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Abstract

The codebook based (bag-of-words) model is a widely
applied model for image classification. We analyze recent
coding strategies in this model, and find that saliency is
the fundamental characteristic of coding. The saliency in
coding means that if a visual code is much closer to a de-
scriptor than other codes, it will obtain a very strong re-
sponse. The salient representation under maximum pooling
operation leads to the state-of-the-art performance on many
databases and competitions.

However, most current coding schemes do not recognize
the role of salient representation, so that they may lead to
large deviations in representing local descriptors. In this
paper, we propose “salient coding”, which employs the ra-
tio between descriptors’ nearest code and other codes to
describe descriptors. This approach can guarantee salient
representation without deviations. We study salient coding
on two sets of image classification databases (15-Scenes
and PASCAL VOC2007). The experimental results demon-
strate that our approach outperforms all other coding meth-
ods in image classification.

1. Introduction

Image classification is an important problem in computer

vision and pattern recognition. It plays a key role in many

applications such as video surveillance, image retrieval and

web content analysis. There are many approaches for image

classification. The codebook based (bag-of-words) model

[14] and its extensions achieve the state-of-the-art perfor-

mance in many famous databases (e.g., Caltech101 [1] and

Caltech256 [2]) and competitions (e.g., PASCAL VOC [3]

and TRECVID [4]).

Figure 1 (a) shows the framework of the original code-

book based model. Firstly, it extracts images’ local features

by detectors or dense sampling and then calculates their

descriptors. For local feature detection, classic detectors

Figure 1. (a) The framework of the codebook based model. (b) A

demonstration of three kinds of classic coding strategies. The red

ball is a local descriptor and the green rectangles are codes.

include Harris detector [17] and its extension [25], max-

imally stable extremal region detector [21], affine invari-

ant salient region detector [22]. For local feature descrip-

tion, we usually use local descriptors such as Haar descrip-

tor [27], scale-invariant feature transform (SIFT) descriptor

[20], gradient location and orientation histogram (GLOH)

descriptor [23], rotation-invariant feature transform (RIFT)

descriptor [18], shape context [10], histogram of gradients

(HOG) descriptor [15]. After obtaining local features (i.e.,

descriptors), this model uses a codebook to represent them.

The codebook is a group of codes usually obtained by clus-

tering over all descriptors. This process is usually called

“coding”. We will detail various coding strategies in Sec-

tion 2.1. Afterwards, the responses on each code are in-

tegrated into one value by spatial pooling operation, e.g.,

maximum or average pooling. Therefore, an image is de-

scribed by a histogram whose length is equal to the size of

the codebook. Finally, the histogram is sent to a classifier,
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e.g., Boosting [24],[16] or Support Vector Machine (SVM)

[11], [13] for classification.

In this paper, we focus on the process of representing de-

scriptors using the codebook. Figure 1(b) illustrates three

kinds of classic coding strategies. Hard voting [14] is

adopted in the original codebook model. It reflects the oc-

currence frequency of codes. In hard voting, each descriptor

is represented by its nearest code. It is simple and fast, but

limited in representing descriptors. To improve it, soft vot-
ing [26] is developed, wherein a descriptor is represented by

multiple codes. Besides, frequency is replaced by Euclidean

distance between descriptors and codes. This scheme en-

riches descriptors’ information and increases the final clas-

sification accuracy. Reconstruction based method, e.g.,

sparse coding [29] is another idea to enhance hard voting.

It chooses a group of codes to reconstruct 1 descriptors plus

a constraint to the number of codes. In further researches

(e.g., LCC [30] and LLC [28]), the locality constraint of

codes’ spatial location is integrated. Reconstruction based

coding as well as sparse and locality constraints achieves

very good performance compared with hard voting and soft

voting [12],[30],[28].

We take LLC as an example for further analysis. LLC

uses K nearest codes to encode a descriptor. If there is a

code that is much closer to the descriptor than other codes,

the response in this code will be much stronger than oth-

ers. We call this code and process as a salient code and

salient representation respectively. The salient represen-

tation is robust because the salient code can independently

describe the descriptor. Due to maximum pooling operation

used in LLC, only the strongest response on each code is

preserved. Weak responses are discarded although they are

used for reconstruction. These weak responses are unstable

because they need combining with other responses to rep-

resent a descriptor. Therefore, LLC plus maximum pool-

ing operation is not to obtain exact description but salient

representation to descriptors. However, the least square op-

timization adopted in LLC cannot guarantee salient repre-

sentation in all cases. When K is smaller than the dimen-

sionality of descriptors, the least square optimization is an

under-determine problem which may lead to a non-zero so-

lution. Thus, LLC may produce large deviation in descrip-

tor reconstruction.

To resolve the above large deviation problem, we recon-

sider the definition of saliency, and propose a salient coding

based method for image classification. Specifically, we ap-

ply the difference between a descriptor’s nearest code and

other codes to represent the descriptor. This strategy can

stably obtain salient representation and avoid the large de-

viation problem that exists in reconstruction based coding

methods. We study salient coding on the 15 natural scenes

1The reconstruction is implemented via resolving a least square opti-

mization problem. We detail it in Section 2.

and PASCAL VOC 2007. In these databases, our method

performs very well.

We have three main contributions in this paper:

1. Comprehensively analyze various coding schemes in

the codebook based model, including their advantages

and limitations. Based on the analysis, we present, for

the first time to our knowledge, that saliency is the fun-

damental characteristic of coding.

2. Propose a novel salient coding algorithm based on the

above analysis. It can stably extract saliency represen-

tation to descriptors without the large deviation prob-

lem that exists in reconstruction based coding meth-

ods.

3. Conduct a number of experiments on two kinds of

image classification databases: 15 natural scenes and

PASCAL VOC2007. In these experiments, we study

the influence of the parameters in salient coding, and

compare salient coding with other coding strategies.

Our method achieves very good performance, com-

parable to the state-of-the-art algorithms on both the

15 natural scenes dataset and the PASCAL VOC2007

database. Moreover, it runs much faster than recon-

struction based coding strategies.

The rest of this paper is organized as follows. In Sec-

tion 2, we analyze various coding schemes including their

advantages and limitations. Based on the discussion, we

propose salient coding. Section 3 provides experimental

studies on the 15 natural scenes dataset and the PASCAL

VOC2007 database. Finally, we conclude the paper in Sec-

tion 4.

2. Our method

In this section, we introduce classic coding strategies,

analyze their limitations and propose our solution.

2.1. Classic coding methods

Let x be a descriptor, e.g., 128 dimensional SIFT de-

scriptor, B = [b1, b2, ..., bM ] be a codebook with M cluster

centers and V = [v1, v2, ..., vM ] be the responses of the

codebook.

To represent x, hard voting assigns 1 to the nearest code

and 0 to others:

vi =

{
1, if i = argmin

j
(||x− bj ||2)

0, otherwise
(1)

Hard voting [14] only uses frequency information of

codes and is limited to describe descriptors.
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In soft voting [26], a descriptor is encoded by multi-

ple codes using the kernel function (e.g., Gaussian function

Kσ) of distance between descriptors and code:

vi = Kσ(||x− bi||2), i = 1, 2, ...,M (2)

Although soft voting achieves better performance than

hard voting, it is not sufficient to obtain more complete

representation to descriptors. In this sense, reconstruction

based sparse coding contains more information than soft

voting. To better understand sparse coding, we borrow the

explanation from [29] and rewrite hard voting as:

V = argmin ||x− V BT ||2
s.t. ||V ||0 = 1,

M∑
i

vi = 1
(3)

where || • ||0 denotes the l0-norm, which counts the number

of nonzero entries in a vector.

Given the above form, it is clear that the l0-norm to V
is too strong which leads to limited description to x. In

sparse coding, the l0-norm is replaced by the l1-norm which

is integrated into the optimization object function:

V = argmin ||x− V BT ||2 + λ||V ||1
s.t.

M∑
i

vi = 1
(4)

where || • ||1 denotes the l1-norm.

Further studies [30] found that the locality constraint is

more important than the sparse constraint. In LCC, the lo-

cality constraint is obtained by minimizing the Euclidean

distance between a descriptor and codes used to reconstruct

it:

V = argmin ||x− V BT ||2 + λ
∑
i

||vi||1 ||x− bi||2

s.t.
M∑
i

v = 1

(5)

In this manner, LCC forces distant codes away from de-

scriptor reconstruction and focuses on near codes. A more

detailed explanation can be found in [30]

The computation cost of sparse coding and LCC is rel-

atively high. Recently, LLC [28], a simplified and fast

version of LCC, is proposed, wherein the constraint of∑
i

||vi||1 ||x− bi||2 is replaced by using K nearest codes

to reconstruct each descriptor:

V = argmin ||x− Ṽ B̃T ||2
s.t.

∑
i

v = 1 , ∀i = 1, 2, ...,M (6)

where B̃ is K nearest codes to x.

Because B̃ is the nearest K codes, LLC achieves locality

representation. In addition, as K is a small number com-

pared with the size of codebook, LLC also achieves sparse

representation. This optimization problem has an analyti-

cal solution. It reduces the computation complexity from

O(M2) in sparse coding and LCC to O(M +K2).

2.2. Salient coding

The work of sparse coding/LCC/LLC achieves surpris-

ing good performance using very simple local features and

classifiers. On many image classification databases, they

greatly outperform hard voting. On the image classification

competition of PASCAL VOC2009, It ranks first on 18 out

of 20 object classes. Why SC/LCC/LLC performs so excel-

lently on image classification? We consider that the reason

is salient representation under maximum pooling opera-

tion.

We take LLC as an example. Every local descriptor leads

to a representation using K nearest codes chosen from the

codebook. After encoding all descriptors, each code may

obtain multiple responses. In the later maximum pooling

operation, low responses on each code are suppressed and

only the maximum response is preserved. Therefore, the

meaningful responses are those largest responses on each

code.

Next, we firstly analyze some numeric examples on these

preserved responses, and then provide the mathematical and

physical explanations.

Table 1 shows two examples of the data in LLC.

x1 and x2 are two 128 dimensional SIFT descriptors.

[b1, b2, ..., b5] denotes five codes. ||x − b||2 indicates the

Euclidean distance between x and b. [v1, v2, ..., v5] is the

responses of codes calculated by Eq. (6).

Table 1. Two examples showing that LLC reflects saliency.

||x1 − b1||2 ||x1 − b2||2 ||x1 − b3||2 ||x1 − b4||2 ||x1 − b5||2

2.4333 3.3371 4.4999 4.5241 4.6679

v1 v2 v3 v4 v5

1.1022 0.4160 -0.084 0.0427 -0.4760

||x2 − b1||2 ||x2 − b2||2 ||x2 − b3||2 ||x2 − b4||2 ||x2 − b5||2

2.5518 2.9176 3.2088 3.3748 3.3834

v1 v2 v3 v4 v5

0.3881 0.2975 0.0308 0.0938 0.1824
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It is obviously that LLC reflects the saliency properties.

That is, if a code (b1) is much closer to the descriptor (x1)

than other codes (b2 to b5), this code obtains a much larger

response (v1) than other codes’ responses (v2 to v5). The

large response v1 is highly possible to win the later maxi-

mum pooling competition. If no code is much closer to a

descriptor than other codes (the case of the bottom part of

Table 1), there will be no large response for all codes. In

this case, all responses may be suppressed and discarded.

Therefore, the preserved largest responses are salient repre-

sentation to descriptors.

Figure 2 (a) illustrates the mathematical explanation of

reconstruction based coding strategy in the case of K =
2 in a 2-dimensional feature space. The red balls and the

green rectangles denote descriptors and codes respectively.

In LLC, the reconstruction by least square optimization in

Eq. (6) is equal to vector composition by the parallelogram

law [5]. When the descriptor (F2) is very close to a code

(C2) and far away from the other one (C3), LLC produces

a large response (V2’) for C2 and a small response (V3’)

for C3. When a descriptor (F1) locates in the middle of two

codes (C1 and C2), the responses (V1 and V2) for both of

them are not strong enough. For the case with larger K, the

analysis is similar, i.e., using the parallelogram law multiple

times.

Figure 2. (a) An illustration of descriptors reconstruction by the

parallelogram law. (b) An illustration of maximum pooling opera-

tion.

What’s the physical meaning of the salient representa-

tion under the framework of the reconstruction based cod-

ing strategy and MAX pooling? When a code obtains a very

strong response, i.e., this code is much closer to the descrip-

tor than others, this code can independently describes the

descriptor (salient representation). This is like the case of

C2, C3 and F2 in Figure 2(a), where V2’ can approximately

represent F2 without V3’. When all responses in represent-

ing a descriptor are weak (not salient representation, i.e.,

codes are similarly close to the descriptor), the descriptor

needs multiple codes to be described. This is like the case

of C1, C2 and F1. In this case, any single code cannot
independently represent the descriptor, and its response is

unstable because weak response may be discarded, e.g., the

response (V2) of C2 on F1 is suppressed by the one (V2’)

on F2.

In the later maximum pooling operation, high responses

tend to be preserved, each of which independently describes

a pattern of a descriptor. When the size of codebook is

sufficient large, the salient representation of the codebook

can effectively describes many patterns of descriptors which

covers most areas of images. This leads to the final robust

representation of images.

The least square based reconstruction is a good way

to reflect the salient representation. It can exactly obtain

salient representation in the low dimensional space guaran-

teed by the parallelogram low (see Figure 2(a)). However,

if K is smaller than the dimensionality of descriptors, it is

very possible that descriptors and codes are not in the same

plane. In this case, it is not guaranteed that a descriptor

can be reconstructed by K codes. Figure 3 illustrates an

example wherein two codes C1 and C2, in a 3-dimensional

feature space, cannot represent the descriptor x by the par-

allelogram law. The distance between x and x′ reflects the

deviation of reconstruction.

Figure 3. An example showing the deviation generated by descrip-

tors reconstruction in LLC. The least square based optimization in

LLC (Eq. (6)) is equal to reconstruct x’ using C1 and C2, where

x’ is the project vector of x in the plane decided by C1 and C2.

For general application of the codebook based model,

128 dimensional SIFT descriptors are usually used as the

feature. Due to sparse constraint, K is usually much smaller

than 128. Thus, Eq. (6) is an under-determined problem.

The reconstruction to a descriptor may lead to large devi-
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ation so as not to correctly reflect the saliency properties.

In this case, LLC produces abnormal values. We show an

example in Table 2.

In Table 2, b1 and b2 are similarly close to x3, but the

response on b1 is much smaller than the one on b2, even

smaller than the one on b5.

Table 2. An example showing the failure of LLC in representing

saliency.

||x3 − b1||2 ||x3 − b2||2 ||x3 − b3||2 ||x3 − b4||2 ||x3 − b5||2

4.0504 4.0605 4.3845 4.7321 4.7405

v1 v2 v3 v4 v5

0.2642 0.6194 -0.4171 0.1923 -0.3413

To solve the above problem, we should return to the def-

inition or the nature of the saliency. In common sense,

saliency indicates the most noticeable or important prop-

erty. For coding operation in the codebook based model,

saliency means that the nearest code is much closer to a

descriptor than other codes. Thus, we can employ the dif-

ference between the nearest code and other K − 1 codes

to reflect saliency. Specifically, we use the ratio of them to

define saliency degree:

Ψ(x, b̃i) = Φ

⎛
⎜⎜⎜⎝ ||x− b̃i||2

1
K−1

K∑
j �=i

||x− b̃j ||2

⎞
⎟⎟⎟⎠ (7)

where Ψ(x, b̃i) denotes the saliency degree in the process

of using b̃ to describe x, Φ is a monotonically decreasing

function, and [b̃1, b̃2, ..., b̃k] is the set of K nearest codes to

x.

With the definition of saliency degree, it is easy to intro-

duce salient coding:

vi =

{
Ψ(x, bi), if i = argmin

j
(||x− bj ||2)

0, otherwise
(8)

The salient coding has the following good properties:

1. Not limited by feature dimensionality. Our method

starts from the intuitive definition of saliency. It does

not rely on reconstruction, thus has no the under-

determine problem in LLC.

2. Easily to implement. There is no optimization in

salient coding. The monotonically decreasing func-

tion can be any form. In our experiments, we use

Φ(z) = 1 − z for convenience of normalization. In

future work, we will study the influence of different

forms.

3. Very fast. Our algorithm is much faster than sparse

coding, LCC and LLC. The computation is nearly

equal to hard voting.

3. Experimental results

In this section, we experimentally compare our method

with other excellent algorithms in two sets of image classi-

fication databases: 15 natural scenes dataset [9] and Pascal

VOC 2007 [6]. We first study our method in the 15 natural

scenes dataset with an in-depth analysis, including param-

eters discussion, and then use a fixed set of parameters in

another database.

We note that for some algorithms, we could not repro-

duce their performance, possibly due to engineering details,

e.g., normalization of features, clustering techniques, di-

mensionality reduction and SVM parameters. Thus, we im-

plement some of these algorithms which are exactly based

on the same algorithm framework. These methods are:

hard voting based codebook model, soft voting based code-

book model and LLC based codebook model2. This kind

of comparison makes more sense because it does not bias

any methods by different implementations. In addition, for

reader’s convenience, we also quote the best results on these

databases directly from the literature.

In our framework, we use the 128 dimensional SIFT de-

scriptor [20] which densely extracted from images on a grid

with step size of 4 pixels under three scales: 16×16, 24×24

and 32×32. We use the standard K-means clustering algo-

rithm to generate codebook. The parameters of the code-

book size and the number of nearest codes (K) will be dis-

cussed or stated in each experiment. Lib-linear SVM [8] is

adopted for classification wherein the penalty coefficient is

set to 1. In the 15 natural scene, we repeat the experiment

10 times with different random selected training and testing

samples, and show the average accuracy and the standard

deviation. All experiments are conducted in a server with an

Intel E5520 CPU (2.27GHz and 16 cores) and 16G RAM.

3.1. 15 natural scenes dataset

The 15 natural scenes dataset consists of 4,485 images

spread over 15 categories, each of which contains 200 to

400 images. The images categories vary from outdoor

2The LLC based codebook model is implemented via embedding the

key part of the open LLC code [7] into our framework. In all experiments

on LLC, we set K = 5 according to the best performance reported in [28].
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scenes like mountains and forest to indoor environments

like living room and kitchen. We follow the experimental

setup of Lazebnik et al. [19] wherein 100 random images

per class are chosen as training samples and the rest are used

for testing.

On this dataset, we study the influence of K in Eq. (7) to

our algorithm, and then compare the performance of various

coding strategies under different size of codebook.

Figure 4 shows the performance when K = 2, 5, 10, 20

and 40 respectively under 4,096 codes. The experimental

results indicate that a small K leads to good performance.

As K increases to and more than 20, the performance de-

creases quickly. This is because the saliency degree defined

in Eq. (7) tends to be equivalent when using too many

neighboring codes. When K=5, our method performs best,

thus we fix K to 5 in the rest of experiments.

Figure 4. Performance of salient coding under different K on the

15 natural scene dataset.

Figure 5 shows the results of various coding strategies

under different size of codebook. The salient coding out-

performs other three coding schemes when the codebook

size is large. When the codebook size is small, e.g., 256,

our method is worse than hard voting and soft voting, be-

cause a small size of codebook can represent only a few

local features of images in our method. But for hard vot-

ing and soft voting, the performance does not decrease so

fast because the response of the codebook can still reflect

the distribution of local features. When the codebook size

is large (larger than 1,024), our method performs best in all

coding schemes.

The performance LLC and our method are sensitive to

the codebook size because these two methods rely on salient

representation under the maximum pooling operation. A

large number of codes can reflect many local descriptors

of an image. In contrast, the performance of hard voting

and soft voting is relatively stable because they adopt av-

erage pooling operation that has no such direct link with

the codebook size. However, hard voting and soft voting

have no much potential to further improve the classification
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Figure 5. Performance comparison of various coding strategies un-

der different sizes of codebook on the 15-scenes dataset.

accuracy since the codebook size has little influence to the

average pooling operation.

Besides, we list some excellent results reported by other

algorithms in table 3. Our method uses 4,096 codes and

achieves very competitive performance.

Table 3. Several existing algorithm an their performances on the

15 natural scene dataset.

KSPM [19] 81.40 ± 0.50

KC [26] 76.67 ± 0.39

Yang [29] 80.28 ± 0.93

Boureau [12] 83.6 ± 0.4

Ours 82.55 ± 0.41

3.2. PASCAL VOC2007

In this section, we test our algorithm on PASCAL

VOC2007, which is one of the most challenging databases

for image classification. All images are obtained from

Flicker with large variation on size, illumination, scale,

viewpoint, deformation and clutter, as well as complex

backgrounds. The performance measure is the average pre-

cision (AP), a standard metric used by PASCAL challenge

[3].

In this experiment, the codebook size used in salient cod-

ing is 24,000, and we sets K=5 for Eq. (6) and Eq. (7).

In Table 4, we list our scores for all 20 classes on VOC

2007. We also compare our approach with other three cod-
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ing methods and the best performance of the challenge.

In PASCAL VOC 2007, our approach outperforms other

three coding methods, and is comparable to the best per-

formance by recently reported algorithms. It is worth not-

ing that most of these algorithms apply the combination of

multiple kinds of features, codebook learning and subspace

learning. Our system only uses gray SIFT features and K-

means algorithm, and does not employ any codebook learn-

ing and subspace learning techniques.

Table 4. Performance comparison on PASCAL VOC2007.

class hard voting soft voting LLC ours winner VOC07

aero 62.6 68.5 70.6 71.3 77.5

bicyc 51.7 58.2 63.6 64.2 63.6

bird 38.1 40.6 46.5 45.5 56.1

boat 57.5 60.8 66.2 67.4 71.9

bottle 23.8 26.7 29.3 29.8 33.1

bus 50.8 60.6 63.5 63.9 60.6

car 67.7 72.2 76.6 78.2 78.0

cat 44.0 48.8 57.7 59.2 55.8

chair 45.3 51.2 53.7 53.6 53.5

cow 29.0 34.5 42.8 43.3 42.6

table 41.1 46.6 50.2 48.2 54.9

dog 35.5 36.6 43.3 43.8 45.8

horse 71.3 73.6 75.5 76.2 77.5

mbike 54.2 62.1 65.3 66.4 64.0

person 77.8 80.8 82.5 82.9 85.9

plant 17.2 24.5 27.4 29.1 36.3

sheep 35.0 38.8 46.1 46.5 44.7

sofa 38.5 46.0 52.2 52.4 50.9

train 60.9 71.4 75.9 76.1 79.2

tv 45.7 48.2 51.9 52.0 53.2

mean 47.8 52.6 57.0 57.5 59.4

4. Conclusion

In this paper, we have analyzed various coding strategies

in the codebook based model and especially we discuss the

LLC from the viewpoint of geometry, including its advance-

ments and limitations, i.e., the reconstruction deviation. We

have demonstrated that saliency is an fundamental property

of coding. Based on this analysis, we have proposed a novel

and fast coding strategy, called salient coding. It can ef-

fectively obtain salient representation to descriptors without

the deviation problem in reconstruction based coding meth-

ods. Experiments on different kinds of databases (15 nature

scenes dataset and PASCAL VOC 2007 database) demon-

strate that salient coding achieves better classification ac-

curacy than previous coding schemes. At the same time,

salient coding largely reduces the computation cost com-

pared with various reconstruction based coding schemes.

In future, we will study the influence of different choices

of the form of salient coding, and experimentally analyze its

performance in more kinds of image classification database.

Acknowledgement

This work is supported by National Natural Sci-

ence Foundation of China (Grant No.60875021,60723005),

NLPR 2008NLPRZY-2, National Hi-Tech Research and

Development Program of China (2009AA01Z318), Key

Project of Tsinghua National Laboratory for Information

Science and Technology.

References
[1] www.vision.caltech.edu/Image_Datasets/

Caltech101/.

[2] http://www.vision.caltech.edu/Image_
Datasets/Caltech256/.

[3] http://pascallin.ecs.soton.ac.uk/
challenges/VOC/.

[4] http://trecvid.nist.gov/.

[5] http://en.wikipedia.org/wiki/
Parallelogram_law.

[6] http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007.

[7] http://www.ifp.illinois.edu/ jyang29/.

[8] http://www.csie.ntu.edu.tw/˜cjlin/
liblinear/.

[9] http://www.cs.unc.edu/˜lazebnik/
research/scene_categories.zip/.

[10] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 24(4):509–522,

2002.

[11] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the Fifth
Annual Workshop on Computational Learning Theory, 1992.

[12] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-

level features for recognition. CVPR, 2010.

1759



[13] C. Cortes and V. Vapnik. Support-vector network. Machine
Learning, 20:273–297, 1995.

[14] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categoriza-

tion with bags of keypoints. ECCV, 2004.

[15] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. CVPR, 2005.

[16] Y. Freund and R. E. Schapire. A decision-theoretic gener-

alization of on-line learning and an application to boosting.

Journal of Computer and System Sciences, 55(1):119–139,

1997.

[17] C. Harris and M. Stephens. A combined corner and edge

detector. Proceedings of the Fourth Alvey Vision Conference,

pages 147–151, 1988.

[18] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture repre-

sentation using local affine regions. Technical Report, Beck-
man Institute, University of Illinois, 2004.

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. CVPR, 2006.

[20] D. G. Lowe. Distinctive image features from dcale-invariant

key-points. International Journal of Computer Vision,

2(60):91–110, 2004.

[21] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-

baseline stereo from maximally stable extremal regions. Im-
age and Vision Computing, 22(10):761–767, 2004.

[22] K. Mikolajczyk and C. Schmid. Scale and affine invariant

interest point detectors. International Journal of Computer
Vision, 60(1):63–86, 2004.

[23] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 27(10):1615–1630, 2005.

[24] R. E. Schapire. The strength of weak learnability. Machine
Learing, 5(2):197–227, 1990.

[25] T. Tuytelaars and L. V. Gool. Matching widely separated

views based on affine invariant regions. International Jour-
nal of Computer Vision, 59(1):61–85, 2004.

[26] J. van Gemert, J. Geusebroek, C. Veenman, and A. Smeul-

ders. Kernel codebooks for scene categorization. ECCV,

2008.

[27] P. Viola and M. Jones. Robust real-time object detection.

Proc. of IEEE Workshop on Statistical and Computa-tional
Theories of Vision, 2001.

[28] J. Z. Wang, G. Wiederhold, O. Firschein, and S. X.

Wei. Content based image indexing and searching using

daubechies wavelets. Journal of Digital Libraries, 1(4):311–

328, 1998.

[29] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-

mid matching using sparse coding for image classification.

CVPR, 2009.

[30] K. Yu, T. Wang, and Y. Gong. Nonlinear learning using local

coordinate coding. NIPS, 2009.

1760


