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Abstract

Since the Generative Adversarial Network (GAN) was
proposed, facial image generation used for face recognition
has been studied in recent two years. However, there are
few GAN-based methods applied for fine-grained facial at-
tribute analysis, such as face generation with precise age.
In this paper, fine-grained multi-attribute GAN (FM-GAN)
is presented, which can generate fine-grained face image
under specific multiply attributes, such as 30-year-old white
man. It shows that the proposed FM-GAN with fine-grained
multi-label conditions is better than conditional GAN (c-
GAN) in terms of image visual fidelity. Besides, synthetic
images generated by FM-GAN are used for data augmen-
tation for face attribute analysis. Experiments also demon-
strate that synthetic images can assist the CNN training and
relieve the problem of insufficient data.

1. Introduction
Facial attributes analysis is an active research topic in

the pattern recognition for many years. However, for a long
time lack of sufficient training data was one of the main
challenges, especially in age estimation [4]. At that time,
collecting face images of each age in the human lifetime
from the same people is quite difficult. So many aging
datasets appear to exist serious imbalanced problem [12]
and lack of samples. Recently most methods proposed fo-
cus on learning label distribution [14], local regions of faces
from limited samples [15] and generating new data. Al-
though there has been quite a few methods of generating
face images to supply data, more precise generation of fine-
grained attributes is precious. Besides, in real life age is not
an independent attribute and has some relevance to other fa-
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cial attributes (e.g. gender, ethnicity and so on). Generation
and modification of these attributes require combination of
local changes and global changes. The presented tradition-
al face generation of different attributes is limited to mod-
eling of progressing pattern without considering global fa-
cial changes. So jointly analyzing face generation of multi-
attributes and focusing on synthesis of fine-grained ages are
necessary for lots of facial works in the future.

In recent two years, natural image generation has been
developed to a new height by Generative Adversarial Net-
works(GAN) proposed by Ian Goodfellow [5] which will
be introduced in Section 2 for details. This model has been
verified to be able to produce images with fairly high visual
fidelity [11] and learn abundant representations from train-
ing samples [8], like learning pose representation for frontal
facial synthesis [3]. After that, lots of works focus on em-
ploying GAN to face applications. However on the face ag-
ing and generation of different ages problem, most methods
simplify the problems by only making generated face older
or younger [10], or dividing the range of ages into several
groups to generate face images of different stages [1].

In contrast, we propose a novel method for face genera-
tion of fine-grained multi-attribute. Our model could gener-
ate realistic face images of multi-attribute including gender,
ethnicity and fine-grained ages according to the provided
conditions. Meanwhile, we use synthetic samples as sup-
plement for original dataset and solve data augmentation
problem to some extent.

The summary of contributions of our work is the follow-
ing:

• We propose a novel FM-GAN for face generation of
multi-attribute including fine-grained synthesis of dif-
ferent ages. Synthetic images perform great visual fi-
delity, and representations of gender, ethnicity and age
are perfectly disentangled from other variations.

• We propose to enlarge the MORPH Album I-
I dataset [12] with our generated samples and ap-



ply the new dataset to assist age estimation training,
which achieves good performance on MORPH Album
II dataset. Synthetic dataset could be used as supple-
ment data to augment other dataset without influencing
its performance.

The rest of the paper is organized as follows. Related
works are reviewed in Sec. 2. Sec. 3 will emphasize on our
proposed method. Then, experiments are performed in Sec.
4 to evaluate our method. Finally, conclusion and future
works are drawn in Sec. 5.

2. Related Work

Generative Adversarial Networks (GAN) As intro-
duced by Ian Goodfellow et al. [5], Normal GAN con-
sists of a generator D and a discriminator G that compete
with each other in a two-player minimax game. G learns a
mapping from probability distribution Pz(z) of latent vec-
tors in low-dimension manifold to data Pdata(x) in high-
dimension manifold and synthesizes face images x̂ = G(z),
where z ∼ N(0, 1) is random latent vector, as real as pos-
sible to fool D while D tries to distinguish the generated
images x̂ from training images x. When G outputs images
that D could not judge whether it’s real or fake, then a good
enough GAN model gets trained. The adversarial functions
can be described as below:

argmin
G
max

D
V (D,G) = Ex∼pdata(x) [logD(x)] +

Ez∼pz(z) [log(1−D(G(z)))]
(1)

More recent works on GAN focus on face application-
s, such as Face aging [1], Face modification [10], Frontal
face synthesis for recognition [7, 6]. In contrast. we pro-
pose an extended GAN mainly for studying face generation
of fine-grained multi-attribute. By synthesizing facial at-
tributes dataset, synthetic images could supply other dataset
from the perspective of data augmentation.

cGAN versus AC-GAN Most proposed methods about
adding extra information to GAN are based on two mod-
els: conditional GAN (cGAN) [8] and auxiliary classifier
GAN (AC-GAN) [9]. The former is implemented by sup-
plying both generator and discriminator with class labels in
order to learn conditional distribution. The latter tasks dis-
criminator as an auxiliary classifier to output the predicted
conditions, and the generator could be seen as an decoder
to map current conditional vector and noise vector to a syn-
thetic face image. So the whole process is a conditional
reconstruction. Both methods have its own advantages on
conditional face generation. Considering both methods, our
FM-GAN is proposed and modified from AC-GAN for face
generation of fine-grained multi-attribute.
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Figure 1. The overall architecture of our FM-GAN.

3. The Proposed Method

The overall architecture of our FM-GAN can be seen in
Fig. 1. In the following content, we will focus on introduc-
ing the implementations of FM-GAN and describe it in the
form of an algorithm.

3.1. Fine-grained Multi-attribute GAN (FM-GAN)

The aim of multi-attributes facial synthesis is to produce
realistic and sufficient face samples based on MORPH-II
dataset [12] and assist age estimation classifier training. In
order to achieve such networks, we adopt a extension of
the generative adversarial networks to multi-attribute set-
ting. The crucial problem is how to lead fine-grained side
information into GAN. Compared with cGAN [8] which di-
rectly inserting labels into discriminator, tasking GAN with
conditional reconstruction is the better way. In the process
of conditional reconstruction, the discriminator D is tasked
as an multi-attribute classifier networks to output the pre-
dicted conditional information [9].

Given sufficient training faces {xi, yig, yie, yiai =
1...n}, where n is the number of images in our training set,
g, e, a represent the gender, ethnicity and age label, respec-
tively. Before being supplied to generator, age should be
transformed to a one-hot vector with Na dimensions. Na

means the number of fine-grained categories. Meanwhile,
we make an assumption that generated faces and training
faces have hidden labels. All training faces are labeled with
1 while all synthetic images are labeled with 0.

The discriminator should not only learn to classify the re-
al face images to its hidden label 1 and the synthetic face im-
ages to 0, which is described as distinguishing real face im-
ages from synthetic face images in previous GAN work, but
also learn multiple labels distribution and classify real face
images to its corresponding multiply classes through train-
ing. Its parameters are optimized by minimizing adversar-
ial loss Ladv(D) and softmax cross-entropy loss Latr(D).
For any training sample (x, ya, yg, ye) and synthetic sample
x̂ = G(z, a, g, e), the optimization problem can be formu-
lated as below:



Ladv(D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z),g∼pg(g),

e∼pe(e),a∼pa(a)

[log(1−D(G(z, g, e, a)))]

Latr(D) = Ex,y∼pdata(x,y)[logD
ŷa

ya (x) + logD
ŷg

yg (x) + logD
ŷe

ye (x)]

max
D

VD(D,G) = Ladv(D) + Latr(D)

(2)

where z is the random noise, g, e, a respectively stands for
class of gender, ethnicity and age sampled from label dis-
tribution as the input to generator. Ladv(D) is introduced
to distinguish real face images xini=1 from synthesized ones
x′i

n
i=1. ŷa, ŷg, ŷe are the output of discriminator for train-

ing images as a auxiliary classifier .
Following the training pace of discriminator, generator

G is updated to synthesize realistic face x̂ of specific gen-
der g, ethnicity e and age a in the input of generator which
could fool discriminator to classify them to the real label
1. The optimization formulations of generator are listed as
followed:

Ladv(G) = Ez∼pz(z),g∼pg(g),

e∼pe(e),a∼pa(a)

[log(D(G(z, g, e, a)))]

Latr(G) = Ez∼pz(z),g∼pg(g),

e∼pe(e),a∼pa(a)

[logD
a′
a (G(z, g, e, a))+

logD
g′
g (G(z, g, e, a)) + logD

e′
e (G(z, g, e, a))]

max
G

VG(D,G) = Ladv(G) + Latr(G)

(3)

where a′, g′, e′ are the output of discriminator for generated
images as a auxiliary classifier.

3.2. Learning Strategy

The Algorithm 1 summarizes the training procedure.
After initializing the input of generator and discriminator
(lines 2,3) we generate faces of specific multiple attributes.
The generated images and real images are supplied to dis-
criminator. yg ′, ye′, ya′ encode real images to predicted
gender, ethnicity and age. sr estimates real samples’ prob-
ability. g′, e′, a′ encode generated images to predicted gen-
der, ethnicity and age. sf estimates synthetic samples’
probability. Lines 8,10,11 indicate taking a gradient step
to optimize GAN.

4. Experiment

In this section, we will introduce three datasets on which
all of our following experiments are carried out and describe
the implementation details during training GAN, especial-
ly some tricks to optimize the training process. Last is to
evaluate the performance of our FM-GAN and verify our
demonstration.

Algorithm 1 The FM-GAN with gender, ethnicity and age
representations learning strategy
Input: Minibatch Images: x = {xi, y

g
i , y

e
i , y

a
i }

m−1
i=0 , Latent Representation

vector: z = {zi}m−1
i=0 Gender, Ethnicity and Age Representation vector batch:

g = {gi}m−1
i=0 , e = {ei}m−1

i=0 , a = {ai}m−1
i=0 , Batchsize: m, learning rate

λ = 0.0002.
Output: Generated Images: x′ = {xi

′}m−1
i=0

1: while not converge do
2: z ∼ U(−1, 1)Z , {Draw sample of random noise}
3: (g, r, a) ∼ pdata(g, r, a), {Draw specific label from labels distribution}
4: x′ ← G(z, g, r, a), {Decode vector forward through generator}
5: (sr, y

g ′, ye′, ya′)← D(x)
6: (sf , g

′, e′, a′)← D(x′)
7: LD ← log(sr) + log(1 − sf ) + logyg (yg ′) + logye (ye′) +

logya (ya′)

8: D ← D − λ · ∂LD
∂D , {update discriminator}

9: LG ← log(sf ) + logg(g
′) + loge(e

′) + loga(a
′)

10: G← G− λ · ∂LG
∂G , {update generator}

11: G← G− λ · ∂LG
∂G , {update generator twice}

12: end while

4.1. Dataset

MORPH Album II [12] is one of largest datasets widely
used for human facial age estimation. All samples of dataset
are under age, gender and ethnicity variations in controlled
environment, containing 55244 images of 19598 subject-
s in which most are nearly frontal faces or some having
poses within ±30◦. During the stage of training GAN, we
find that sufficient samples are necessary. Lack of training
data severely influence the generative results. So the w-
hole dataset is fully used for training GAN. We follow the
work [15] to split it into three non-overlapped subsets S1,
S2, S3 randomly. The details of these subsets are described
in the test protocols1 provided by Yi et al [15] and Tan et
al. [13]. Before training, we first align and crop all sam-
ples (xi, yi)

n
i=1 to resolution of 128× 128× 3 according to

the distance between eyes and nose to let whole head with
hair The final samples are shown in Fig. 2. Details of three
attributes y in the MORPH II dataset used illustrate as fol-
lowed: age labels ya are from 16 to 77, gender yg with only
two labels (e.g.male, female), ethnicity labels ye are Black
or White.

Figure 2. Some MORPH II examples of resolution 128× 128× 3
after being preprocessed. Each couple of faces are of the different
gender, ethnicity, age and identity.

Besides Morph Album II, our method has also been run
on CACD [2] and FG-NET databases. The Cross-Age
Celebrity Dataset(CACD) is the largest public cross-age
database, which contains more than 160 thousand images
from 2000 celebrities, with age ranging from 14 to 62. The

1http://www.cbsr.ia.ac.cn/users/dyi/agr.html



FG-NET database contains 1002 color or grayscale face im-
ages of 82 subjects, with ages from 0 to 70. These images
are taken in a totally uncontrolled environment with large
variations of lighting, poses and expressions. Both two
datasets have only age labelled. So only the performance
of age attribute is experimented on these two databases.

4.2. Implementation details

For FG-NET, the target model we will optimize is first-
ly pre-trained on LMDB-WIKI database which is another
large age database. Due to lack of samples for training,
some operations like images flipping, rotating and nois-
ing are applied to face images for data augmentation. For
CACD, the target model is a modified VGGNet pre-trained
on ImageNet dataset. Since the input of both pre-trained
models is 224 × 224, the networks of GAN should be also
changed to generate face images of the same size. For both
databases, all face images are aligned and cropped to a view
of size 224× 224.

The key implementation is how to set the size of a batch.
If the size of a batch is set too small or too large, GAN
probably will not converge and generate complete face at
all. In our work, we skillfully set the size of a batch in ac-
cordance with the number of classes in ages. It could help
reasonably allocate the scale of samples referring to gender,
ethnicity and age distribution in a batch. In this work, we
set the size of a batch to Na = 64 and let the specific input
of generator be the same as the label distribution import-
ed into discriminator. It will greatly stabilize the training
process of GAN by balancing the update speed of genera-
tor and discriminator. It’s not recommended to control age
distribution of training samples for generator and discrim-
inator. There exists high probability of over-fitting in the
severely imbalanced condition.

Figure 3. Labels distribution with three attributes in MORPH II
dataset. The distribution of gender, ethnicity and age is all ex-
treme. In the left sub table, [0, 1] stands for [male, female]. In
the mid table, [0, 1] stands for [Black,White].

Our model is extensively modified from a publicly avail-
able implementation of DC-GAN using Tensorflow2. The
random noise z is set to a 100-dim Uniform vector. Images
intensities are also linearly scaled to the range of [−1, 1].

2https://github.com/carpedm20/DCGAN-tensorflow

Following the optimization strategy in [11], all weights in
the networks are initialized from a zero-centered normal
distribution with a standard deviation of 0.02. Adam op-
timizer is used with a learning rate of 0.0002 and momen-
tum 0.5 in initial training. At the stage of representation
learning during which network parameters need subtle ad-
justment, learning rate is reset to a little smaller. The detail
of the networks for 128 × 128 generation is presented in
Tab. 1.

Table 1. FM-GAN network architecture
Generator Discriminator

Layer Filter Size Output Size Layer Filter Size Output Size
FC1 4x4x1024 Conv1 5x5/2 64x64x64

Fconv1 5x5/2 8x8x512 Conv2 5x5/2 32x32x128
Fconv2 5x5/2 16x16x256 Conv3 5x5/2 16x16x256
Fconv3 5x5/2 32x32x128 Conv4 5x5/2 8x8x512
Fconv4 5x5/2 64x64x64 Conv5 5x5/2 4x4x1024
Fconv5 5x5/2 128x128x3 FC1 Ng+Nr+Na+1

4.3. Model Evaluation

Besides synthesizing realistic face images of specific at-
tributes, the main goal of our FM-GAN is to supply the gen-
erated images to original MORPH II dataset and assist its
training on the task of age estimation. The visual quality
of synthetic samples directly affect the performance on age
estimation to a great extent. Therefore, in this following
content, we firstly compare cGAN with our FM-GAN, and
then concentrate on measuring the quality of synthesized
samples and evaluating demonstration of assisting MORPH
II dataset training.

4.3.1 cGAN versus FM-GAN

We conduct the comparative experiments based on the same
network structure mentioned in Sec. 4.2 to compare our
FM-GAN with cGAN [8]. Their comparison is shown in
Fig. 4.

1 3 5 7 9 11

Softmax 
Regression

cGAN

Epoch

Figure 4. Comparison of generative performance between FM-
GAN and cGAN during training. In the training process, one e-
poch equals to 1000 iterations.

Although both methods quickly converge at nearly the
same pace, where green and yellow lines stand for the dis-
criminative and generative loss curve of FM-GAN, red and



blue lines stand for the corresponding loss curve of cGAN,
with the training process proceeds FM-GAN has a clear pro-
cess of face generation and synthesize photorealistic face
images. However as for cGAN, no matter how to adjust
hyperparameters in the training, the model can only gener-
ate the blurry outline of faces. It can be summed up that
compared with cGAN, the implementation of FM-GAN is
more suitable for achieving face generation of find-grained
multi-attribute.

4.3.2 Face Synthesis by FM-GAN

Fig.5 illustrates some representative synthetic samples
drawn from different attributes. Each sample corresponds
to a latent vector z sampled randomly and specific label-
s, gender yg , ethnicity ye and age ya. Our results display
outstanding effect in terms of images’ diversity and quality.

Figure 5. Examples of 128 × 128 synthetic images generated by
our FM-GAN with the noise data randomly sampled for all faces
and varying gender, ethnicity g sampled in [Male,Female], e sam-
pled in [Black, White], and age sampled with aging process.

By assigning initial latent approximations z arbitrary
fixed value, varied gender, ethnicity and ages could be ob-
served. Except for gender, ethnicity and age, all the other
facial features we have not considered and even the back-
ground factors like illumination and scene are controlled by
latent noise vector z. Fig. 6 shows that image informa-
tion encoded by conditions determining gender, ethnicity
and age is perfectly disentangled and shows appealing ef-
fect to human eyes. In each row faces are listed in order of
aging from younger to older with fixed identity, gender and
ethnicity. In each column shifts are applied to gender and
ethnicity with same identity and fixed age. The shifts cause
noticeable effect on facial features meanwhile it is evident
that slightly shifted conditions of gender and ethnicity have
not influenced generation of similar-looking faces.

In order to objectively measure quality of synthetic face
images and accuracy of corresponding attributes generation,
we respectively use S1 and synthetic dataset of the same
amount and attributes distribution with S1 (named G1 in
the following paper) to train two classifiers based on modi-
fied AlexNet provided by Tan et al. [13] and evaluate their
performance on S2+S3 set. Tab. 2 shows the comparison

Figure 6. Examples of 128 × 128 samples with fixed identi-
ty(noise) and varying g, e ∈ [0, 1] respectively in the vertical ,and
a ∈ [16, 24, 32, 40, 48, 56, 64] in the horizon

of performance between MORPH II samples and synthetic
samples at the resolution of 128× 128.

Table 2. Synthetic Performance on Morph-II test set
Synthetic Resolution 128x128

Criteria MAE Accuracy
Attribute age gender race

MORPH-II (baseline) 3.851798 0.985435 0.970392
Synthetic images 7.369065 0.941347 0.973449

As shown in Tab. 2, the estimation accuracy of gender
and ethnicity is close to the performance of real images,
respectively reaching 94.1% and 97.3%. The result of age
is not satisfied. Observing the generated images of each
age, we make assumptions that poor generated images of
older ages may be responsible for this results. These poor
generated faces bring lots of noise to the training process.

In order to verify the assumption, we divide the test set
into two subsets, young subset PS0 and old subset PS1. The
dividing point is set to 40. The young subset PS0 is com-
posed of ages from 16 to 39. The other subset is ages from
40 to 77. We separately test the pre-trained model on two
subsets and record their performance. Tab. 3 verifies our
analysis. PS0 display better performance which approach-
es original real dataset while the second PS1 gets a worse
result than the first group and the whole synthetic set. On
the whole, There is still plenty of room for improving fine-
grained generation.

Table 3. Synthetic performance on subsets of S2+S3
Dataset age gender race
PS0 6.139406 0.934923 0.974145
PS1 10.331515 0.955781 0.975692

4.3.3 Data Augmentation with Synthetic Images

To further verify our demonstration that largening MORPH
II dataset with synthetic samples could improve the per-
formance of age estimation, different scales of samples in
accordance with the distribution of age are taken out from
G1 set(Our generated dataset) and added to S1 set for joint



training. In fact, most samples taken out are from young
categories having larger proportion than others. So this ex-
periment mainly emphasizes on the contribution from gen-
erated faces of young ages before the age of 40.

Table 4. Performance of different scaled synthetic images added to
MORPH II

Scale Age Race Gender
Baseline 3.851798 0.985435 0.970392

0.2 3.821998 0.979125 0.962331
0.4 3.790397 0.980650 0.959916
0.6 3.786226 0.977389 0.962496
0.8 3.787912 0.977389 0.964794
1.0 3.773675 0.980181 0.959235

Tab. 4 shows the performance comparison of differen-
t scale of G1 set added to S1 set. All results are tested on
S2+S3 test set. Baseline is the performance of original S1
without addition. Except for the experiment of baseline be-
ing trained individually from the beginning, the following
experiments of different scales are implemented by fine-
tuning the pre-trained model of baseline. Final results show
that augmenting original MORPH II dataset with generated
images obviously improve its performance on age estima-
tion. With the increase of supplementary synthetic images,
MAE keeps decreasing and becomes better. These results
are sufficient to prove that generated faces can be used to
solve data augmentation.

The same process of verification is applied to FG-NET
and CACD. The similar results are shown in the Tab.5 be-
low. Finetuning the model with generated images do in-
crease the performance of model and solve generalization
of model.

Table 5. Performance of age on CACD and FG-NET datasets
Scale CACD+euclidean FG-NET

Baseline 5.315590 6.402655
0.5 5.230732 6.149355
1.0 5.199142 6.075456

5. Conclusions and Future Works
In this paper, we proposed an novel model for face gen-

eration of multiple attributes gender, ethnicity and fine-
grained age and verify the demonstration that generated im-
ages can be supplied to MORPH dataset and greatly im-
prove its performance. Realistic synthetic images from FM-
GAN could solve the data augmentation problem to some
extent. Of course, generated data could not be only em-
ployed to MORPH II dataset. It could be expanded to any
dataset which is restricted to missing data.

Our work largely depends on generation of high-quality
face image of fine-grained multi-attribute. We believe that,
the synthesis of high quality human face with fine-grained
ages requires both generator and discriminator to have a
certain degree of improvement. The discriminator should

have ability to learn age label distribution with limited im-
balanced dataset. The generator should generate not only
the whole face but also every crucial part to precisely gen-
erate corresponding features of its age. The generated faces
of close ages should follow the natural order of aging. For
examples, two faces have disparity of less than one or two
years old, their difference on face appears at local part like
wrinkles around eyes. Generating high quality face image
of precise multiple attributes will be our future works on
generative adversarial networks.
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