
Metric Embedded Discriminative Vocabulary Learning
for High-Level Person Representation

Yang Yang, Zhen Lei, Shifeng Zhang, Hailin Shi, Stan Z. Li
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition,

Institute of Automation, Chinese Academy of Sciences, Beijing, China
{yang.yang, zlei, shifeng.zhang, hailin.shi, szli}@nlpr.ia.ac.cn

Abstract

A variety of encoding methods for bag of word (BoW) model
have been proposed to encode the local features in image clas-
sification. However, most of them are unsupervised and just
employ k-means to form the visual vocabulary, thus reduc-
ing the discriminative power of the features. In this paper, we
propose a metric embedded discriminative vocabulary learn-
ing for high-level person representation with application to
person re-identification. A new and effective term is intro-
duced which aims at making the same persons closer while
different ones farther in the metric space. With the learned
vocabulary, we utilize a linear coding method to encode the
image-level features (or holistic image features) for extract-
ing high-level person representation. Different from tradition-
al unsupervised approaches, our method can explore the re-
lationship (same or not) among the persons. Since there is
an analytic solution to the linear coding, it is easy to obtain
the final high-level features. The experimental results on per-
son re-identification demonstrate the effectiveness of our pro-
posed algorithm.

1 Introduction
Person re-identification (Re-ID) has recently attracted a
lot of attentions due to its many critical applications such
as long-term multicamera tracking (Bi Song and Roy-
Chowdhury 2010), forensic search (Roberto Vezzani and
Cucchiara 2013) and crowd movements analysis in public
places (Martin Hirzer and Bischof 2012). The task of per-
son Re-ID is to match persons from several disjoint cam-
eras. To address it, a commonly used framework is (1) ap-
pearance based person representation and (2) metric learn-
ing for matching them. Owing to large viewpoint changes,
illumination, different poses, background clutter and occlu-
sions, there is often large intra-class appearance variations,
which makes the descriptive representations of the same per-
son unstable. To that end, metric learning methods are used
to reduce the intra-class variations in feature space. Such a
learned metric is able to describe the transitions among dif-
ferent cameras, and thus suitable for real world scenarios.

However, because most existing methods of feature ex-
traction are based on descriptive methods such as fea-
tures extracted in Kiss metric (KISSME) (Kostinger et al.
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2012), symmetry-driven accumulation of local features (S-
DALF) (M. Farenzena et al. 2010), Comb (Kviatkovsky,
Adam, and Rivlin 2013a), salient color names based color
descriptor (SCNCD) (Yang et al. 2014b), mid-level filters
(MLF) (Rui Zhao and Wang 2014) and fusion of color mod-
els (FCMs) (Yang et al. 2014a), the extracted features are of
less discriminative power. It may influence the final match-
ing rate despite of the application of metric learning methods
in the stage of matching persons.

Recently, various coding methods, which are based on a
vocabulary learned by k-means, are used to encode local
features (e.g. SIFT descriptors) and then a pooling method
(e.g., max pooling or average pooling) is utilized to obtain
a holistic image feature with statistical meanings. Simple
though they are, surprising good results have been report-
ed in classification tasks. Inspired by them, we can employ
a coding method to encode the image-level features to learn
high-level features. To make the coding coefficient be more
discriminative, we can learn a ’good’ (e.g., with discrimina-
tive power) vocabulary based on the labeled training images
instead of simply using k-means.

In this paper, we propose a novel method named metric
embedded discriminative vocabulary learning (MED VL) to
learn a vocabulary with discriminative power. Because only
pairwise relationships (’same’ or ’different’) of training im-
ages are obtained for person re-identification, we incorpo-
rate the equivalence constraints into the objective function
of MED VL to construct a discriminative vocabulary. It can
be considered as a supervised learning approach which aims
to make the same persons closer while different ones farther
in the metric space. Owing to the merits of metric learning
method which learns the transitions among cameras, we can
measure the similarity of two persons in different cameras in
a better manner. With the learned vocabulary, a linear cod-
ing method is employed to encode each image-level feature
and then the final high-level person representation is then
obtained. Based on the same metric learning approach in the
stage of matching persons, the final high-level feature which
owns semantic information performs better than the original
image-level feature.

The main contributions of the paper are two-fold: (1) We
employ a linear coding method for feature coding. To our
best knowledge, this is the first work to exploit coding meth-
ods to learn high-level features from the image-level features



for person re-identification. (2) We propose a novel method
- MED VL to learn the vocabulary for linear coding. It is
more discriminative than the one learned by k-means.

The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief review of related works on coding meth-
ods as well as the metric leaning method used in this paper;
In section 3, we describe in details the proposed method
including vocabulary learning and linear coding; An eval-
uation of our method on the publicly available person re-
identification datasets in section 4, and finally, section 5
makes a conclusion of the paper.

2 Related Work
In this section, we first review the commonly utilized cod-
ing methods and then make a brief introduction to the
used metric learning approach. Let X = [~x1, ~x2, ..., ~xn] ∈
Rd×n be a set of d-dimensional image-level features, where
~xi ∈ Rd, i = 1, 2, ..., n denotes the feature of the i-
th image. Given a vocabulary (or a set of basis vectors)
B = [~b1,~b2, ...,~bk] ∈ Rd×k, different coding methods can
be applied to convert each d-dimensional original feature in-
to a k-dimensional high-level one.

2.1 Different Coding Methods
Soft-assignment Coding (SAC) (Jan C. van Gemert and

Smeulders 2008): For an image-level feature ~xi, there are k
nonzero coding coefficients. The j-th coding coefficient is
computed by

~sij =
exp(−γ‖~xi −~bj‖22)∑k
l=1 exp(−γ‖~xi −~bl‖22)

. (1)

where γ is a smoothing factor which controls the softness of
the assignment. Each coding coefficient denotes the degree
of membership of ~xi to the corresponding basis vector in B.
Locality-constrained Coding (LLC) (Wang et al. 2010):

Other than soft-assignment coding which employs all k ba-
sis vectors to encode the features, LLC incorporates the lo-
cality constraint which leads to smaller coefficients for those
basis vectors farther away from ~xi in Euclidean space. The
LLC code ~si is computed by the following criteria:

~si = argmin
1T~si=1

‖~xi −B~si‖22 + λ‖~di � ~si‖22, (2)

where ~di = exp(dist(~xi, B)/δ), dist(~xi, B) =

[dist(~xi,~b1), dist(~xi,~b2), ..., dist(~xi,~bk)]T , dist(~xi,~bj)

means the Eulidean distance between ~xi and ~bj and �
denotes the element-wise multiplication. δ is employed for
adjusting the weight decay speed for the locality adaptor.
Additionally, an approximated LLC is also presented for
fast encoding.
Salient Coding (SC) (Huang et al. 2011): Based on the

’saliency’, which means that the nearest code is much clos-
er to the input feature than other codes, SC defines a new
saliency degree:

sij = 1− ‖~xi −~bj‖22
1

k0−1
∑k0

m 6=j ‖~xi −~bm‖22
(3)

where k0 < k denotes the number of basis vectors used for
coding every time. It is efficient and easy to implement.

Although a coding coefficient learned by a coding method
has been successfully used as an alternative to its original
feature in classification tasks, most of them only focus on
how to reflect the fundamental characteristic of coding. For
example, in (Wang et al. 2010), it considers that locality is
more essential than sparsity. Then, LLC incorporates the lo-
cality constraint into the objective function. Another classi-
cal example is that in (Huang et al. 2011), it believes salien-
cy is the fundamental characteristic of coding and a novel
salient coding algorithm is proposed to stably extract salien-
cy representation. However, both of them simply employ
k-means to construct the vocabulary which will reduce the
discriminative power of the final features (or coding coeffi-
cients). Therefore, there is a need to learn a ’good’ vocabu-
lary based on the training images.

2.2 The Metric Learning Method - KISSME
In (Kostinger et al. 2012), a simple yet effective method -
KISSME is proposed to learn a global Mahalanobis distance
metric defined in Eq. 4 from equivalence constraints.

dM (~x, ~y) = (~x− ~y)TM(~x− ~y). (4)

where ~x and ~y are features of a pair of images. In consider-
ation of the fact that there is a bijection between the set of
Mahalanobis metric and that of multivariate Gaussian dis-
tribution, KISSME directly computes M by Eq. 5 with the
help of a log like ratio.

M = Σ−1D − Σ−1S . (5)

where ΣS and ΣD denotes the covariance matrixes of sim-
ilar pairs and dissimilar pairs, respectively. To make M be
a positive semi-definite matrix, the authors of (Kostinger et
al. 2012) further re-project it onto the cone of positive semi-
definite matrixes, i.e., clipping the spectrum of M by eigen-
analysis.

In this paper, we employ KISSME to learn a good metric.
However, we find that adding the positive semi-definite ma-
trix constraint on M does not bring better results but con-
sumes additional computation time in experiments. There-
fore, we do not take the constraint into consideration, i.e.,
we just employ Eq. 5 to compute M . Additionally, we nor-
malize each feature with the l2 norm to slightly improve the
performance of KISSME.

3 The Proposed Method
In this section, we first present our metric embedded dis-
criminative vocabulary learning (MED VL) from equiva-
lence constraints. By taking into consideration the relation-
ship of each training pair of learned coding coefficient si, sj ,
it aims at encouraging similar pairs (or pairs of same per-
sons) to be closer than dissimilar pairs (or pairs of different
persons) in the metric space. Then, with the learned vocab-
ulary, we show how to efficiently learn the final high-level
features from original image-level features based on a linear
coding method.



3.1 Metric Embedded Discriminative Vocabulary
Learning

Considering that person re-identification problem is lacking
class labels, we incorporate the equivalence constraints in-
to our objective function. The similarity between a pair is
measured in the metric space. Thus, a metric embedded dis-
criminative vocabulary is learned with pairwise constraints.

Suppose we have a coding coefficient matrix S =
[~s1, ~s2, ..., ~sn] ∈ Rk×n corresponding to the original data
matrix X = [~x1, ~x2, ..., ~xn] ∈ Rd×n. Each column of S de-
notes a new representation of each data (i.e., corresponding
column of X) in the new space. With the training data, one
may hope that similar pairs are closer than dissimilar pairs.
Due to the fact that metric learning method is able to learn
the transitions among cameras, we measure the distance be-
tween a pair of data from different cameras in the metric
space. Then, we minimize the following term:

1

2

n∑
i,j=1

(~si − ~sj)TM(~si − ~sj)Wij = Tr(STMSL) (6)

where M ∈ Rk×k is the matrix parameterizing the
metric space, L = D − W is the Laplacian matrix,
D = diag(d1, d2, ..., dn) is a diagonal matrix with di =∑n

j=1Wij and W is defined by Eq. 7.

Wij =

{
1/nS , if(~xi, ~xj) ∈ S
−1/nD , if(~xi, ~xj) ∈ D (7)

where nS and nD denotes the number of similar and dissim-
ilar pairs, respectively. With Eq. 6 being as a regularizer, our
objective function is defined as

min
B,S
‖X −BS‖2F + αTr(STMSL) + β‖S‖2F

s.t. ‖~bi‖22 ≤ C, i = 1, 2, ..., k.
(8)

where the parameters α and β are used to control the contri-
butions of corresponding terms and M is fixed and directly
learned in Eq. 5 based on the initial coding coefficients of
training data. In Eq. 8, the first term denotes the reconstruc-
tion error. The second term is employed to ensure that simi-
lar pairs are closer than dissimilar pairs in the metric space.
The last term is to avoid overfitting.

Although the objective function in Eq. 8 is convex for B
only or S only, it is not convex in both variables together. We
then solve this problem by optimizing B and S iteratively in
the following.
Initialization of B,S,M We should initialize B,S and M
before learning the discriminative vocabulary B. To be spe-
cific,B is firstly initialized by k-means. Then, by solving the
linear coding defined in Eq. 9, we can obtain the initial value
of S via Eq. 10 where I ∈ Rk×k is the identity matrix.

min
S
‖X −BS‖2F + β‖S‖2F (9)

S = (BTB + βI)−1(BTX) (10)
If we initialize M directly using Eq. 5, there exists a

singular value if k is larger than n. To address this prob-
lem, we first apply PCA to learn a projecting matrix P ∈

Rk×m,m < n. Then, we have (PTS)TM0(PTS) =
ST (PM0P

T )S where M0 is learned based on the PCA-
reduced training data via Eq. 5. Thus, we are able to initial-
izeM by PM0P

T . We then optimize the S andB iteratively
with the fixed M .
Learning Linear Codes S WhenB is fixed, the problem E-
q. 8 becomes

min
S
‖X −BS‖2F + αTr(STMSL) + β‖S‖2F . (11)

To solve Eq. 11, we optimize each vector ~si alternatively,
while holding other vectors ~sj(j 6= i) constant. Optimiza-
tion of Eq. 11 is equivalent to

min
~si
F(~si) + β‖~si‖22. (12)

where F(~si) = ‖~xi − B~si‖22 + α(2~sTi (MS~Li) −
~sTi M~siLii) + β‖~si‖22 with ~Li =

∑n
l=1 Lli.

Therefore, an analytic solution can be obtained when we
have ∂

∂~si
F(~si) = ~0 :

~snewi = (BTB−αLiiM+βI)−1(BT~xi−αMS~Li). (13)

Learning Dictionary B When the coefficient matrix S is
given, we employ the Lagrange dual in (Honglak Lee and
Ng 2007) to optimize the following least squares problem
with quadratic constraints in Eq. 14. There is an analytical
solution of B: Bnew = XST (SST + Λ)−1 where Λ is a
diagonal matrix of optimal dual variables.

min
B,S
‖X −BS‖2F s.t. ‖~bi‖22 ≤ C, i = 1, 2, ..., k (14)

Algorithm 1 Metric Embedded Discriminative Vocabulary
Learning
Input: Data matrix X , Laplacian matrix L, parameters α

and β and iteration number T .
Output: B.

1: Initialize B with k-means, S via Eq. 10 and M by
PM0P

T .
2: for t=1,2,...,T do
3: Update the coding coefficients S using Eq. 11;
4: Update the vocabulary B using Eq. 14.
5: end for

3.2 Linear Coding
Once we have obtained the discriminative vocabulary B (de-
scribed in Algorithm 1), we employ the linear coding de-
fined by Eq. 9 to encode all the image-level features and
then the final high-level features (high-level person repre-
sentation) are obtained. In comparison with the original fea-
tures, the final obtained features, which own latent semantic
information, are more compact and discriminative. We will
compare their performances in the following experiments.



Figure 1: Some examples from the datasets: VIPeR (left) and
PRID 450S (right).

4 Experimental Results
In this section, we evaluate the proposed algorithm on t-
wo publicly available datasets: VIPeR dataset (Gray, Bren-
nan, and Tao 2007), PRID 450S dataset (Roth et al. 2014)
for person re-identification problems. Some examples from
these two datasets are shown in Fig. 1. In both datasets, each
person has two images obtained from two disjoint cameras.
Both of them are challenging datasets. Specifically, VIPeR
dataset mainly suffers from arbitrary viewpoints and illumi-
nation variations between two camera views. There are 632
image pairs captured in outdoor environments. Due to dif-
ferent viewpoint changes, background interference, partial
occlusion and illumination variations, PRID 450S dataset is
also challenging. It contains 450 image pairs from two dis-
joint camera views.

4.1 Settings
In all experiments, half image pairs are randomly selected
for training and the remaining are employed for test. Dur-
ing test, images from camera A are considered as probe
and those from camera B as gallery. Then, we switch them.
We regard the average results as one run. The final aver-
age results over 100 runs are reported in form of Cumulated
Matching Characteristic (CMC) curve (Wang et al. 2007).
Features In experiments, we employ the image-level fea-
tures provided by the authors of (Yang et al. 2014b): Image-
only representation and foreground representation based on
color names distributions and color histograms are extracted
and fused in four different color spaces including original
RGB, rgb, l1l2l3, and HSV. As is suggested in (Yang et al.
2014b), the dimensions of features of both datasets are re-
duced to 70 by PCA.
Parameter Settings In our evaluations, we set α and β in Eq
8 to 0.5 and 0.2, respectively. The number of basis vectors in
B is set to 120 and the iteration number T to 4. Before using
KISSME, we employ PCA to reduce the 120-dimensional
high-level features to 70 for both datasets. When SAC is
compared, we set γ to 0.05. When we compare the coding
methods - LLC and SC, we report two kinds of results based
on (1) 5 nearest basis vectors and (2) all 120 basis vectors.
We name them LLC(5), LLC(120), SC(5) and SC(120).

4.2 Comparison with Different Coding Methods
To validate whether the high-level features are better than
original features, we employ different coding methods in-
cluding SAC, LLC and SC to encode the input features. For

Rank 1 5 10 20
Original 38.9% 69.3% 81.0% 90.1%
SAC 39.3% 69.5% 81.1% 90.1%
LLC(5) 12.8% 32.5% 45.6% 60.9%
LLC(120) 39.3% 69.6% 81.3% 90.2%
SC(5) 11.6% 31.3% 45.3% 61.5%
SC(120) 39.5% 70.0% 81.6% 90.4%
MED VL 41.1% 71.7% 83.2% 91.7%

Table 1: Comparison between the high-level features and o-
riginal features on VIPeR dataset. Different coding methods
including SAC, LLC and SC are analyzed. k-means is em-
ployed to construct the vocabulary except MED VL which
learn a discriminative vocabulary. Best in bold.

Rank 1 5 10 20
Original 42.6% 70.0% 79.8% 88.0%
SAC 43.4% 70.4% 80.5% 89.0%
LLC(5) 9.4% 27.8% 40.6% 56.9%
LLC(120) 43.3% 70.6% 80.5% 89.1%
SC(5) 8.5% 26.5% 39.7% 56.0%
SC(120) 44.0% 71.3% 81.4% 89.8%
MED VL 45.9% 73.0% 82.9% 91.1%

Table 2: Comparison between the high-level features and
original features on PRID 450S dataset. Different coding
methods including SAC, LLC and SC are analyzed. k-means
is employed to construct the vocabulary except MED VL
which learn a discriminative vocabulary. Best in bold.

these methods, we use k-means to construct the vocabulary.
For our method, which employs MED VL to construct a dis-
criminative vocabulary, we name it MED VL for simplicity
in experiments. Then, we report the results on VIPeR and
PRID 450S datasets in Tables 1 and 2, respectively. ’Origi-
nal’ denotes the input original features. For the sake of a fair
comparison, all of the reported results are based on the same
metric learning method - KISSME.

From Tables 1 and 2, we can observe that all unsupervised
coding methods including SAC, LLC(120) and SC(120) per-
form (at least slightly) better than the original features. It
demonstrates the feasibility of coding methods for leaning
high-level features. When we compare the performances
among different coding methods all of which employ k-
means to obtain the vocabulary, we find that LLC(120) per-
forms similar as SAC while SC(120) is slightly better. The
best results are achieved by our method MED VL. By com-
paring MED VL with the original feature, we can see that
there are 2.2% and 3.3% increases at Rank 1 on VIPeR and
PRID 450S datasets, respectively. This observation demon-
strates that our proposed approach is able to learn more
discriminative features than original ones. Additionally, it
should be noted that on both datasets, LLC(5) and SC(5)
performs poorly, it reflects that when we encode the image-
level features, locality constraint harms the results. This is
caused by the fact that if there are only several nonzero val-



Figure 2: Comparison of MED VL with original features on
the VIPeR.

Figure 3: Comparison of MED VL with original features on
the PRID 450S.

ues in the coding coefficient, the obtained feature can not
retain its original data information. In addition, Figs. 2 and
3 also compare them overally at Ranks 1-50 on VIPeR and
PRID 450S datasets, respectively. It is obvious that high-
level features obtained by MED VL perform better than the
original features at all Ranks.

4.3 Comparison with Euclidean Space Embedded
In Eq. 8, we learn the matrix M by KISSME to compute the
training pairs in a metric space. However, we can also direct-
ly compute them in Euclidean space, i.e., M = I , where I
is the identity matrix. We name them ’Euclidean’ and ’Met-
ric’, respectively. Table 3 shows the results on VIPeR dataset
while Table 4 shows the results on PRID 450S dataset.
Ranks 1, 5, 10 and 20 are reported. On both datasets, we
can find that the results based on Metric space embedded
are better than those based on Euclidean space embedded.

Rank 1 5 10 20
Euclidean 39.5% 70.0% 81.6% 90.4%
Metric 41.1% 71.7% 83.2% 91.7%

Table 3: Comparison with Euclidean space embedded in Eq.
8 on VIPeR dataset. Best in bold.

Rank 1 5 10 20
Euclidean 45.1% 72.6% 82.7% 90.8%
Metric 45.9% 73.0% 82.9% 91.1%

Table 4: Comparison with Euclidean space embedded in Eq.
8 on PRID 450S dataset. Best in bold.

Rank 1 10 20 Reference
HCe 32.2% 66.9% - ICCV2015
CVPDL 34.0% 77.5% 88.6% IJCAI2015
LOMO 40.0% 80.5% 91.1% CVPR 2015
Final* 37.8% 81.2% 90.4% ECCV 2014
MtMCML 28.8% 75.8% 88.5% TIP 2014
SSCDL 25.6% 68.1% 83.6% CVPR 2014
Mid-level 29.1% 67.1% 80.0% CVPR 2014
SalMatch 30.2% 66.0% 79.2% ICCV 2013
ColorInv 24.2% 57.1% 69.7% TPAMI2013
LF 24.2% 67.1% 82.0% CVPR 2013
KISSME 19.6% 62.2% 77.0% CVPR 2012
MED VL 41.1% 83.2% 91.7% Proposed

Table 5: Comparison with the state-of-the-art methods on
VIPeR dataset. Best in bold. *Copied directly from the cor-
responding paper.

4.4 Comparison with State-of-the-art Results
In this subsection, we compare the performance of the pro-
posed method to the state-of-the-art results on VIPeR and
PRID 450S datasets at Ranks 1, 10 and 20. On VIPeR
datast, the compared methods include HS+CN+eSDC (HCe)
(Liang Zhengy and Tian 2015), CVPDL (Sheng Li and Fu
2015), LOMO (Shengcai Liao and Li 2015), Final (Yang et
al. 2014b), MtMCML (Lianyang Ma and Tao 2014), SSCDL
(Xiao Liu and Bu 2014), Mid-level (Rui Zhao and Wang
2014), SalMatch (Rui Zhao and Wang 2013), ColorInv (Kvi-
atkovsky, Adam, and Rivlin 2013b), LF (Sateesh Pedagadi
and Boghossian 2013) and KISSME (Kostinger et al. 2012).
Among the previous approaches, LOMO achieves the best
results at all Ranks. Our method performs better than LO-
MO (1.1% higher at Rank 1) and achieve a new state-of-
the-art result 41.1% at Rank 1. On PRID 450S dataset, the
compared methods are Final (Yang et al. 2014b), KISSME
(Kostinger et al. 2012) and EIML (Hirzer, Roth, and Bischof
2012). Our approach also performs the best (4.3% higher
than Final(ImgF) at Rank 1) at all Ranks and achieves a new
state-of-the-art result 45.9% at Rank 1.

4.5 Evaluation of Vocabulary Size
In this subsection, we evaluate the effect of the vocabulary
size on the final results. The numbers are selected as 80,
120, 160, 200 and 300. For LLC and SC, we use all the ba-
sis vectors to encode the features. Tables 7 and 8 show the
results on VIPeR and PRID 450S datasets, respectively. It
can be seen that all of them remain relatively stable from
80 to 300. Finally, in Figs. 4 and 5, we also give some
examples of querying results based on MED VL on VIPeR
and PIRD 450S dataset, respectively. Given a query, top 10



Query Top 10 results (sorted from left to right)

Figure 4: Examples of querying results based on MED VL
on VIPeR dataset.

Query Top 10 results (sorted from left to right)

Figure 5: Examples of querying results based on MED VL
on PIRD 450S dataset.

Rank 1 10 20 Reference

Final* 41.6% 79.4% 87.8% ECCV2014
KISSME 33.0% 71.0% 79.0% CVPR2012
EIML 35% 68% 77% AVSS2012
MED VL 45.9% 82.9% 91.1% Proposed

Table 6: Comparison with the state-of-the-art methods on
PRID 450S dataset. Best in bold. *Copied directly from the
corresponding paper.

No. 80 120 160 200 300
SAC 38.9% 39.3% 39.1% 38.8% 38.6%
LLC 38.7% 39.3% 39.0% 39.1% 38.6%
SC 39.0% 39.5% 39.2% 39.1% 39.3%
MED VL 41.0% 41.1% 40.8% 41.0% 40.6%

Table 7: Evaluation of vocabulary size on VIPeR dataset.
Rank 1 is shown.

No. 80 120 160 200 300
SAC 43.1% 43.4% 43.2% 42.9% 42.9%
LLC 43.4% 43.3% 43.3% 43.0% 43.1%
SC 43.9% 44.0% 40.1% 43.6% 43.8%
MED VL 45.7% 45.9% 45.9% 45.5% 45.8%

Table 8: Evaluation of vocabulary size on PRID 450S
dataset. Rank 1 is shown.

similar images (sorted from left to right) coming from the
Gallery are shown. A red rectangular box is used to high-
light the correct match. If there is no red rectangular box, it
means that the correct match is not among the top 10 results.
We can find that if the illumination is not severe or there are
not serious background interference, it seems easier to find
the ’right’ person. However, in the condition that the appear-
ance in one camera is different with that in the other camera,
caused by illumination, different viewpoints or background
interference, the appearance based method will fail. Actual-
ly, it is difficult even for human being to match them.

5 Conclusion
This paper presents a novel vocabulary learning method to
construct a discriminative vocabulary based on which the
high-level features are obtained by a linear coding method.
In view of the fact that only pairwise relationship (simi-
lar/dissimilar) can be used for person re-identification prob-
lem, we incorporate equivalence constraints into our objec-
tive function which makes similar pairs closer than dissimi-
lar pairs in the metric space. Experimental results on VIPeR
and PRID 450S datasets show that our approach of learning
high-level features can obtain better results than the direc-
t application of original features and can also achieve su-
perior performances than several classical coding methods.
Additionally, we point out that locality constraint in coding
methods can not represent the image-level features well and
will harm the final re-identification rates.
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