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Abstract—Learning low-dimensional feature representations is
a crucial task in machine learning and computer vision. Recently
the impressive breakthrough in general object recognition made
by large scale convolutional networks shows that convolutional
networks are able to extract discriminative hierarchical features
in large scale object classification task. However, for vision tasks
other than end-to-end classification, such as K Nearest Neighbor
classification, the learned intermediate features are not necessary
optimal for the specific problem. In this paper, we aim to exploit
the power of deep convolutional networks and optimize the output
feature layer with respect to the task of K Nearest Neighbor
(KNN) classification. By directly optimizing the kNN classification
error on training data, we in fact learn convolutional nonlinear
features in a data-driven and task-driven way. Experimental re-
sults on standard image classificatioin benchmarks show that the
proposed method is able to learn better feature representations
than other general end-to-end classification methods on kNN
classification task.

I. INTRODUCTION

Learning low-dimensional feature representations is always
a crucial task in machine learning and computer vision. With
powerful and discriminative features, we can achieve good
performance with very simple classifiers that is comparable
to those obtained by more sophisticate and complex models.
Within those naive models, K Nearest Neighbor (kNN) algo-
rithm is a simple yet powerful classification algorithm that
works surprisingly well in many pattern recognition and com-
puter vision tasks. However, there is an important assumption
in kNN, that is, two instances of the same category should be
close in Euclidean space. The bad news is that this assumption
usually does not hold in real data applications. Take the image
classification task for an example, due to the great variations
in object size, view, deformation and background clutters,
directly compute the Euclidean distance on the raw pixels and
perform kNN classification based on this similarity measure
will not work well in most real cases. Even with more carefully
designed feature representations, such as SIFT [1], HOG [2],
and Bag-of-Words [3], the solution is not necessarily optimal
as it is not tailored to our training data and our end-goal of
kNN classification.

One way to improve the performance of kNN is learning
more suitable similarity metrics in a data driven paradigm,
which is commonly referred to as metric learning [4], [5] in the
machine learning literature. Metric learning aims at learning a
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Fig. 1: Learning nonlinear metric for kNN classification with
Convolutional Networks.

similarity/distance metric that pushes data instances of differ-
ent classes away from each other while pulls data instances of
the same class into a compact neighborhood domain. Maha-
lanobis distance learning is extensively studied in the metric
learning field. The Mahalanobis distance between data point x
and y can be expressed as dy/(x,y) = /(x — y)TM(x — y),
where M is a semi-definite positive matrix that to be learned in
an optimization algorithm. By decomposition of M = ATA,
the Mahalanobis distance can be easily interpreted as follows:
first project data x and y into a new space with linear
transformation A; then the Euclidean distance is computed
between the projected data. In this way, Mahalanobis distance
learning is in fact equivalent to learning a linear transforma-
tion. However, due to the complexity of real image data, linear
transformation is usually not sufficient to capture the variations
in the data. Kernelization is a commonly used method to turn a
linear approach to its non-linear counterpart. In general, kernel
methods performs better than their linear ones. However, the
computational cost is higher and more designation efforts are
needed for suitable kernels.

An alternative way is to learn better feature representations
that directly tailored to the kNN classification task. From the
feature learning point of view, we can adopt more powerful
deep models and train the model with respect to our final goal.
There have been a great deal of deep models proposed [6],
to name a few, RBM [7], Auto-Encoder [8], DBN [7] as
well as Convolutioinal Networks [9]. Recently, deep convo-



lutional networks have made great breakthrough in object
recognition task, such as object classification [10], [11], object
detection [12] and semantic segmentation [13]. With sufficient
labeled training data, such supervised deep models successfully
learn semantically meaningful feature representations from raw
data.

In this paper, we propose to learn low-dimensional feature
representations by exploiting the powerful convolutional net-
works, as is illustrated in Fig. 1. In order to discriminatively
train the networks, we adopt the neighborhood component
analysis (NCA) [14] algorithm as our supervised loss function.
As is pointed out by [14], NCA optimizes the expected leave-
one-out classification error of kNN, which forces the networks
learn to work well under kNN classification. Another good
property of NCA loss is that it is differentiable, making it
possible to efficient learn the parameters of the network.

The outline of the remainder of this paper is as follows.
In Section II, we discuss the related work on metric learning
and representation learning. Section III presents our proposed
learning method with deep convolutional networks, which
aims to provide an effective feature embedding model that
is amenable to kNN classification. In Section IV we present
the experimental results on two image classification datasets.
Section V draws the conclusion of this paper and discusses the
potential applications and future work.

II. RELATED WORK

In this section, we discuss the related work as well as their
differences to our model.

The topic of learning similarity/distance metrics and feature
representations has been widely studied for many years. Ma-
halanobis metric for clustering (MMC) [15] is the first metric
learning algorithm proposed by Xing et al.. By formulating the
problem as a convex optimization problem, their algorithm is
able to find the global optima using a gradient ascent and
iterative projection algorithm. Although obtains good results
on clustering problem, MMC is not especially suitable for
kNN classification as the model tries to minimized the distance
between all similar pairs, without considering neighborhood
relationship. Relevant component analysis (RCA) [16] learns
the Mahalanobis distance on the so called chunklet, which
is a small set of data points with identical but unknown
label. RCA compresses the data along the dimensions of the
highest irrelevant variability by assigning high weights on
relevant dimensions and low weights on irrelevant dimensions.
Information-theoretic metric learning (ITML) [17] learns the
Mahalanobis distance by minimizing the LogDet divergence
subject to linear constraints. [18] proposes a Hamming distance
metric learning algorithm that is able to directly learn Ham-
ming binary codes by optimizing a piecewise smooth upper
bound on empirical loss.

Neural networks are also used to learn similarity metric and
feature embedding. [19] presents a method of convolutional
networks for discriminatively learning a similarity metric for
face verification. The algorithm is formulated as an energy
based model (EBM) and the loss function is defined as the
L1 distance between the projected data for a pair of examples.
DrLim [20] further extends this model to the dimensionality
reduction problem. The loss function of DrLim is defined so

that similar examples tend to be closer and dissimilar examples
tend to be further from each other. This model is able to
optimize the convolutional feature transformer with respect to
the metric learning objectives. The learned model projects raw
image data onto a low-dimensional feature space which can
be further used in other vision tasks such as classification and
recognition. However, these algorithms are designed for the
face verification and dimensionality reduction problems, thus
the learned features are not optimal for kNN problem.

There have been many works that concentrate on learning
specific metrics for kNN classification. Neighborhood Compo-
nents Analysis (NCA) [14] is designed to optimize a stochastic
variant of the leave-one-out kNN score on the training set.
In NCA, the learning algorithm uses mahalanobis distance,
indicating that NCA 1is in fact a model learning a linear
transformation.

Inspired by the idea of NCA, large margin nearest neighbor
(LMNN) [21] aims at learning a Mahalanobis distance for KNN
classification. LMNN incorporates the large margin criteria of
support vector machine into their metric learning framework.
The main idea of LMNN is to design a new loss function
so that for a pre-defined neighborhood region containing K
positive examples, it tries to push the negative samples out
of this region. Compared to the non-convex NCA algorithm,
LMNN formulates the problem as a convex optimization
problem and is solved by semi-definite programming (SDP).
Although LMNN achieves good performance for kNN task, it
is essentially a linear model learning the Mahalanobis distance.

In order to better model the complex real image data,
Salakhutdinov et al. extend NCA to nonlinear NCA [22] by
learning a deep neural network. Nonlinear NCA algorithm
contains two important stages, namely the pretraining stage
and the fine-tuning stage. In the pretraining stage, Restricted
Boltzmann Machine (RBM) is trained layer by layer in an
unsupervised manner. After that, the stacked RBMs are stacked
to form a deep neural network, which is further fine-tuned in
a supervised way. The main differences between our model
and nonlinear NCA are that our model learns discriminatively
trained convolutional nonlinear features and models natural
images better. For natural images of normal size, RBM has to
work at patch level to reduce the dimensionality of the input
space. The convolutional networks can be efficiently applied
to full image due the parameters sharing. Another advantage
is that it preserves the spatial information of 2D image, giving
rise to better feature representations. Moreover, convolutional
networks usually need not pretrainning procedure, greatly
simplifying the development of models. These differences also
indicate that our model is able to handle more complex image
data and larger dataset for kNN classificaton.

There are many other metric learning and feature embed-
ding algorithms that are not covered in this section, we refer
the reader to [4], [5] for more detailed discussion.

III. PROPOSED METHOD
A. Convolutional nonlinear NCA

Convolutional networks [9] is motivated by the Hubel and
Wiesel” simplex and complex cell model of cat’s visual cortex.
In most cases, convolutional networks are discriminatively



trained in a supervised way, using softmax cost or radius basis
function classifiers. Afterwards the learned intermediate layer
features can be used in other vision applications, such as image
retrieval, ranking, object detection as well as semantic segmen-
tation. However, these end-to-end frameworks are generally
trained with respect to the classification task, thus suboptimal
to these specific problems, e.g., the kNN classification. In order
to learn feature embedding that performs well for the kNN
classification task, we should build new training objectives that
directly optimize kNN classification error.

In this paper, we choose neighborhood component analysis
(NCA) [14] as our training loss function. Given N pairs of
training examples {(x;,y;)|¢ = 1,---, N}, for an example x;,
the probability that example x; and x; belong to the same
category is defined as
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Where F(-) is the nonlinear transformation parameterized by
deep convolutional networks. From Eqn. 1, the probability
that example x; and x; fall into the same class is inversely
proportional to the Euclidean distance between the learned
features.

In kNN classification, the decision of the category for a test
example is determined by counting its K nearest neighbors
and find the most frequently present class. For NCA, the
probability that example x; belonging to class ¢ correctly
classified can be defined as
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where Yij = 1if Yi = Yy, and Yij = 0 if Yi 7é Yj- The NCA
loss function defined in Eqn. 3 is differentiable and continuous,
making it suitable for gradient based optimization in neural
network training.

Neighborhood component analysis optimizes the expected
Leave-One-Out(LOO) classification error which can be seen
as a stochastic variant of kKNN. By stochastic neighborhood
assignment in Eqn. 1, the model is forced to adapt to the
local structure of the data distribution and improve the kNN
classification performance.

B. Model Learning

In this section we present the details of learning the
convolutional network with respect to the NCA loss function so
that the learned feature embedding will perform well for kNN
classification. Denote the convolutional network as a complex

nonlinear transformation F'(x,0), where © is the parameter
of the network.

Differentiating loss enyc 4 with respect to network param-
eters © and using the chain rule,
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The second term in Eqn. 4 can be easily computed using back-
propagation algorithm. The first term is the gradient of NCA
error with respect to the output features of the network. As
NCA cost is differentiable, we can derive this term as follows
denca 2
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where D;; € RN*4 is a matrix with the ith row defined
as 2(F(x;,0) — F(x;,0)) and the jth row defined as
2(F(x;,0) — F(x;,0)). All other elements of D,; is zero.
F; is defined as

N
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Having computed the gradient of NCA loss function with
respect to the parameters of the convolutional network, we
can directly apply gradient-based learning rule to update the
model parameters. For learning convolutional network, one
of the most practical learning algorithm is the stochastic
gradient descent (SGD) algorithm, which learns the network
by sequentially processing small mini-batch of the data. As
SGD usually converges fast with small memory requirements,
we adopt SGD in all our implementations and experiments.

One important problem in learning the convolutional net-
work is that we have to shuffle the dataset during model
training so that the mini-batch based learning algorithms is not
overfitted to the order of data instances. In our experiments,
failing to do this sometimes leads to worse models on the same
dataset.

The learning rate is an important parameter that has a
direct influence on the training of the model. Far sake of
faster learning, we usually initialize the learning rate by finding
the largest learning rate that the objective function decreases
steadily. In most of the learning process, 0.01 or 0.001 are
good candidates for initializing the learning rate. After several
epochs of learning, the NCA objective function is likely to
stop decreasing. In this cases we interrupt the learning and
scale the learning rate by 0.1 and resume the training of the
network model.

We monitor the learning process by evaluating the network
on a hold-out validation set. Early stopping strategy is adopted
to avoid overfitting.

In order to speed up the learning of the network, we also
adopt the momentum learning. In all of our experiments, we
use 0.9 as the momentum.

IV. EXPERIMENTS

In this section, we evaluate our proposed method for
kNN classification on two widely used classification dataset,
the MNIST [9] handwritten digit dataset and CIFAR-10 [23]
dataset.



A. Network Architectures

Designing the convolutional architecture is an important
step in developing neural network based algorithms, as there
are many hyper-parameters for the network configuration.

The number of layers in the network has a direct influence
on the performance of the model. Deeper models tend to be
more powerful and are able to model more complex data.
However, deeper models are more difficult to train due to
the effect of vanishing grading problem. In our experiments
we increase the number of layers gradually and stop when
the model begins to show evidences of overfitting. The types
of network layer are also an important factor in designing
deep convolutional networks. Following the successful models
in the literature, we first apply several convolutional layers
and pooling layers, then several fully connected layers are
appended to the network.

The deep convolutional network we used for MNIST
dataset is consisted of eight layers: three convolutional layers
each followed by a max-pooling layer, the last two layers are
fully connect layers. Each convolutional layer have 32 5 x 5
filters, and the stride is set to (1, 1). For the max-pooling layer,
the window size of the pooling region is 3 with a stride of
(2,2). The first fully connected layer has 128 hidden units,
and the last fully connected layer has 64 hidden units serving
as the final output feature representations of the network. We
use tanh function as the activation function for each neuron
layer.

For CIFAR-10 datasets, the network architecture is similar
to that of MNIST. The first six layers are the same as MNIST,
the seventh layer is a fully connected layer with 200 hidden
units, and the last layer is a fully connected layer with 100
hidden units. This network is more complicated than that of
MNIST in order to handle the more realistic natural images
from CIFAR-10 dataset.

B. Evaluation on MNIST and CIFAR-10

1) MNIST: MNIST [9] is a standard benchmark dataset
that is widely used in classification, clustering as well and
manifold learning algorithm. We report the test error on the
test set in Table I. To illustrate the advantage of learning
convolutional nonlinear feature using NCA for kNN classifi-
cation, we have trained another convolutional network sharing
the same architecture with the widely used cross entropy
loss. After training the network, the output of the last full
connection layer is used as the features for kNN classification.
The result is present in Table I with the name "CNN features
+ 1-NN*. As expected, our proposed method outperforms the
normal convolutional network trained with softmax classifier.
The comparison to other method published on MNIST further
shows that by directly optimizing convolutional network with
respect to the kNN classification task, our proposed method is
able to achieve comparable performance using the simple kKNN
classifier. Noting that our method also performs better than
the nonlinear NCA method [22], which needs unsupervised
layerwise pretraining and fine tuning. We ascribe this to the
convolutional architecture which models 2D image structure
better.

TABLE I: Experimental results on MNIST handwritten digit
Recognition

[ Algorithms H Test Error (%) [
AE+wd [24] 1.68
DAE-b [24] 1.57
RBM [24] 1.30
CAE [24] 1.14
Deep AE [8] 1.40
DBN [7] 1.20
Euclidean kNN [25] 2.12
LMNN [25] 1.18
NonLinear NCA (7-NN) [22] 1.01
CNN features + 1-NN 1.28
Ours (1-NN) 0.83
Ours (10-NN) 0.75

TABLE II: kNN classification results of the proposed method
on CIFAR-10 datasets

l Algorithms H Test Accuracy (%) ‘
Sparse AE [27] 734
Improved LCC [28] 74.5
Kmeans [27] (1600 features) 779
Hamming Metric [18] 78.0
Kmeans [27]+1-NN (1600 features) 57.3
CNN features +1-NN (1600 features) 73.6
Qurs (1-NN) 75.2
Ours (10-NN) 78.3

2) CIFAR-10: CIFAR-10 [23] is an established color image
dataset collected from the 80 million tiny images [26]. The
dataset is composed of 60000 32 x 32 color images, with 50000
images used for training and 10000 images used for testing. As
the CIFAR-10 dataset contains more realistic natural images
which is more complex than MNIST, we use a larger convolu-
tional networks. We present the evaluation results in Table II.
Noting that since we are evaluating the algorithms under the
senario of kNN classification, we do not compare our methods
with those using more powerful classifiers for sake of fairness.
Again we use convolutional networks trained using softmax as
our baseline. It can be seen from Table II that the proposed
method achieves better results and is comparable to the state
of the art.

C. Analysis and discussion

Quantitative evaluation results on MNIST and CIFAR-10
show that effectiveness of the proposed method. In this section,
we analyze the convolutional networks to see what it has
learned.

Understanding what the deep convolutional models have
learned is a difficult problem and still has a long way to go.
Currently one of the most efficient and reliable solution is
visualization.

Fig 2 shows the filters learned from MNIST digits and
CIFAR-10 dataset. These filters are the weights from the first
convolutional layer of our neural networks with the size of
5 x 5. From the pictures we can conclude that the network



AN udn
FMET¥# il
=W
= fT3O™
HEESNVaN
EF

(b) MNIST filters

0|
E
H

<
6]
ﬂﬂlllﬂllll
7| p|313]2|29|8]5]5
4171717191913]17]7]8

(a) MNIST images

[ SNM LW [w N[O
ENNENEN
P s[L]W[N]—[s)
e[ [ WN|—[o)
SIS EEYEIRINEY
EHNHHHE

Sa® NadN e

ENENRE
HNEEER
EEENE
HENEN

NEdNNE

(c) CIFAR-10 images (d) CIFAR-10 filters

Fig. 2: 5 x 5 filters of the first layer learned from MNIST and CIFAR-10 using the proposed algorithm

is able to learn edge/texture like filters that capture low level
vision concepts.

In order to illustrate the effect of the proposed learning
algorithm more clear, we set the dimensionality of the output
layer to 2 and draw the scatter graph of the projected MNIST
testing data. For comparison, we also plot the results obtained
by principle component analysis (PCA), probability principle
component analysis (PPCA), Linear Discriminant Analysis
(LDA), Large margin nearest neighbor (LMNN) [21] and
Neighborhood Components Analysis (NCA) [14].

From Fig. 3, we can clearly see that global distance
learning methods such as PCA, PPCA and LDA perform worse
than LMNN, NCA and the proposed method. The reason is
that neighborhood relationship is considered so that the learned
model is able to adapt to the local data structure. Then it is
not surprising that these neighborhood-aware methods works
better for KNN classification than other methods. Furthermore,
it can be seen that our proposed method performs better than
LMNN and NCA, as data of different classes are more clearly
separated.

V. CONCLUSION

We have present a framework for learning convolutional
nonlinear features for K nearest neighbor (kNN) classification.
We have shown that by using discriminatively trained deep
convolutional networks as representation model, we are able to
learn more powerful feature embedding than those linear mod-
els and unsupervised models. Furthermore, adopting neigh-
borhood component analysis (NCA) as our loss function has
endowed us with the ability to learn feature representations that
is specific to kNN classification task. As the kNN classification
is widely used in many real applications in computer vision,
our model can be used in any neighborhood-aware vision
applications to improve the performance of nearest neighbor
classifiers. There are still several problems left unsolved.
First, the NCA objective is known to be non-convex, making
our learning algorithm suffering from local-optima. Another
problem is that our learned feature are real valued vectors,
which is not very efficient in large scale applications compared
with learned binary codes. These problems will be tackled in
our future work.

(a) PCA (b) PPCA

(c) LDA (d) LMNN

(e) NCA

(f) Our method

Fig. 3: This figure shows the 2-dimensinal features produced
by PCA, PPCA, LDA, LMNN, NCA as well as our proposed
method. Data points are MNIST digits and the different colors
indicate the classes of the data points.
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