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Abstract

In this paper, we present techniques for robust multiple
motions estimation based on dual consensus via clustering
in both the image spatial space and the motion parame-
ter space. Starting from traditional Random Samples Con-
sensus algorithm, we novelly propose the CLUster MOtion
Consensus (CLUMOC) to extract robust motions. The pro-
posed algorithm has two advantages: 1), instead of random
samples, the CLUMOC employs clustering in initial sam-
ple selection, which can remove outliers from correct pairs
of motion; 2), CLUMOC automatically decides the number
of motions, by employing competition among motion and
samples, that each motion needs to compete for matching
pairs and each pair of matching competes for motions. The
experimental results show that the proposed method is ef-
fective and efficient under various situations.

1. Introduction
The task of multiple motion estimation is to find the

correspondences between two images with same objects in

different view, as shown in Figure 1. It is a fundamental

problem in computer vision. Given a set of initial matched

points, which always full of noises (or ”outliers” in litera-

tures), we are trying to find the correct correspondences, es-

timate individual motions and segment key points into dif-

ferent objects simultaneously. The matched points are usu-

ally extracted by detectors, e.g. Harris [4], SIFT [6], SURF

[1] or HLSIFD [15].

The traditional image matching algorithm [14] or photo

panorama system [2] mainly focuses on single object recog-

nition. A popular algorithm for single motion estimation

is the RANdom SAmple Consensus (RANSAC) [3] algo-

rithm. The RANSAC algorithm iteratively estimates the

parameters of the motion, which is usually a homography

matrix or a fundamental matrix. There are two assumptions

behind the RANSAC algorithm. The first one is that the

data contains one subset of inliers at least, which are con-

secutive in the parameter space of the fitting model. The

(a) Two images with objects in different views

(b) Correspondences

Figure 1. A view of the task of multiple motion estimation and the

performance of the proposed method.

second assumption is that the inliers are not few in number

comparing to the whole dataset. The RANSAC algorithm

converges to the model which can be fit by most of the data

due to the random sample strategy.

A drawback of RANSAC algorithm is that it can only

tackle single motion estimation. When there are more than

one motions, RANSAC may fail to extract either one. Con-

sidering the real situation that the whole matched set in ob-

ject motion estimation may contain several motions, the tra-

ditional RANSAC algorithm is extended by iteratively es-

timating the most salient inlier from the rest of the data

[10]. However, iteratively using RANSAC (or its exten-

sion) to estimate multiple motions has several drawbacks

[9]. Reconsidering the problem of single and multiple mo-

tion estimation, the RANSAC and its various extensions,

e.g. [11, 7, 12], are trying to estimate the maximum con-

sensus subset or multiple different consensus motions in the

parameter space.

As known in Functional Analysis, not only pair of

matching can been seen as a point in spatial space, but also
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Figure 2. The homography transformation.

motions can be seen as points in motion parameter space.

Take homography for example, the motion is usually for-

mulated as a 3 by 3 matrix:

𝐻𝑎𝑏 =

⎡
⎣

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

⎤
⎦ (1)

and ℎ33 = 1 usually. The homography describes the re-

lationship between a plane in different view, as shown in

Figure 2

In this paper, we extend the traditional RANdom SAm-

ple Consensus (RANSAC) algorithm, considering the con-

sensus in motion parameter space, and propose a CLUster

MOtion Consensus (CLUMOC) algorithm to automatically

extract multiple motions and remove the outliers. Differ-

ent to the traditional RANSAC-like algorithms, our algo-

rithm firstly cluster the matched points into several clus-

ters (subsets). For each cluster, we estimate the model pa-

rameter. Then the models of each cluster are agglomerated

adaptively together with two criteria: the similarity between

models which inherits from the traditional RANSAC and

the similarity between the data subsets. Every subset com-

petes others to attract data into its cluster under an fixed

toleration error threshold. The data in unsanitary clusters

will be rejected or absorbed by other clusters. After sev-

eral iterations, the clusters will converge and the multiple

parameters are extracted from each of them. Our method

have some advantages: 1) it simultaneously estimates the

multiple motions and reject outliers; 2) with the data space

clustering, the proposed method is robust to high number

of outliers and errors caused by rough matching; 3) the

proposed method can distinguish false transformations and

similar transformations which usually caused by iterative

RANSAC.

This paper is organized as follows: Section 2 will briefly

introduce the traditional RANSAC algorithm. In Section 3,

we will discuss the some issues of the data and the motion.

Section 4 proposes our method. Section 5 shows the exper-

imental results and Section 6 concludes this paper.

2. RANSAC Review
Let 𝑃 = {𝑝𝑖 = (𝑚𝑖 = (𝑥𝑖, 𝑦𝑖, 1),𝑚

′
𝑖 = (𝑥′𝑖, 𝑦

′
𝑖, 1)∣𝑖 =

1, 2, ..., 𝑛} be a set of matched points between two images

𝐼 and 𝐼 ′ obtained by [6]. The initial matching method does

not consider any spatial or transformation information, and

always leads to a lot of outliers. Given a fixed model and its

parameters, the RANSAC algorithm assumes that there is a

subset (”inliers”) of the observed data, which fit a parameter

of the model. The algorithm randomly samples a subset of

the data, denoted as 𝑆 . The given model then fitted by

this subset. All data in 𝑃 are tested by the fitted model

and the well fitted data will reconstruct the subset 𝑆. This
procedure iterates several times until the parameter of the

model converges.

For a data point 𝑥 in 𝑃 and a model parameter 𝐻 . The

fitting error from the model 𝐻 to the data point is defined

as 𝐿(𝐻,𝑥), which can be:

𝐿𝑖 = ∥𝐻𝑚𝑖 −𝑚′
𝑖∥ (2)

for homography model and ∣ ⋅ ∣ denotes the 𝐿2 norm here.

And given a set of points 𝑃 , the error between a model 𝐻
and the set 𝐶 is:

𝐿 =
∑
𝑖

𝐿𝑖 =
∑
𝑖

∥𝐻𝑚𝑖 −𝑚′
𝑖∥ (3)

3. Correspondence between points and mo-
tions

A matching pair can be seen as a new point 𝑝 =
(𝑥, 𝑦, 𝑥′, 𝑦′). And all pairs of matching consist a set 𝑃 =
{𝑝𝑖∣𝑖 = 1, ..., 𝑛}. Take a sub-set of 𝑃 , the set 𝑆 for ex-

ample, we can extract a motion from 𝑆 by minimize the

following loss function:

�̃� = 𝑓 (𝑆) = argmin
𝐻

⎛
⎝∑

𝑝𝑖∈𝑆
∥𝐻𝑚𝑖 −𝑚′

𝑖∥
⎞
⎠ (4)

where 𝑚 = (𝑥, 𝑦, 1) and 𝑚′ = (𝑥′, 𝑦′, 1). It can be found

that there is a mapping 𝑓 from a set 𝑆 to a motion 𝐻 .

Given a motion𝐻 and a error criterion 𝜀, we can find the
matching pairs which belong to the motion:

𝑆′ = 𝑔𝜀(𝐻) = {𝑝∣∥𝐻𝑚−𝑚′∥ < 𝜀, 𝑝 ∈ 𝑃} (5)

where 𝑝 = (𝑥, 𝑦, 𝑥′, 𝑦′),𝑚 = (𝑥, 𝑦, 1) and𝑚′ = (𝑥′, 𝑦′, 1).
Therefore, the set 𝑆′ is a subset of 𝑃 and there is a mapping

𝑔𝜀 from a motion to a subset 𝐺.

The two mappings 𝑓 and 𝑔𝜀 consist the correspondence

between subset of matching pairs and motion parameter, as

shown below:

𝑆
𝑓⇒𝐻

𝑔⇒𝑆′
𝑓⇒𝐻 ′ ⋅ ⋅ ⋅ (6)
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Figure 3. The correspondence between set of matches and mo-

tions.

Based on the correspondence, as shown in Figure 3, we

can find that the subset of matching pairs and the point in

motion parameter space are dual mathematically, therefore,

a good motion estimation should consider both the consen-

suses in spatial space and the motion parameter space, that

the sets 𝑆, 𝑆′, etc. and the motions 𝐻 , 𝐻 ′, etc. should both

consensus.

Before proposing our algorithm, we define several dis-

tance below:

∙ Set to Set Distance: Let 𝑆 and 𝑆′ be two subsets of

𝑃 , the distance between them is defined as below:

𝑑𝑠(𝑆, 𝑆
′) = 1− ∣𝑆 ∩ 𝑆′∣

min (∣𝑆∣ , ∣𝑆′∣) (7)

∙ Set to Set Distance: Let 𝐻 and 𝐻 ′ be two mo-

tions (homography matrixes) which estimated by the

RANSAC algorithm from subset 𝑆 and 𝑆′ under

threshold 𝜀, the similarity of 𝐻 and 𝐻 ′ is defined as

follow:

𝑑ℎ(𝐻,𝐻 ′) = 𝑑𝑠(𝑔𝜀(𝐻), 𝑔𝜀(𝐻
′))

= 1− ∣𝑔(𝐻)∩𝑔(𝐻′)∣
min(∣𝑔(𝐻)∣,∣𝑔(𝐻′)∣)

(8)

Because the motion parameter space is not an Euclid space,

therefore the motion distance is defined based on the set dis-

tance. The definitions benefit us to measure the distance (or

similarity) between two subsets of matches or the motions.

4. The Proposed Method
Our algorithm can start with any local feature detector,

descriptor and initial matching algorithm. In this paper,

we use SIFT [6] and the key points are matched by the

NN-DT (Nearest Neighbor Distance Threshold) algorithm

[6, 13, 9]. Let the matched points pairs be 𝑃 = {𝑝𝑖 =
(𝑥𝑖, 𝑦𝑖, 𝑥

′
𝑖, 𝑦

′
𝑖)∣𝑖 = 1, 2, ..., 𝑁}. The task of our algorithm is

to automatically estimate the motion(s) and reject outliers.

The original RANSAC algorithm assumes that the data

points are uniformly distribute in the data space, and ig-

nores the spatial relationship between the data points. Con-

sidering that the points matched in the 2D image plane, the

points locating nearly should probably have same transfor-

mation. Thus, instead of random sample points from the

whole set, our algorithm starts with clustering the data by

location. We employ K-means clustering [16] to randomly

generate 𝑀 ′ subsets for T times, and get M = 𝑀 ′ ∗ 𝑇 sub-

sets 𝐴 = {𝑆1, 𝑆2, ..., 𝑆𝑀 ′∗𝑇 }. Using clustering instead

of random sample has some advantages: 1) the samples in

one cluster are more probably belonging to one consensus.

2) it can reject most of the outliers at the beginning with

RANSAC. 3) it increases the convergency speed. Besides,

the performance is robust to𝑀 ′ and 𝑇 .
We calculate the homography matrix 𝐻 for each sub-

set and get a group of joint data 𝐽 = {𝐷𝑖} =
{(𝑆1, 𝐻1) , (𝑆2, 𝐻2) , ..., (𝑆𝑀1

, 𝐻𝑀1
)} where 𝑀1 ≤ 𝑀 .

We take away the subsets which fail to estimate a motion

by RANSAC. Each of the joint point in 𝐽 represents one

homography transformation. Some of them may represent

the same one. We call this step as estimation step (Step I).

The next step is similar to the RANSAC algorithm. We

test every points 𝑥𝑖 in 𝐶 by each of the transformation

calcuated in the Step I. The points 𝑥𝑗 which fitting error

by 𝐻𝑖 is less than 𝜀 will gathered together to reconstruct

the support data of 𝐻𝑖, denoted as 𝐴′ = 𝑆′1, 𝑆
′
2, ..., 𝑆

′
𝑀1.

The joint data set 𝐽 is updated by the fitting test: 𝐽 ′ ={
𝐷𝑖

′} =
{(

𝑆1
′, 𝐻1

)
,
(
𝑆1
′, 𝐻1

)
, ...,

(
𝑆𝑀1

′, 𝐻𝑀1

)}
. We

call this step as reconstruction step (Step II).

The major difference between our method and the tra-

ditional RANSAC algorithm is the following step, which

we call the clustering step (Step III). The similarity mea-

surement in the joint space depends on the two elements: 𝑆
and 𝐻 . We separate them to measure the similarities of the

joint point. As we defined, for each point 𝐷′
𝑖 and 𝐷

′
𝑗 in 𝐽

′,
the set to set similarity of them is 𝑑𝑠(𝑆, 𝑆

′). The similar-

ity is symmetric and we calculate every pair points in 𝐽 ′ to
generate the set to set similarity matrix 𝐺𝑠 = (𝑑𝑠(𝑆

′
𝑖, 𝑆

′
𝑗)).

Similar, we calculate the parameter similarity of every pair

points in 𝐽 ′ to generate the parameter similarity matrix

𝐺𝑝 = (𝑑ℎ(𝐻𝑖, 𝐻𝑗)). Then two strategies are used to cluster
the joint points in 𝐽 ′:

1. If the similarity of 𝐻𝑖 and 𝐻𝑗 is less than a threshold

𝜀𝑝, we will merge 𝑆′𝑖 and 𝑆
′
𝑗 together to generate a new

data set 𝑆𝑖′′. By testing every two transformations in

the joint data set, we get a new subset group 𝐴′′ =
{𝑆′′1 , 𝑆′′2 , ..., 𝑆′′𝑀2

} and𝑀2 ≤𝑀1.

2. The second strategy is used on the subset group 𝐴′′.
If the similarity of 𝑆′′𝑖 and 𝑆′′𝑗 is lower than a thresh-

old 𝜀𝑠, 𝑆
′′
𝑖 and 𝑆′′𝑗 will be merged together and we get

𝐴′′′. After the two strategies, the initial subset group

is updated to the new subset group 𝐴 = 𝐴′′′.

We iterate these three steps several times until the sub-

set group 𝐴 converges. The number of the element in the

subset group 𝐴 is the number of the motion. All the data
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points will be retested by the estimated transformations.

The error between every data point and transformation is

calculated using equation (2), noted as 𝐸 = (𝐸(𝑖, 𝑗)), and
𝐸(𝑖, 𝑗) = 𝐿(𝐻𝑗 , 𝑥𝑖). If 𝐸(𝑖, 𝑗) multiplied by a threshold 𝑡
is no greater than the error between 𝑥𝑖 and any other trans-

formations and 𝐸(𝑖, 𝑗) is less than the threshold 𝜀, we say
that the data point 𝑥𝑖 distinctively belong to transformation

𝐻𝑗 . The threshold is set to 1.2 empirically in our exper-

iments. Finally, we reconstruct the motions by the data

which distinctively belong to them.

5. Experimental results
In this section, we illustrate the stage results of the pro-

posed method. The key points are extracted and matched

following the algorithm in [6], implemented by Andrea

Vedaldi and Brian Fulkerson [13] with the default param-

eters.

Firstly, We compare the proposed algorithm with the tra-

ditional RANSAC and the iterative RANSAC, as shown in

Figure 4. The traditional RANSAC only extract the most

salient motion from all pairs of matching. The other two

motions are ignored. The iterative RANSAC can extract

one more motion, while it still fails in another one. We an-

alyze that two reason makes it failing: 1), the procedure of

motion estimation is one by one, therefore there is no com-

petition between motions to fight for matches; 2), because

of no consideration of motion consensus, the RANSAC or

iterative RANSAC algorithm is not robust to the matches in-

cluding much noise. While, the proposed algorithm works

well in this situation.

We show the important steps of the proposed algorithm.

We use two images with three motions to illustrate the pro-

posed method, as shown in Fig 5-(a). The initial matching

results are full of errors and we can not distinguish good

matches from the outliers, as shown in Fig 5-(b). For mul-

tiple motions problem, the traditional RANSAC algorithm

can only extract one of them, and is always not stable be-

cause of the random sampling strategy. We apply RANSAC

to the initial matching and get the result shown in Figure 5-

(c). Only one motion is found and others are considered as

”outliers” and rejected. Using k-means cluster the data into

several groups in the spatial space instead of random sam-

pling is an important step in our algorithm. We cluster the

data by the location of the points in the first image, as shown

in Figure 5-(d). The points near each other always belong

to same motion. We calculate the homography matrix 𝐻𝑖

for each group by RANSAC algorithm. The clusters which

contain less than 10 pairs of matches will be ignored. Then,

all the matching pairs are tested by each of the homography

matrix to find which points belong to a specific motion, as

shown in Figure 5-(e) in different colors and markers. Here,

a pair of matching points could belong two or more motions,

we does not distinguish which one it should be in, but leave

(a) The result of RANSAC

(b) The result of iterative RANSAC

(c) The proposed algorithm

Figure 4. These figures are comparison among RANSAC, iterative

RANSAC and the proposed algorithm.

this problem in the end, as mentioned in last section. Af-

ter several iterations, we get the final resutls, as shown in

Figure 5-(f). All the three motions are estimated correctly

and the outliers are all rejected by our algorithm. The sim-

ilar motions are clustered together by the proposed method

and the whole process is less than 40s including drawing

markers and lines.

We also test our algorithm in some images, as shown in

Figure 6. The images in Figure 6-(a),(b) and (c) come from

[8] and [9] respectively. Figure 6-(d) shows two images

with two same objects in different view with two differ-

ent objects. Our algorithm find the correct motions. Figure

6-(f) shows two images with three same objects in similar

views. Our algorithm can distinguish them with effectively.

The proposed method is more effective for objects with rich

textures, as shown in Figure 6-(e).

The parameters in our method is set as follows: 𝑀 = 40,
𝑇 = 2, 𝜀 = 0.001, 𝜀𝑝 = 1, 𝜀𝑠 = 0.2, 𝑡 = 1.2. We employ

vlfeat [13] and the computer vision libs of Kovesi [5] to

implemente our algorithm.

6. Conclusion

In this paper, we proposed a novel algorithm termed as

CLUMOC (CLUster Motion Consensus). The motion we
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(a) The two images (b) The initial matching result by NN-DT

(c) Correspondences by RANSAC (d) Clustering the key points location in the left image

(e) The motions estimated from the clusters (f) The final result of the proposed method

Figure 5. These figures show the stage results of the proposed method. (This figure is best view in color and 400% magnification.)

(a) The leuven castle (b) Table, from [9]

(c) Three fold page, from [9] (d) Two post cards

(e) Three boards (f) Two post cards and a book

Figure 6. These figures show the results of the proposed method. (This figure is best view in color and 400% magnification.)

extract is not only consensus in data space, but also in mo-

tion parameter space. We novelly consider the multiple mo-

tions estimation as bottom up clustering problem and em-

ploy two distance measurement to cluster the sub samples

together: the similarity of motion in parameter space and

the similarity of the set in data set space. We use K-means
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to cluster the samples instead the traditional ”Random Sam-

ple” strategy to make the algorithm more efficient and ef-

fective. The empirical study shows that our method is very

effective in various situations. Our method is implemented

for the homography model, and we will apply the proposed

framework for the epipolar geometry model in future work.
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