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Abstract—We propose a foreground segmentation method
based on convolutional networks. To predict the label of a pixel
in an image, the model takes a hierarchical context as the input,
which is obtained by combining multiple context patches on
different scales. Short range contexts depict the local details,
while long range contexts capture the object-scene relationships
in an image. Early means that we combine the context patches
of a pixel into a hierarchical one before any trainable layers
are learned, i.e., early-combing. In contrast, late-combing means
that the combination occurs later, e.g., when the convolutional
feature extractor in a network has already been learned. We find
that it is vital for the whole model to jointly learn the patterns
of contexts on different scales in our task. Experiments show
that early-combing performs better than late-combing. On the
dataset1 built up by Baidu IDL2 for a latest person segmentation
contest, our method beats all the competitors with a considerable
margin. Qualitative results also show that the proposed method
is almost ready for practical application.

I. INTRODUCTION

Deep convolutional neural networks have recently shown
their advantages over classic methods in terms of various
computer vision tasks, e.g., image classification and object de-
tection [1]. Particularly, Krizhevsky et al. [2] achieved a major
breakthrough in image classification using deep neural net-
works with five convolutional stages and three full-connected
layers. As the increasing of training data, the development of
GPU for scientific computation and the introduction of the
drop-out technique, it becomes possible to train such a big
model with tens of millions of parameters.

Image segmentation has always been one of the key prob-
lems in the computer vision community. For each pixel in an
image, one has to predict a label indicating which segment
the pixel is located in. Image segmentation tasks can be
grouped into various sub-categories according to their specific
characteristics. Object segmentation requires the pixels of dif-
ferent objects to be distinguished, while semantic segmentation
(image labeling) does not [3]. In some tasks, there are only two
available classes to predict, e.g., foreground segmentation [4]
and iris segmentation [5], while in other tasks, there are more,
e.g., scene labeling [6], [7], [8].

Considering the relationship between a pixel and other
pixels is a widely-used approach to image labeling. Classically,

1It will be released at http://www.cbsr.ia.ac.cn/users/ynyu/dataset
2http://idl.baidu.com

Fig. 1. An overview of our method. The hierarchical context (on three scales)
of each pixel is captured spontaneously by a three-column deep convolutional
network, which is responsible for predicting the label (person or background)
for each pixel of an image.

one often resorts to graph-based methods to capture such
relationships. For example, He and Zemel [9] extended the
standard conditional random field algorithm to model the
relationship between a pixel and its neighbors, namely, to
impose spatial smoothness. This can be seen as considering the
context of each pixel within a small local region. Limited by
the complexity in computation, these sophisticated graph-based
methods can hardly capture long range contexts in an image
directly. Hierarchical labeling on multiple scales is a way out
of this problem [10]. However, the performance still depends
on the manually designed hierarchies of segmentations.

One natural and elegant way to build the context hierarchy
of a pixel is to present a series of patches in raw pixels on dif-
ferent scales (as shown in Fig.1), which allows automatically
learning the patterns of contexts to distinguish different kinds
of pixels. Unlike classic graph-based methods, convolutional
networks can efficiently handle these raw pixel patches, free
from the design of segmentation hierarchies. Considering the
convincing performance of convolutional networks in terms
of image classification and object detection [1], it is natural to
anticipate that they can also effectively classify the pixels in an
image for the purpose of segmentation. Our proposed method
is briefly illustrated in Fig.1. We first densely extract a series
of three-level context hierarchies for the pixels in an image,
then, each level of the hierarchies is respectively fed into a five-
stage convolutional network, which learns the representations
of pixels on one level, and finally, a three-layer perceptron is



responsible for predicting the labels of the pixels. In the three-
level hierarchies, contexts within the smallest regions depict
the local details, while those within the largest regions captures
the object-scene relationships. It should be noted that, Fara-
bet et al. [11] also applied convolutional networks to context
patches on three scales in their recent work. However, they
did not treat the patches on different scales of the same pixel
as a hierarchy from the very beginning. Instead, though their
classifier (a two-layer perceptron) is aware of the hierarchical
relationships between context patches, their feature extractor
(a three-stage convolutional network) is not. In this way, their
learned representations are more devoted to tackling with the
scale variation of objects, rather than capturing the patterns
of hierarchical contexts, which is the very motivation of our
scheme. Besides, our proposed method is completely end-
to-end, which takes raw pixels as the input and outputs the
pixel-wise labels without any sophisticated post-processing.
Farabet et al. [11] have shown that graph-based post-processing
methods can significantly improve the performance of their
less deep network with three convolutional stages and a two-
layer perceptron. In spite of that, methods with the end-to-
end feature can benefit from being free of manually designed
sophisticated post-processing methods like [11].

The remainder of this paper is organized as follows.
The very next section will review more related works about
image segmentation and convolutional networks. After that,
Section III will describe our method in detail, before the
experimental results in Section IV. Finally, this paper will be
concluded in Section V.

II. RELATED WORK

Conventional approaches to image segmentation are often
graph-based such as the conditional random field algorithm.
Besides the works by He and Zemel [9] and Ladický et al. [10]
we have mentioned in the previous section, we name a few
more here. Liu et al. [6] proposed a new kind of features
named as SIFT Flow and integrated them using the Markov
random field (MRF) algorithm. Kumar and Koller [12] applied
an accurate linear programming relaxation to their region
selection method for speed-up. Lempitsky et al. [13] proposed
to flexibly choose the level of segmented regions to label, using
their pylon model. Tighe and Lazebnik [8] applied MRF to
segmentation over super-pixels. In another recent work, they
proposed per-exemplar detectors for image parsing [14], and
MRF was used again to smooth predictions.

Compared with classic approaches to image segmentation,
one of the most attractive characteristics of convolutional
neural networks (CNN) would be its ability to be trained in an
end-to-end fashion. This brings in great convenience in prac-
tical applications. Given sufficient data and labels, CNN can
learn an effective model automatically without any handcraft
features, either to label new data directly, or to represent them
with hierarchical features [15]. More than twenty years ago,
LeCun et al. [16] firstly proposed CNN for digit recognition.
And now, there are many works based on CNN in the com-
munity of computer vision. For example, LeCun et al. [17]
applied CNN to object recognition and robot navigating. In
the object detection community, Sermanet et al. [18] proposed
to learn multi-stage features using unsupervised CNN for
pedestrian detection; Ouyang and Wang [19] simulated the

function of the part-based model [20] with CNNs which can
jointly learn features, deformation and occlusion. Especially,
Krizhevsky et al. [2] has made a breakthrough in large-scale
image classification in ILSVRC 2012 [21]. With deep CNNs,
they beat the best performer among the classic bag-of-words
methods, i.e., Fisher coding [22], with a considerable margin,
i.e., about 10% in top-five hit rate. In another task of the same
contest, i.e., classification with localization, a revised version
of this network also beat the best object detection model,
i.e., part-based model [20], with a margin of more than 15%.
According to the recently revealed results of ILSVRC 2013 [1],
the winners of the three tasks all built up their models based
on CNNs. Having won the first place in the newly proposed
large-scale object detection task in ILSVRC 2013, CNN has
already dominated the first two of the three basic topics, i.e.,
image classification, object detection and image segmentation.

The most related work is the one by Farabet et al. [11].
They used a less deep network, namely, three convolutional
stages and two full-connected layers, for the purpose of
real-time applications. Experimental results show that deeper
networks perform better in our task. Other differences between
our method and theirs include the occasion to construct hierar-
chical contexts and the end-to-end characteristic. More details
have been given in the previous section.

III. METHOD

We will firstly give an overview of the structure of our
networks, then demonstrate the importance of constructing
hierarchical contexts early, and finally introduce the details of
data preparation and algorithm implementation.

A. Overview of the Model

The detailed structure of our used network is illustrated in
Fig.2. Some of the key parts are listed as follows.

1) The contexts on three scales of each sampled pixel
are respectively fed into the three columns of the net-
work, and the weights are not shared across different
columns.

2) Each of the three columns is composed of five
convolution stages, wherein the activations of the
first and second stages are locally normalized as
Krizhevsky et al. [2] did, and the first, second and
fifth convolutional layers are followed by spatial
pooling layers.

3) A three-layer perceptron is used as the classifier,
which takes the representations obtained from the
previous three columns as the input. The number of
nodes in the last layer is two, since the labels in our
used dataset are binary, i.e., person or background [4].

B. Hierarchical Contexts

Extracting local patches on multiple scales is one of
the common approaches to scale invariance in the commu-
nity of computer vision. For example, in a typical image
classification approach based on the bag-of-words model by
Huang et al. [23], local features (SIFT descriptors [24]) are
computed on four scales, i.e., 16×16, 24×24, 32×32 and
40×40 in pixels. These local features are then treated equally



Fig. 2. The structure of our network, which is composed of three five-stage convolutional columns and a three-layer perceptron. The details of the second and
third columns are omitted, since they are respectively the same as the first column. C: convolution; P: pooling; C1-C5: convolution layers; F1-F3: full-connected
layers.

and separately in the next step of the algorithm. In this way,
scale invariance is realized on the local feature level. The
recent work by Farabet et al. [11] is another example of
introducing scale invariance in image labeling using convolu-
tional networks. These schemes worked well for their specific
purposes.

Besides the scale invariance, we have noticed that a hier-
archy which is composed of the patches extracted at the same
location can often provide a model with an extra adorable char-
acteristic. The advantage is that the whole model can learn the
embedded relationships between contexts on different scales.
In this paper, each of the context hierarchies is composed of
the three patches centered at the same pixel, as depicted in
Fig.2. In the training phase, we attach the label of a pixel to
its context hierarchy and feed them into a network. In this way,
not only the classifier (a three-layer perceptron) but also the
feature extractor (composed of three five-stage convolutional
networks) is aware of the embedded relationships in context
hierarchies. Otherwise, for example, if we train them in the
two-step way proposed by Farabet et al. [11], the feature
extractor will lose this characteristic. Farabet et al. trained
only one five-stage convolutional network and shared it across
different scale columns of the whole network. As a result,
the hierarchical contexts are not shown to the feature extractor
during training. What we have to do is to use these hierarchies
earlier.

It is worth noting that our proposed method in this paper
does not explicitly ensure scale invariance. However, we can
realize that by extracting context hierarchies on multiple scales.
In this way, our method can combine the advantages of the two
characteristics stated above. We leave this as our future work.

C. Data Preparation

To eliminate the impact of image sizes, we resize the
images in the training set so that their shorter sides are of
length 256 in pixels. We then pad the images with a 112-pixel
border of zeros, so that it is possible to crop a 224×224 patch
centered at any location of an image. In each round of the
training phase, we randomly sample a pixel from an image,
crop a 224×224 patch which is centered at the sampled pixel.
Namely, there are at least 65,536 possible samples in each
image. To further enlarge the dataset, we also randomly flip
the patches, rescale them with a rate between 0.9 and 1.1 and

rotate them with an angle between -8 and 8 degrees. After that,
the RGB values of the patches are centered by subtracting
the pixel-wise mean activities on the training set. The last
step is to build up the context hierarchies. For a 224×224
patch, we first crop its central 56×56 part to get the smallest
context. Secondly, we down-sample the patch into 112×112
with Gaussian blurring, and crop its central 56×56 part to get
the second smallest context. Thirdly, we further down-sample
the patch into 56×56, so as to get the largest context. Finally,
the above three contexts are stacked together to get a hierarchy
and fed into our network.

D. Implementation Details

The details of the three five-stage convolutional networks
as illustrated in Fig.2 are similar with the winner of the image
classification task in ILSVRC 2012 [21]. The data fed into the
network are of the size 56×56. In the first convolutional stage,
there are 48 filters of the size 5×5. We pad the input data with
a one-pixel border of zeros, so the activations are of the size
54×54, which are normalized across neighboring feature maps
following Krizhevsky et al.’s proposal [2]. Overlapping spatial
pooling is applied in 3×3 local regions with a stride of two.
The second stage is similar with the first one, except that we
pad the input data with a two-pixel border and increase the
number of filters up to 128. The third and forth stage both
have 192 filters of the size 3×3 and are without normalization
and pooling layers. The last stage has 64 filters of the size
3×3. Spatial pooling is applied in 3×3 local regions with
a stride of two. The classifier (a three-layer perceptron) is
also depicted in Fig.2. The two hidden layers both have 1,024
neurons, and the last layer has two, corresponding to the two
labels, i.e., person and background, respectively. We use the
same activation function (the Rectified Linear Unit) for all
the convolution layers and the first two full-connected layers,
following Krizhevsky et al.’s proposal [2].

The whole network is trained by back-propagation with the
logistic regression loss over the predicted scores normalized
using the soft-max function. The weights are initialized using a
Gaussian distribution with zero mean and a standard deviation
of 0.01. The biases in the forth and fifth convolutional layers,
as well as the first two full-connected layers, are initialized
with the constant one, while other biases are initialized as
zeros. We update all the weights after learning every mini-



batch of the size 128. We start training with a learning rate
of 0.01, and reduce it to 0.001 when the performance on the
evaluation set stops improving. For all the weights and biases
in all layers, the momentum is 0.9, and the weight decay is
0.0005.

In the test phase, we use the trained network to predict
a 100×100 binary map for each image, and directly resize
the map back into the size of the original image as the final
segmentation result. Processing ten thousand patches is time-
consuming. It still costs more than one minute per image with
parallelization on a GTX Titan GPU. However, fortunately, we
can share feature maps across different patches. Since many of
them are highly-overlapped with each other, there is no need
to recompute all the feature maps for every pixel. With this
technique, we can effectively reduce the time cost.

IV. EXPERIMENTAL RESULTS

A. Dataset

The dataset used in this paper is finely labeled manually
for the purpose of foreground segmentation. There are 5,389
images in the training set. Some of them are shown in Fig.3.
The task is to segment the most salient person in an image,
including his/her clothing, e.g., long dresses and hats, and any
objects in his/her hands such as handbags. The images have
various sources such as street-shots, advertisements and news.
The persons in these images vary greatly in terms of scales and
poses. To train our model, we randomly pick out 500 images
from the training set for validation. The test set is not public
so that no model can be trained using these data.

The official evaluation measure is the overlapping rate
between ground-truths and predictions averaged over the test
set. Mathematically, the score for an image can be formulated
as,

s =
Ap∩g

Ap∪g
(1)

where Ap∩g is the area of the intersection between the ground-
truth and the prediction, and Ap∪g is the area of the union of
the ground-truth and the prediction.

B. Numerical Results

To evaluate the impact of hierarchical contexts, we compare
three schemes in Tables I. In the first scheme, we crop
patches on three different scales from images. In this way, the
trained network bears scale invariance. However, neither the
feature extractor nor the classifier is aware of the hierarchical
relationships between these patches. In the second one, only
the classifier is aware of that. In this case, the feature extractor
is derived from the trained model of the first scheme and fixed
during the subsequent training of the classifier. In the third
scheme, both the feature extractor and the classifier can learn
the underlying relationships of hierarchical contexts, since we
train them spontaneously from raw data.

Since the test set is not public, the accuracies listed
in Tables I are obtained on our evaluation set. It has 500
images and is excluded from the training set. The improvement
gained by hierarchical contexts is smaller than as reported by
Farabet et al. [11]. Their two-step training scheme and filter
sharing across columns degrade the performance here. This

Fig. 3. Some training samples in Baidu’s dataset for foreground segmentation.
Note that the images are reshaped into the same aspect ratio for better viewing.

shows that the results can be affected by various factors, e.g.,
the specific data and tasks, and the scale of used models.
We have to evaluate it case by case. In our specific task,
a one-column network with scale invariance performs fine.
To further improve the performance, it is a good choice to
consider hierarchical contexts early. It is probably vital for the
feature extractor to learn the underlying relationships between
the contexts on different scales.

We list the top four teams in Baidu’s segmentation com-
petition in Table II. The scores are obtained by averaging the
overlapping rates of more than one thousand images. Accord-
ing to personal communications, we were the only competitors
who used deep learning for segmentation in this contest. One
typical method used by the other teams is composed of three
steps, i.e., saliency detection, k-NN shape prior and iterative
segmentation. Firstly, roughly locate the person in an image
using a salient object segmentation method based on context
and shape prior [25]. Secondly, find the k-nearest neighbors of
an image in the training set, measured by the masks obtained in
the first step, and average the masks of the k neighbors so as to
update the one of the image. Thirdly, clean up the boundaries
and make the decision using graph-based methods such as
graph-cut. Run the second and third steps alternatively until
the algorithm converges. The results show that our method
outperforms the second place team by more than 8%. Note the
drastic variations in scales and poses shown in Fig.3. Probably,
our deep network with a large number of parameters (about
ten million) has the potential to learn the complicated patterns
for image segmentation.

C. Qualitative Results

The segmentation results obtained on Baidu’s test set are
given in Fig.4. The results show that our method is robust
to complex backgrounds (the eight samples in the left-most
column) and variations in poses (the second column) and



Fig. 4. Segmentation results obtained on Baidu’s test set under various conditions. To the right of each image are in turn its ground-truth and our result.

Method Accuracy (%)
No hierarchies 85.0
Late hierarchies 85.3
Early hierarchies 86.7

TABLE I. COMPARISON WITH DIFFERENT METHODS, EVALUATED ON
OUR VALIDATION SET. SEE THE TEXT FOR MORE DETAILS.

Team Accuracy (%)
Second place 78.17
Third place 76.00
Forth place 75.95
Ours 86.83

TABLE II. COMPARISON WITH OTHER COMPETITORS [4].

scales (the third). The eight samples in the right-most column
show that our method can also effectively find various objects
in hands. As shown in Fig.5, most of the failed cases are
due to confusing backgrounds. However, there is room for
improvement. Note that we directly reshape the 100×100
predicting map of an image back to the original size, without
any post-processing. As a result, there might be multiple
separated regions in our predictions. Trivial post-processing
approaches such as removing small foreground regions can
alleviate the impact of this problem. More sophisticated post-
processing can be adopted either to smooth the boundaries or
ensure consistent labeling [11]. We leave these as our future
work.

Fig. 5. Hard samples in Baidu’s test set.

V. CONCLUSION

In this paper, we have proposed an image segmentation
method based on deep convolutional networks, which is com-



posed of a three-column feature extractor and a classifier. By
early stacking together the contexts on multiple scales of the
pixels in an image, we have trained feature extractors which
are aware of the hierarchical relationships between contexts on
different scales. Experiments have shown that early-combining
is better than late-combining given the conditions in this paper.
Our method has outperformed classic segmentation methods
with a considerable margin. Furthermore, qualitative results
have shown that our method is close to practical application.
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