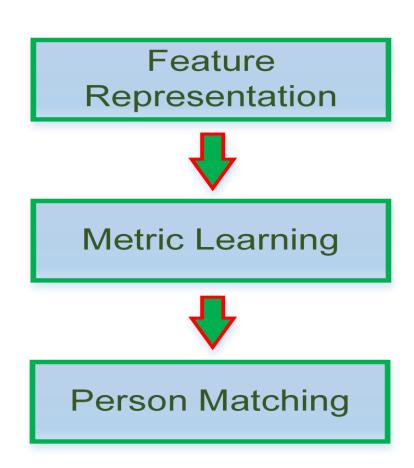


Introduction

Person Re-Identification Recognize an individual across a network of disjoint cameras.



> Challenging

- Illumination
- Viewpoint
- Pose
- Low resolution

Fully utilize the information about the colors of clothes.

Color names distribution & color histograms

A fast and effective approach: KISSME

Cumulative Matching Characteristic (CMC)

> Experimental Datasets

VIPeR Dataset.

- 632 image pairs of pedestrians
- Challenging in:
 - Pose
 - Illumination conditions
 - Low resolution

VIPeR dataset

PRID 450S Dataset.

- 450 image pairs of pedestrians
- Challenging in:
 - background interference
 - Viewpoints
 - Low resolution

PRID 450S dataset

Salient Color Names for Person Re-Identification

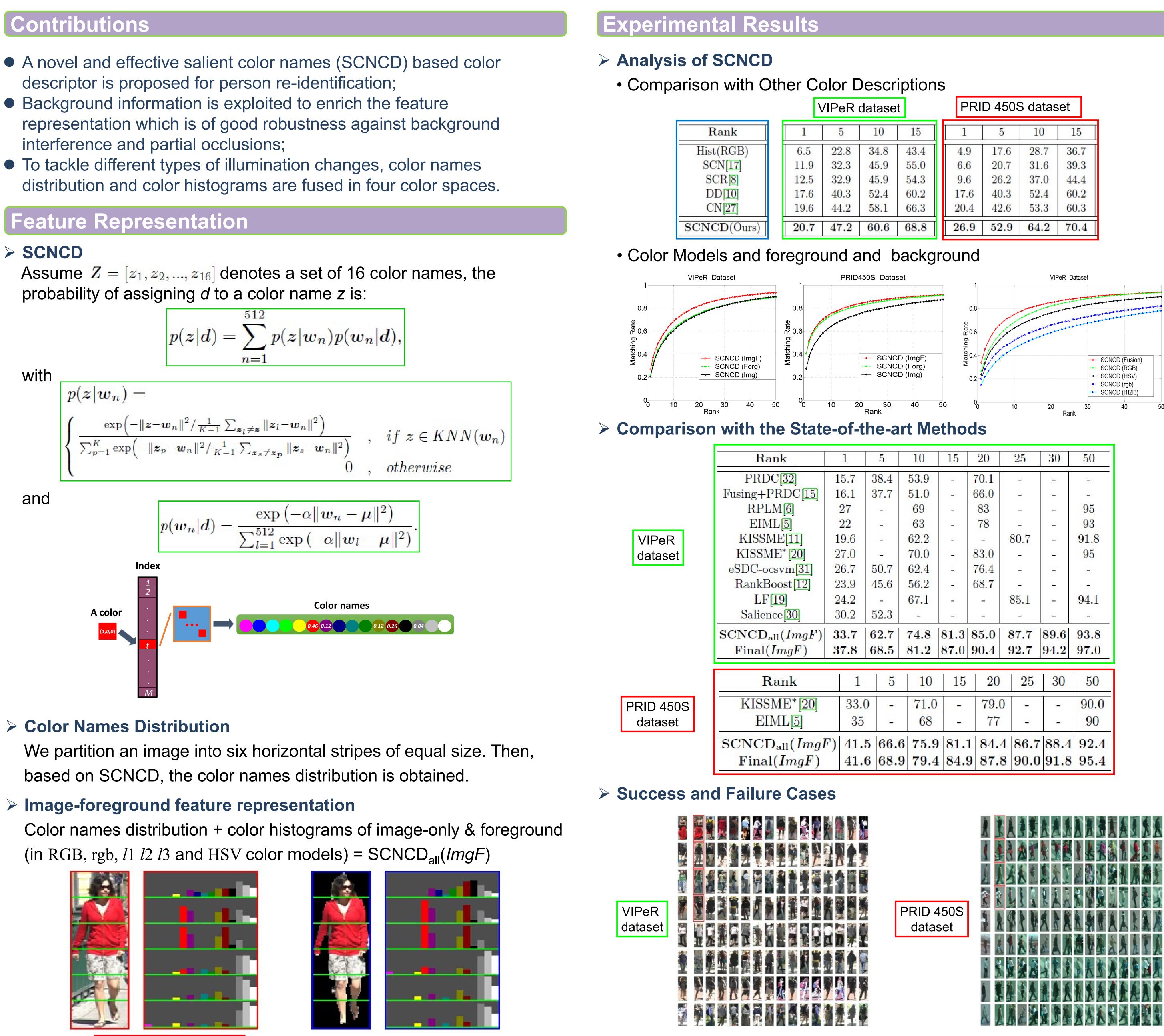
Yang Yang¹, Jimei Yang², Junjie Yan¹, Shengcai Liao¹, Dong Yi¹, Stan Z. Li¹ ¹National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences ²University of California, Merced

Contributions

- descriptor is proposed for person re-identification;
- interference and partial occlusions;

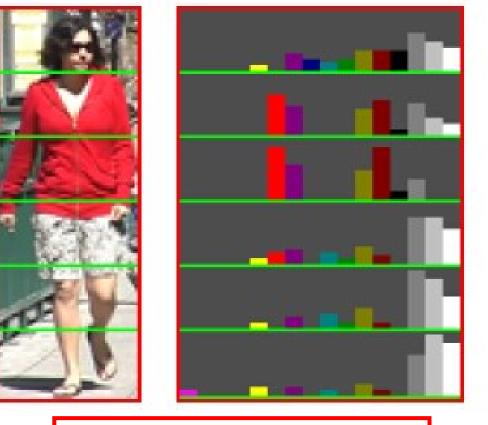
Feature Representation

> SCNCD


probability of assigning *d* to a color name *z* is:

$$p(\boldsymbol{z}|\boldsymbol{d}) = \sum_{n=1}^{512} p(\boldsymbol{z}|\boldsymbol{w}_n) p(\boldsymbol{u})$$

with


$$p(\boldsymbol{z}|\boldsymbol{w}_{n}) = \begin{cases} \exp\left(-\|\boldsymbol{z}-\boldsymbol{w}_{n}\|^{2}/\frac{1}{K-1}\sum_{\boldsymbol{z}_{l}\neq\boldsymbol{z}}\|\boldsymbol{z}_{l}-\boldsymbol{w}_{n}\|^{2}\right) \\ \frac{\sum_{p=1}^{K}\exp\left(-\|\boldsymbol{z}_{p}-\boldsymbol{w}_{n}\|^{2}/\frac{1}{K-1}\sum_{\boldsymbol{z}_{s}\neq\boldsymbol{z}_{p}}\|\boldsymbol{z}_{s}-\boldsymbol{w}_{n}\|^{2}\right) \\ 0 \end{cases}$$

and

> Color Names Distribution

Image-foreground feature representation

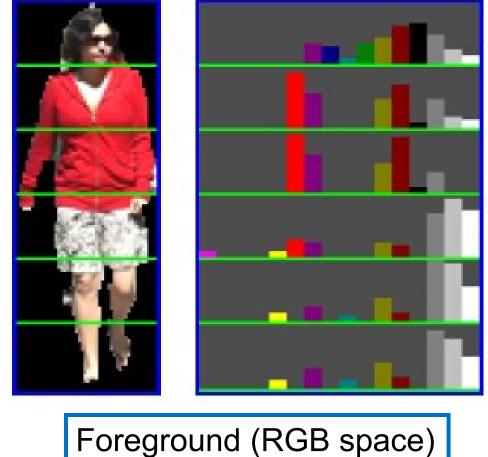


Image-only (RGB space)

eR dataset				PRID 450S dataset						
5	10	15		1		5		10		15
2.8	34.8	43.4		4.9	1	7.6	2	28.7		36.7
2.3	45.9	55.0		6.6	2	20.7	-	31.6		39.3
2.9	45.9	54.3		9.6	2	26.2	:	37.0		44.4
).3	52.4	60.2		17.6	4	0.3		52.4		60.2
4.2	58.1	66.3		20.4	4	2.6		53.3		60.3
7.2	60.6	68.8		<mark>26.9</mark>	5	2.9	6	34.2	1	70.4

1	5 1		15	20	25	30	50
5.7	38.4 53.9		-	70.1	-	-	le.
6.1	37.7	51.0	-	66.0	-	-	-
27		69	-	83	_	-	95
22	-	63	-	78	-	-	93
9.6	-	62.2	<u>-</u>	-	80.7	_	91.8
27.0	-	70.0	-	83.0	-		95
26.7	50.7	62.4	_	76.4		-	_
23.9	45.6	56.2	-	68.7	-	.	.
4.2	-	67.1	-	-	85.1	(-)	94.1
<u>80.2</u>	52.3	-	-	-	-	-	-
3.7	62.7	74.8	81.3	85.0	87.7	89.6	93.8
7.8	68.5	88.5 81.2		90.4	00.4 92.7		97.0
1	5	10	15	20	25	30	50
33.0) -	71.0	-	79.	0 -	-	90.0
35	-	68	_	77	-	_	90
41.	5 66.	6 75.9	81.	1 84.	4 86.7	7 88.4	92.4
41.	6 68.	9 79.4	84.	9 87.	8 90.0	91.8	95.4