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Abstract

Object localization is a challenging problem due to vari-
ations in object’s structure and illumination. Although ex-
isting part based models have achieved impressive progress
in the past several years, their improvement is still limited
by low-level feature representation. Therefore, this paper
mainly studies the description of object structure from both
feature level and topology level. Following the bottom-up
paradigm, we propose a boosted Local Structured HOG-
LBP based object detector. Firstly, at feature level, we pro-
pose Local Structured Descriptor to capture the object’s
local structure, and develop the descriptors from shape
and texture information, respectively. Secondly, at topol-
ogy level, we present a boosted feature selection and fusion
scheme for part based object detector. All experiments are
conducted on the challenging PASCAL VOC2007 datasets.
Experimental results show that our method achieves the
state-of-the-art performance.

1. Introduction

Object localization is an essential task in computer vi-
sion. Impressive performance improvement in object lo-
calization has been achieved via the progress in: 1) learn-
ing object structure [5, 8, 19, 20, 27] and detector model,
and 2) learning low-level feature based appearance model
[3, 10, 18, 21, 24, 25].

Detector models mainly include part based models [8, 9,
20, 27] and rigid template models [1, 24, 25]. In part based
models, they try to describe the object’s structure using sev-
eral parts and their relationships. Part based models can
be considered as top-down structure to tackle the problem
of partial occlusion and appearance variations. Part based
models [8, 20, 27] have been shown success on many diffi-
cult datasets [14]. For these good properties of robustness
to deformation, part based model is regarded as a promis-
ing method for localizing objects in images. This motivates
us to focus on part based model. Rigid template models
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Figure 1. Detection results of different methods. (a) is the original
image. (b) is the result of SVM+HOG. (c) is the result from [7]
and (d) is the result by the proposed method.

can not describe the object’s structure variations with fixed
template. Therefore, they perform well on ideally condi-
tioned database but suffer from those difficult data with de-
formations. The progress in low-level feature advances the
progress of object localization greatly as well. One repre-
sentative feature is Histogram of Oriented Gradients (HOG)
[1]. The others include Pairs of Adjacent Segments (PAS)
[10] and Local Binary Pattern (LBP) [17], etc.

One important problem in object localization is how to
describe object’s structure robustly. Part based model as
a top-down structure shows its good property of modeling
object structure in topology level [20]. But robust low-level
feature representation challenges the part based model to
obtain better performance. In the field of signal process-
ing, signal is considered structured when the local intensity
varies along some preferred orientations [4]. Local structure
can be corners, edges or crossings, etc. The research in sig-
nal processing indicates that there is relation between local
energy and local structure. These studies state that using the
local energy can represent the local structure [4] well. From



this aspect, previous popular feature HOG and LBP are his-
togram features. Thus, they can not effectively describe an
object’s local structure information which is important for
object localization.

Motivated by these challenges of robust low-level feature
representation for part based model, we address the problem
via Local Structured Descriptors based part model. Firstly,
we propose Local Structured HOG(LSHOG) in which the
Local Structured Descriptor is computed from local en-
ergy of shape information, Secondly, similar to LSHOG,
we present Local Structured LBP(LSLBP) in which the Lo-
cal Structured Descriptor is based on texture information.
In addition, to tackle the non-linear illumination changes,
we clip the large feature value caused by non-linear illumi-
nation changes with a truncation item. To reduce the effect
of small deformation, we apply spatial weighting which is
proved to be robust to aliasing and bin interpolation which
can accurately describe histograms in LSLBP. Thirdly, we
present a boosted Local Structured HOG-LBP based object
detector, and the proposed method achieves the state-of-the-
art performance on the challenging PASCAL VOC datasets
[14]. Figure 1 gives an example of person detection.

The rest of this paper is organized as follows. Section
2 gives a brief overview of related work. Section 3 intro-
duces the framework of our approach. Section 4 shows and
analyzes the experimental results and Section 5 draws con-
clusions.

2. Related work

This paper focuses on two basic problems: how to ac-
curately describe object structure at feature level and how
to fuse multiple Local Structured Descriptors for part based
model at topology level.

2.1. Features for object localization

Various visual features such as HOG, LBP, efc. have
been proposed for object localization. HOG was first pro-
posed for human detection [1]. Ever since then HOG
has been proved one of the most successful features in
general object localization [14]. During the past few
years, many variants of HOG have been presented, such as
Co-occurrence Histograms of Oriented Gradients(CoHOG)
[26] in which the co-occurrence with various positional off-
sets is adopted to express complex shapes of object. In [8],
contrast-sensitive and contrast-insensitive features are used
to formulate more informative gradient feature. LBP was
first presented by Ojala et al. [17], for the purpose of texture
classification. Uniform LBP then was developed to reduce
the negative effect caused by noises. In [16], Mu et al. stated
that the traditional LBP did not perform well in human de-
tection, so they proposed two variants of LBP named by Se-
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Figure 2. The framework of Local Structured HOG-LBP based
part based object detector. This paper mainly focuses on feature
construction and multiple features learning for part based model.
We perform feature selection in root level. In the training phase,
parts models are initialized and updated using the feature learnt
from the root. We adopt latent SVM from [8].
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mantic LBP(S-LBP) and Fourier LBP(F-LBP).Wang et al.
also proposed a cell-structured LBP [25] dividing the scan-
ning window into non-overlapping cells for human detec-
tion.These features(HOG,LBP,CoHOG,S-LBP,etc.) are all
histogram features which have limitation in describing the
object’s local structure. In addition, PAS [10] showed at-
tractive performance compared with HOG in recent years.
PAS uses the line segments to capture the object’s global
shape and its structure which is different from HOG and
LBP’s description schemes. But the boundary detection in
PAS is very time consuming which limits its wide applica-
tions.

2.2. Part based models

Part based models are robust to partial occlusion and
small deformation due to their expressive description of ob-
ject’s structure considering the relationships between parts.
During the past decade, the most representative part mod-
els are the constellation model proposed by Fergus et al.
[9] and the star-structured part model presented by Felzen-
szwalb et al. [8]. In [9], the parts’ locations are deter-
mined by the interest points. While in [8], parts’ loca-
tions are searched through dense feature HOG. Especially,
the star-structured part model is discriminatively (For con-
venience, we refer the method in [8] as DPBM for short)
trained and demonstrated state-of-the-art performance in
the past several years. In DPBM, an object is represented
by a root model and several parts models. The parts’ loca-
tions are considered as latent information and a latent SVM
is proposed to efficiently optimize the model’s parameters.
DPBM provides a very strong benchmark in the field of ob-
ject localization. But the performance of DPBM is still lim-
ited by the robust low-level feature representation.
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Figure 3. The flowchart of the computation of Local Structured
HOG.

3. Boosted Local Structured HOG-LBP for
part based model

We show our framework of training Local Structured
HOG-LBP based part model in Figure 2. The system con-
sists of two parts: learning feature and training deformable
part based detector. The first stage is learning feature, in-
cluding extraction of Local Structured Descriptors based
on shape and texture information, and feature selection of
LSLBP in a supervised manner. In the stage of training ob-
ject detector, we firstly train the root model using the learnt
feature from the first stage, then initialize parts models from
the root model. We use latent SVM [6, 7, 8] to iteratively
train the part based detector.

3.1. Local Structured HOG

In this subsection, the details of Local Structured De-
scriptor based on shape information will be introduced.
As shown in Figure 3, the procedures of LSHOG com-
putation include gradient computation, orientation binning,
normalization and formulating Local Structured Descriptor.
The LSHOG includes both the histogram feature and Local
Structured Descriptor. Thus, LSHOG not only describe the
shape information through histogram feature, but also cap-
ture the relative local structure information through struc-
tured descriptor. The former steps are similar to HOG in
[1]. Especially, we don’t perform gamma/color normaliza-
tion and Gaussian weighting because we find they have little
affect on performance.

The gradient features used in LSHOG include both un-
signed gradient and signed gradient [1, 8]. Their orientation
range is 0° — 180° and 0° — 360°, respectively. To obtain a
cell-structured feature descriptor, the cell size is set to 8 X 8.

Local Structured Description. As discussed in above
section, the original HOG and its variants are still histogram
features and can not describe the local structure effectively.

Empirically, the boundary of any object(e.g., person)
tends to be continuous and the spatial adjacent regions must
have certain structure relation. As mentioned in above sec-
tion, PAS [10] is used to capture the spatial structure of ob-
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Figure 4. The details of the computation of LSHOG. The left im-
age illustrates the histogram of gradient in each cell. The right im-
age gives the gradient energy via the sum of squares of histogram
of gradient in each cell.

jects where the length of adjacent segments and their rela-
tive angles are encoded in the final descriptor. However, the
Berkeley probability boundary detector used in PAS is very
time consuming which limits PAS’s large scale applications.

In the field of signal processing, local energy based struc-
ture representation is widely used for its robustness to noise
and aliasing [4]. Inspired by these progresses, we adopt the
local gradient energy to capture local structure. We believe
the relative local structure between adjacent blocks is more
informative. Therefore, we use the relative gradient energy
within object’s adjacent blocks to capture the local struc-
ture.

The computation of LSHOG is illustrated in Figure 4.
Let Fj j(i=1,2,...,h;j=1,2,...,w) De the feature map where h, w
are the height and width of the feature map, respectively.
Let H;; specify the sum of histogram of gradients at
Fa, j), and let LR;=1,2,3,4) be the squared block consist-
ing of four adjacent cells around cell (i + 1, j +1). To avoid
a large local structure value, for an example, we define LR,
by

Hit1541

LR, =
VEij+ Eiji1+ Eit1j + Biy,j41

ey

where F; ji=1,2,...,n;j=1,2,....w) 18 used to denote the gra-
dient energy obtained from the sum of squares of gradient
histogram at each cell (4, ) from F. The computation of
LRy, LR3 and LR, is similar to LR;. Then we can de-
fine the Local Structured Descriptor as follows. The Local
Horizontal Structure(LHS) is defined as:

LHS; = \| LR, — LRy |

(2
LHS; =)\| LR; — LR, |
The Local Vertical Structure(LVS) is defined as:
LVS, =X| LRy — LR3 |
(3)

LVSy=\| LRy — LR, |
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Figure 5. Overview of the computation of LSLBP.

The Local Diagonal Structure(LDS) is defined as:

LDS, = \| LR, — LR, |

)
LDSy =X | LRy — LR3 |
And the Local Overall Structure(LOS) is defined by
LOS =\ |LRy + LRy + LRs+ LR, |  (5)

The control parameter A can be taken as a normalization
factor for LHS,LVS and LDS. We set

Vo x 18

A= 1

(6)
where o is the maximum possible value for gradient fea-
ture. The purpose of Eq.6 is to make Local Structured
Descriptor’s value be the same order of quantity with his-
togram feature’s value. In LSHOG, we use the truncation
value 0 = 0.2, so A = 0.4743. For LOS, we find the set-
ting N o= 0.1is enough which has the same purpose as
A. As illustrated above, this coding scheme has several ad-
vantages:1) Simple to compute. 2) Robust to small defor-
mation. Because the descriptor is related with the local re-
gions’ energy, small deformation would change little in the
energy of the corresponding region. 3) Easy to be applied
in other pixel based histogram features.

3.2. Local Structured LBP

In this subsection, we will give the details of Local Struc-
tured Descriptor based on texture information. As shown in
Figure 5, firstly, we compute the uniform binary pattern at
each pixel, then the initial cell-structured LBP descriptor is
formulated by trilinear interpolation. The final LSLBP con-
sists of both binary patterns histogram and Local Structured
Descriptor. The local structure coding scheme is similar
with LSHOG.

The LSLBP is computed with the cell size 8 x 8 to be
compatible with LSHOG. Many previous work on LBP did
not use the trilinear interpolation which is in fact, very help-
ful for accurate description of histogram based feature [1].

Similar to LSHOG, we capture the local structure
through texture information via LHS, LVS, LDS and LOS.
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In LSLBP, each cell’s energy is computed from the sum of
squares of binary patterns histogram. That is,

59

2

E;; = E h;,
p=1

where h,, is the histogram of binary patterns, and p denotes
the p,y, feature in h. In this way, the LSLBP can capture the
local structure from the aspect of texture, which is mutual
complementary with LSHOG.

@)

According to the coding scheme of LBP, it is invariant
to linear illumination changes. In the non-linear case, some
LBP values tend to become too large while others’ not. In
order to reduce the possible negative effect caused by these
non-linear changes, we clip the entry of uniform pattern
with 0.2. Especially, the entry of non-uniform pattern is of-
ten much larger than uniform patterns, so we limit its max-
imum value to 0.3 empirically. The normalization factors A
and \’ are set by the same scheme with LSHOG.

3.3. Learning feature and training detector

In this subsection, we address the problem of combin-
ing LSHOG and LSLBP and training part based model with
learnt LSHOG-LSLBP. This work is different from [25], in
which a rigid template model is trained for human detection
using concatenated basic HOG-LBP.

To begin with the details of learning feature, we give the
formulation of multiple features combination generally.

Fusion problem. Let’s denote the training samples as
{(%s,yi)i=1,... N} where z; € X is the training image and
y; € {+1,—1} is the corresponding class label. We can
extract different types of features such as LSHOG, LSLBP,
etc. which are denoted by fil(i:l,._wNJ:L_“’M) € F where

fil denotes the [, feature extracted from sample x;,N is the
number of training samples and M is the total number of
feature types. Therefore, the feature combination could be
formulated as a learning problem:

g:a T ()4 ..aTi(fH 4. .anTy (f) — (=1,+1)

)]
where T} is the transformation function of the [;;, feature
and «; is the corresponding weight. g is the optimization
function.

Many popular methods have been proposed to tackle
the feature combination problem. They are Multiple Ker-
nel Learning [23, 24], Boosting [11] and subspace learning
[12], etc. These methods can be roughly divided into two
categories: basic feature level and feature subspace. In this
paper, we mainly investigate some methods at feature level,
including naive combination, MKL and Boosting methods.

For the above three combination schemes, we take a uni-
fied way to learn feature and train the part based object de-



tector using the learnt feature. The whole framework in-
cludes two stages: 1)Feature learning stage; 2) Part based
model training stage.

Feature learning stage. The goal in this paper is to train
a LSHOG-LSLBP based part based detector. Hence, the
key problem is how to learn feature for part models. In
this work, we use the star-structured part based model [8]
and the inference of a detection window for the part based
model can be summarized as,

N

Z dCi

i=1

€))

N

SCOT € sybwindow = ST + Z SPi —

i=1

where sr is the root score(The rigid template model is anal-
ogous to the root model here), sp; means the score from the
i¢p, part filter, dc; is the deformation cost from the 4., part
filter and N is the number of parts. In the star-structured
part based model, the parts models are initialized from the
root model. Therefore, we could perform feature selection
on root feature only. In the training part based object de-
tector stage, we use the learnt feature to initialize both root
model and parts models. This approach has an important
advantage that is the learning procedure does not need to
know the parts models’ sizes.

Because the part based model is based on dense cell-
structured feature(LSHOG,LSLBP,etc.), learning feature
from root still has two strategies: one is learning from fea-
tures at each cell; The other is from features within the
whole detection window. Because our objective is to op-
timize and classify features from the whole detection win-
dow but not from each cell. Therefore, we adopt the latter
strategy, e.g. learning feature from the detection window. In
addition, learning feature procedure is performed for each
component to train a part model with multiple components
[8] according to aspect ratio.

Part based model training stage. Firstly, we use the
learnt feature to initialize the root model. Parts models are
then initialized from the root model. Latent SVM [6, 7,
8] is used to train the part models iteratively. The whole
algorithm can be found in Algorithm 1.

4. Experiments

We evaluate the proposed method on the challenging
PASCAL VOC datasets [14] which are widely acknowl-
edged as difficult benchmark datasets for object local-
ization. In PASCAL VOC datasets, there are 20 ob-
ject classes consisting of person, vehicles(e.g.,car, bus),
household(e.g.,chair, sofa) and animals(e.g.,cat,horse) [14].
The criterion adopted in VOC challenge is Average Preci-
sion(AP). Our method achieves the state-of-the-art results
on PASCAL VOC datasets over other related methods.

Experiments are conducted in three groups:1) Single
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Learnt feature LF; := O;
for component i :=1to N do
PF : Extract positive features from 4, root;
NF' : Random sampling from negative samples;
Learning feature(MKL,Boosting,ezc.) from
PF NF,
Add learnt feature to LF;;
end
Training part based object detector
for component i :==1to N do
Initialize 44, root from LFj;
for part j :=1to Npqr do
‘ Initialize: j;;, part from iy, root;
end
for Iter k := 1 to K¢, do
‘ Update models and retrain;
end

17 end

Algorithm 1: Learning feature and training object de-
tector.

LSHOG ’s experiments designed to validate the effective-
ness of Local Structured Descriptor;2) Single LSLBP’s ex-
periments developed to validate the effectiveness of trilin-
ear interpolation, truncation and Local Structured Descrip-
tor; 3) Comparison experiments with different combina-
tion schemes; 4) The full results of proposed boosted Lo-
cal Structured HOG-LBP based object detector on PASCAL
VOC2007.

Several versions of latent SVM were released at Felzen-
szwalb’s homepage. To avoid confusion, we mention voc-
release3.1 [6] as V3 and voc-release4 [7] as V4 shortly. The
latent SVM from V4 is only adopted in the full experiments
on PASCAL VOC datasets and latent SVM from V3 is used
in other experiments. The purpose of using like this is to
verify the stability of the proposed method.

4.1. Localization results with LSHOG

To validate the proposed LSHOG, we train a person de-
tector using LSHOG on PASCAL VOC2007 datasets us-
ing latent SVM from V3. We achieve 37.4% AP score on
person with 1.2% improvement compared with 36.2% from
V3. We also do the comparison experiments on aeroplane
and dog categories randomly chosen from 20 classes. The
results are presented in Figure 6, from which we can see
that the improvement is promising.

These results validate that the local structured descriptor
can effectively capture more structured information and im-
prove the detection performance. It should be highlighted
that the simple coding scheme could be easily extended to
other pixel based histogram features.
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Figure 6. Precision-Recall curve for the categories of aeroplane
and dog.

4.2. Localization results with LSLBP

Firstly, we perform the person detection on PASCAL
VOC2007 based on traditional LBP without trilinear in-
terpolation, traditional LBP with trilinear interpolation and
LSLBP. LSLBP achieves 32.4% best AP score, with an im-
provement by 1.4% and 2.2% over LBP with trilinear inter-
polation and traditional LBP, respectively. This result indi-
cates that Local Structured Descriptor and trilinear interpo-
lation are effective.

We also conduct several experiments on person cate-
gory on VOC2007 to discuss different truncation’s strate-
gies. The AP score is 29.2 for LBP without any truncation,
29.4 for LBP with truncation value 0.2 for both uniform pat-
tern and non-uniform pattern and 30.2 for LBP with trunca-
tion value 0.2 for uniform pattern and 0.3 for non-uniform
pattern. Thus, treating uniform pattern and non-uniform
pattern differently and truncating them with 0.2 and 0.3 per-
forms better than others. In addition, the truncation value is
set empirically.

The result that the LBP with truncation value 0.2 for uni-
form pattern and 0.3 for non-uniform pattern performs best
indicates that: 1) Truncation is helpful for robustness to non-
linear illumination changes; 2)Different truncation for uni-
form patterns and non-uniform patterns is reasonable.

4.3. Comparisons with different fusion schemes

We compare naive combination, MKL and Boosting
method to find which performs best in combining LSHOG
and LSLBP for part based model and also give the analysis.

Naive combination. Naive combination directly con-
catenates different features into a single feature vector,
which is the simplest method for feature combination.

Multiple Kernel Learning. MKL has great advantage
to handle multiple, heterogeneous data sources and has been
widely applied in the problem of feature selection and com-
bination [23, 24]. In this paper, we adopt Generalized
MKL(GMKL)[23] for its good generalization property over
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‘ category ‘ V3 ‘ Naive ‘ Improvement ‘
person | 36.2 | 37.2 1.0
chair 165 | 15.2 -1.3

Table 1. Detection results of naive combination on person and
chair category.
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Figure 7. The detection results achieved by the MKL and Boosting
based detection results.

kernels combination. And we use linear kernel as base ker-
nel and sum kernel formulation for efficiency.

Boosting. Boosting is one of the most popular methods
for feature combination. In our approach, we choose Gen-
tleBoost [11, 22] mainly because GentleBoost uses Newton
stepping rather than exact optimization at each step, thus
it outperforms other boosting methods especially when the
training data is noisy and has outliers [13].

Results. In Table 1, we have shown the results of person
and chair using naive combination. To compare with V3
fairly, the HOG from [8] and traditional LBP are adopted
in this experiment. As shown in Table 1, the performance
is improved by 1% for person, while decreased by 1.3% for
chair class. So we find that naive combination is not always
effective for all classes.

Through the experiments discussed in LSHOG and
LSLBP subsections, the single LBP based part object detec-
tor’s performance is worse than that of single HOG. There-
fore, it’s reasonable to infer that some subsets in LBP fea-
tures are effective for localization while others not. Inspired
by these observations, we could select certain effective sub-
sets in LBP. Thus, we use MKL and boosting to select fea-
tures. Still the experiments are conducted on person cate-
gory on PASCAL VOC2007 datasets and a bi-component
model using the learnt feature from MKL and GentleBoost
is trained, respectively.

In the experiment based on MKL, the penalty C' is set
to 10 and the maximum iteration is set to 40. The maxi-
mum iteration is set to 200 for GentbleBoost.To fairly com-
pare with naive combination, traditional LBP is adopted in
the experiments in which a bi-component model is trained.
MKL selects 1850 dimensions out of 3713 in component 1
and 1675 out of 2596 in component 2. While GentleBoost
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and traditional LBP.

selects 119 dimensions in component 1 and 131 in compo-
nent 2.

As shown in Figure 7, for the person category, the Boost-
ing based method achieves the best results, by improving
4% over baseline V3, 3% over naive combination and 2.4%
over MKL based method. Specially, it shows that the im-
provement for chair class is 1.4% while in naive combi-
nation is -1.3%. The result further validates only certain
subsets of LBP feature effective for localization. Improve-
ment has been obtained from MKL as well, but inferior to
boosting method. MKL selects more features than boost-
ing method, indicating there are still many noisy features
not effective for classification. Another disadvantage of
MKL is its huge computation cost. Furthermore, we eval-
uated the approach over other 8 classes randomly chosen
from VOC2007 datasets including person, vehicles, house-
holds and animals four categories using latent SVM from
V3 [6]. The purpose of this experiment is to validate the ef-
fectiveness of presented boosted feature fusion scheme. As
shown in Figure 8, for the categories with rich texture such
as person,horse,dog, the average improvement is about by
4% while for chair, bottle with less texture, the improve-
ment is only by 1% - 2%. Several conclusions can be drawn
from these results: 1) Texture complements shape feature
for robust feature representation on most categories. 2)Sub-
sets of LBP are effective or better for localization than full
LBP. 3) Boosted multiple features fusion scheme for part
based model stably improves the localization performance
and performs best among these methods. These results also
answer the question why we use GentleBoost in this work.

4.4. Full results on PASCAL VOC datasets

Motivated by the above results, and at the same time we
intend to validate the stability of the proposed method, we
train the boosted Local Structured HOG-LBP based part ob-
ject detector using the latest latent SVM from V4 [7]. The
models in the following experiments are trained with six
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Figure 9. Detection results with the Boosted LSHOG-LSLBP
based part object detector using latent SVM from [7].

components.

Firstly, the proposed boosted LSHOG-LSLBP based part
detector is compared with V4 on person category. As is
shown in Figure 9, an improvement is achieved by 2.7%.
The improvement is less than the proposed detector using
latent SVM from V3. There possibly exists over-fitting in
the training procedure, because the feature dimension in six
component model is higher than two component model in
previous experiments.

The full results on PASCAL VOC2007 are given in Ta-
ble 2. These results are all without any context based post-
processing.

As shown in Table 2, the proposed method stably outper-
forms the state-of-the-art part based object detector [7] on
all the 20 categories. We outperforms other methods except
Oxford-MKL method(Oxford-MKL method adopted four
types of multi-level features and achieved very competitive
results on VOC2007 datasets) in 16 out of 20 categories. If
comparing with Oxford-MKL’s method, we obtain the best
score in 9 out of 20 and the second best in 8. These methods
are all the related representative methods in the past several
years. In addition, the mean AP of the proposed method is
34.3% which is the highest among these methods, exceed-
ing Oxford-MKL’s method by 2.2%.

5. Conclusions

In this paper, we have presented a boosted Local Struc-
tured HOG-LBP based object detector. Firstly, we have
proposed two types of local structured features, i.e., Lo-
cal Structured HOG (LSHOG) and Local Structured LBP
(LSLBP). Experimental results have proven the proposed
features can describe the object’s local structure effectively
and improve the detection performance. Then, we have pre-
sented a boosted multiple features fusion scheme to tackle



\plane bicycle bird boat bottle bus car cat chair cow table

dog horse mbike person plant sheep sofa train tv meanAP\

V4[7

UcCI[2

11289 595 10.0 152 255 49.6 57.9 193 224
best2007[15]| 26.2 409 9.8 94 214 393 432 240 12.8
11288 562 32 142 294 38.7 48.7 12.4 16.0

LEO[27]] 29.4 558 9.4 143 28.6 44.0 51.3 21.3 20.0
Oxford-MKL[24]| 37.6 47.8 15.3 153 21.9 50.7 50.6 30.0 17.3
Proposed | 36.7 59.8 11.8 17.5 26.3 49.8 58.2 24.0 22.9

252 233
140 9.8
17.7 24.0
19.3 25.2
33.0 22.5
27.0 24.3

11.1 56.8 487 419 122 178 33.6 45.1 41.6 323
16.2 335 375 221 120 17.5 147 334 289 233
11.7 450 394 355 152 16.1 20.1 342 354 27.1
125 504 384 36.6 15.1 19.7 25.1 36.8 39.3 29.6
215 512 455 233 124 239 285 453 485 32.1
152 58.2 49.2 44.6 135 21.4 349 475 423 343

Table 2. Full results on PASCAL VOC 2007 challenge datasets. best2007 was the best results submitted to the VOC2007 challenge [15].
The V4 is from [7] without context based post-processing. The UCI [2] method adopts multi-object layout to do object detection. The
LEO method [27]used a latent hierarchical model to represent an object. Oxford-MKL method [24] used four types of multi-level feature
and achieved very competitive results on VOC2007. Our method has no context rescoring.

the problem of multiple features combination for part based
model. And the proposed method achieves very competitive
results on PASCAL VOC datasets.
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