mapped feature vector ψ(x).

With the explicit feature map ψ̂K(x), the vector differ-

ence D(xi, cj) in Eq. 9 is replaced with the difference of two

mapped vectors ψ̂K(xi)− ψ̂K(cj). Thus, the j-th response in

Eq. 9 is reformulated into our final coding result

ΦK(xi|cj) = {λj(xi)[ψ̂K(xi)− ψ̂K(cj)]}, (13)

which is the response of the descriptor xi on the codeword

cj and ψ̂K can be the explicit map of any additive kernel

K. ψ̂K(x) in Eq. 11 can be approximated by a finite num-

ber of samples by Fourier sampling theorem. In this work,

we choose the number of samples n = 1. Thus, each element

of the feature vector in the original space becomes (2n + 1)
elements in the transformed space after the explicit feature

maps. The final representation of the vector difference based

coding is a (2n + 1)DK-dimensional concatenated feature

vector of the responses on the whole codewords.

Comparing Eq. 13 with the results of other methods, all of

them utilize the relationships between descriptors and code-

book. Without any operations of explicit maps, our method

is similar to VLAD and SVC. If the high-order information is

added, our method can be considered as an expansion of FV

and VLAT with much more flexible representations. Thus,

the proposed vector difference based coding method provides

a unified form for understanding the existing coding methods.
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4. EXPERIMENTAL RESULTS

In this section, we experimentally analyze our method and

other state-of-the-art coding methods on the challenging PAS-

CAL VOC 2007 dataset. We extract SIFT features densely

with 3 different scales for the gray channel. The K-means

algorithm is used for codebook generation. We use the ex-

plicit map of a modified χ2 kernel function in [9] for feature

map. The final representation of our method is a (2n+1)DK-

dimensional feature vector. Herein, D equals 128, K is the

codebook size and n = 1 is the number of samples. We ag-

gregate the responses of the descriptors on the codebook by

the same method as in [8]. All the experiments use L2 nor-

malization for fair comparisons. A standard linear SVM is

utilized for the final classification.

We compare our method with the state-of-the-art coding

methods on VOC 2007 dataset. The mean Average Precision

(mAP) is adopted for evaluation. We use very small code-

book sizes in experiments to prove the effectiveness of our

method. Our performance can also be further improved by

larger codebook sizes and more powerful normalization meth-

ods as in [5].

Method BoF VLAD VLAT Ours
Size 4K 16 32 64 16 32 64 16 32 64

plane 65.3 60.2 61.0 62.0 64.6 65.9 66.1 56.2 56.7 57.5

bike 44.5 35.3 38.6 40.3 45.3 47.2 49.2 43.7 47.1 50.3
bird 38.7 33.7 34.6 35.1 38.1 39.6 39.5 34.6 33.8 37.0

boat 49.4 53.7 55.8 55.3 57.4 59.5 58.7 58.1 61.1 61.9
bottle 18.7 13.9 16.0 17.2 17.2 18.5 19.1 16.6 18.9 19.6
bus 37.1 41.0 44.8 47.6 46.8 48.3 48.9 37.4 43.0 46.3

car 63.3 65.8 68.3 69.2 70.5 71.7 71.0 68.2 69.2 70.9

cat 33.9 35.2 37.9 40.9 40.8 41.1 43.1 40.6 43.0 44.6
chair 39.0 38.2 40.2 40.4 41.3 43.1 42.8 42.4 41.0 38.8

cow 24.8 22.7 22.7 25.3 25.2 26.9 27.3 29.6 25.9 29.7
table 22.3 23.3 25.9 28.3 25.7 30.4 30.4 30.5 30.3 29.7

dog 26.9 34.1 32.4 34.0 36.6 37.0 37.3 26.4 31.8 38.0
horse 58.4 65.8 65.2 66.7 70.7 70.6 70.8 64.6 66.9 68.8

motorb 36.2 45.2 47.2 49.2 49.6 51.1 51.3 42.7 50.4 53.0
person 75.6 75.6 77.4 78.0 79.4 80.1 79.9 73.8 76.3 78.5

plant 11.9 11.9 14.4 17.0 14.9 15.8 16.7 20.0 16.4 23.3
sheep 24.2 20.2 26.1 28.6 23.1 28.2 28.2 30.0 36.3 40.3
sofa 33.9 34.3 36.2 35.0 39.4 39.7 38.9 39.6 40.2 41.7
train 57.7 60.7 64.4 64.3 66.1 66.3 65.3 65.7 65.6 66.5

tv 39.8 37.3 34.9 38.3 38.1 42.3 42.4 32.0 36.0 40.0

mAP 40.1 40.4 42.2 43.6 44.5 46.1 46.4 42.6 44.5 46.8

Table 1. The classification results on VOC 2007 without

SPM. Various codebook sizes: 4K (4000), 16, 32, and 64.

Table 1 summaries the results that use various codebook

sizes without Spatial Pyramid Matching (SPM) [10] as in [7].

For fair comparisons, the results of BoF [11], VLAD [6] and

VLAT [7] are obtained from [7]. We achieve the best mAP

result and 12 single class results with small codebook sizes.

It is worth to note that we use a linear SVM for the classifica-

tion while [7] uses a standard SVM with a triangular kernel.

Moreover, VLAT approach uses the second-order information

and our method only uses the first-order information. It is also

interesting to notice that our method has steadily increased re-

sults when the codebook size increases.

Method FV SVC Ours
Codebook Size 32 32 32

mAP 45.98 48.02 49.02

Table 2. The classification results on VOC 2007 with SPM.

FV and SVC are designed to achieve better performance

with SPM [5, 8]. Thus, we compare our method with FV

and SVC by choosing 1×1, 2×2 and 3×1 cells for the as-

sociated three SPM levels. Table 2 summarizes the results

with SPM. FV is implemented by using the components of

the means of the GMM with the same settings in [6]. There-

fore, all the compared methods use the first-order information

for fair comparisons. Our method also outperforms FV and

SVC on VOC 2007 with a small codebook size and SPM.

5. CONCLUSIONS
In this paper, we have proposed a generalized feature coding

method for image representation. Our analysis on most ex-

isting coding methods leads to a new feature coding scheme

that conducts coding through the vector differences between

descriptors and codebook in a high-dimensional space by ex-

plicit feature maps. We have obtained promising results on

the popular image classification dataset PASCAL VOC 2007

especially when the codebook size is very small.
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