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Abstract

In this paper, we present a novel iris recognition method
based on learned ordinal features. Firstly, taking full advan-
tages of the properties of iris textures, a new iris representa-
tion method based on regional ordinal measure encoding is
presented, which provides an over-complete iris feature set
for learning. Secondly, a novel Similarity Oriented Boost-
ing (SOBoost) algorithm is proposed to train an efficient
and stable classifier with a small set of features. Com-
pared with Adaboost, SOBoost is advantageous in that it
operates on similarity oriented training samples, and there-
fore provides a better way for boosting strong classifiers.
Finally, the well-known cascade architecture is adopted
to reorganize the learned SOBoost classifier into a ’cas-
cade’, by which the searching ability of iris recognition to-
wards large-scale deployments is greatly enhanced. Exten-
sive experiments on two challenging iris image databases
demonstrate that the proposed method achieves state-of-
the-art iris recognition accuracy and speed. In addi-
tion, SOBoost outperforms Adaboost (Gentle-Adaboost, JS-
Adaboost, etc.) in terms of both accuracy and generaliza-
tion capability across different iris databases.

1. Introduction

In this work, we are interested in introducing a novel ma-
chine learning algorithm named Similarity Oriented Boost-
ing for efficient feature selection and classifier design. In
particular, we will demonstrate the efficiency of the SO-
Boost framework on ordinal measure based iris recognition.

As depicted in Fig. 1, the human iris is the annular part
between the black pupil and white sclera. It displays rich
texture determined by many distinctive minutes like fur-
rows, rings, scripts, etc. Iris is commonly thought to be
highly discriminative between eyes and stable over individ-
uals’ lifetime, which makes it particularly useful for per-
sonal identification [5, 10].
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Figure 1. Example iris images, illustrating the uniqueness, angular
self-similarity and radial distribution properties of iris textures.

Although various features (Zero-Crossings [3], Ga-
bor [4], DCT [6], etc.) have been proposed, what are the
intrinsic features for iris representation remains unrevealed.
Recently, ordinal measures (OM) are suggested to be ef-
fective for iris representation [14]. In [14], Gaussian based
ordinal filters are used to encode the iris texture, and en-
couraging performance is achieved. However, there are too
many parameters for tuning in ordinal image analysis and
how to build an optimal classifier of ordinal iris features is
still an open problem.

Another problem challenging iris recognition is its large
scale deployment. In state-of-the-art iris recognition sys-
tems, the probe iris image has to be matched with all the
templates stored in a database, with all the iris features
computed. This matching procedure is time-consuming, es-
pecially when the iris database grows into national scale.
Therefore, how to speed up the matching procedure is in ur-
gent need. However, this respect of iris recognition has not
been adequately addressed by the research community.

Adaboost is a recently developed machine learning algo-
rithm that can select a small set of the most discriminative
features from a candidate feature pool, and seems to be a
good choice to select the best ordinal features. However,
two serious limitations of Adaboost are noticed in prac-
tice. First, Adaboost is developed in terms of purely statis-
tical optimization principles (i.e. maximum likelihood [7])
without considering the physical meaning within the train-
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ing samples. This makes Adaboost tend to be over-fitting
especially when large training set is unpractical. Besides,
Adaboost is usually used for boosting weak classifiers that
are moderately accurate. This, while having received great
success in object detection, limits its application to ob-
ject recognition where strong classifiers are more common.
Therefore, more efficient learning method is desired in or-
der to boost strong classifiers (e.g. those based on ordinal
features) for iris recognition.

The objective of this work is to develop an efficient ma-
chine learning algorithm to select the most discriminative
ordinal features, and combine them in an effective way for
accurate and fast iris recognition. The rest of the paper is
organized as follows: In Section 2, we introduce a new iris
representation method based on regional ordinal features.
In Section 3, the novel Similarity Oriented Boosting algo-
rithm is described. SOBoost’s advantages over Adaboost
are also discussed. In Section 4, experimental results are
presented and discussed, with the cascade architecture in-
troduced for speeding up the matching procedure. Finally,
the conclusions are given in Section 5.

2. Regional OM-based Iris Representation
2.1. Ordinal Measures

Ordinal features come from a simple and straightforward
concept that we often use [11]. For example, the absolute
intensity associated with an image can vary due to various
imaging conditions; however, the ordinal relationships be-
tween neighboring image regions present some stability to
such changes and reflect the intrinsic natures of the image.
For this sake, an ordinal feature qualitatively encodes the
ordinal relationship between two dissociated image regions
with binary bits, see Fig. 2 for an intuitive understanding.
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Figure 2. Ordinal measure of relationship between two dissociated
image regions. (a) Region A is darker than B, i.e. coded with *0’;
(b) Region A is brighter than B, i.e. coded with ’1°.

Three typical ordinal filters used by Sun et al. [14] are
shown in Fig. 3(a)-(c). Like differential filters, an ordinal
filter also consists of excitatory and inhibitory lobes. Usu-
ally, there are four types of parameters in ordinal filters for
tuning.

- the number of lobes (or Gaussian kernels) n.
- the scale parameters o of each Gaussian lobe.

- the inter-lobe distance d between the centers of two lobes.
- the orientation 6 (i.e. the angle between the line join-
ing the centers of two lobes and the horizontal line, § €
(0,2m)).
Ordinal measure encoding is in fact convolving the im-
age with an ordinal filter and then encode the resulted image
with binary bits as illustrated in Fig. 3.

Figure 3. Ordinal filters and ordinal measure encoding. (a)-(c):
three typical ordinal filters. (d)-(e): Two sub-regions cropped from
different irises. (f)-(k): the resultant OM codes.

Ordinal filters present several advantages compared with
other filters such as Gabor and Log-Gabor. First, they are
separable since the Gaussian kernels are separable, which
ensures their computational efficiency. Second, they are
qualitative rather than quantitative. This, along with the
Gaussian smoothing effect, makes them robust to various
noise and intra-class variations (e.g. monotonic image trans-
formations). Finally, different configurations of ordinal fil-
ters can be easily constructed by tuning the topology and
shape of Gaussian kernels. Hence, they are flexible enough
to represent different local structures of different complex-
ity. These advantages make ordinal filters useful for iris rep-
resentation.Further details of ordinal measures can be found
in [14].

2.2. Iris Division

The iris texture presents several desirable properties. For
example, the texture patterns are different from iris to iris.
Even within an iris, the scale of the iris micro-structures
varies a lot along the radius. Usually the larger the radius
is, the bigger the iris micro-structures will be (see Fig. 4(a)).
What is more, although different angular regions remain
discriminative, their texture patterns display a certain de-
gree of consistence/correlation as shown in Fig. 4(b). This
implies that it might be possible to achieve similar recog-
nition accuracy while only using parts of the angular re-
gions. These properties suggest dividing the iris into mul-
tiple regions as shown in Fig. 4(c) and (d) (Note Fig. 4 is
just an illustration of iris division. Many more overlapped
sub-regions are obtained in practical application in order to
completely represent the whole iris image.). We can see that
each sub-region contains a texture pattern with a different
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scale and orientation.

Figure 4. A possible division of the iris image.

2.3. Regional OM Feature Pool

In order to efficiently represent each sub-region, plenty
of ordinal filters with varying parameters are designed and
calculated on each of them. A large pool of regional ordi-
nal features is therefore generated (Suppose we have L sub-
regions and K ordinal filters on each sub-region, then there
will be Lx K regional ordinal features in total). Definitely,
this feature pool must contain much redundant information
because of the redundancy between different ordinal filters
as well as that between different sub-regions. To learn the
most discriminative regional ordinal features from the re-
dundant feature pool, we proposed the following similarity
oriented boosting algorithm.

3. Similarity Oriented Boosting

SOBoost has two distinctive characteristics. First, it is
similarity oriented, which means it is driven by the follow-
ing Similarity Rule: The higher the similarity score is be-
tween two images, the more confidently they come from the
same class.

Second, SOBoost aims to boost strong classifiers, and
therefore is useful for object recognition. In our experi-
ments, some regional ordinal features can even achieve as
low as 2% equal error rate (EER).

3.1. Similarity Oriented Training Samples

Similarity rule requires training samples with similarity
meaning. Difference images are adopted to generate such
samples. A difference image is calculated between two iris
images, which is intra/positive class if the two iris images
are of the same person, or inter/negative class if not. Since
the features (or hypotheses in boosting language) are ordi-
nal measures, hamming distance is used as the measure of
difference. The smaller the hamming distance is, the more
similar the image pair is.

By adapting the hamming distance-based difference im-
ages, the multi-class classification problem is converted to

a much simpler binary one. More importantly, the training
samples happen’ to gain a concrete physical meaning—
similarity. We will see that the concept of similarity ori-
ented training samples forms the main building block for
SOBoost.

3.2. Technical Details of SOBoost

Given that {z;,y;}Y , (xeR%, ye{+1,-1}) is N la-
beled training samples with associated weights {w(z; )} ;;
® = {¢m(-): R*—RIM_ is a candidate feature pool of
x; Pl (pm(x)), P, (¢m(x)) are the positive and negative
probability distributions of ¢,,(x) on the weighted train-
ing set (see Fig. 7(a)), our goal is to automatically learn a
small set of the most discriminative features {¢;}7_; from

the feature pool, and construct an ensemble classifier:

H(x) = sign (Z he ((bt(x))) (1

where h¢(s) : R—R is a component classifier that can out-
put a "confidence’ of = being a positive when ¢ () equals
s. In our cases, x is a difference image (i.e. an iris image
pair) and {¢,, (z)}_, are the similarity scores of the can-
didate regional ordinal features on the image pair.

Generate similarity Learn Build a component
training samples > the currently % classifier 4, of ¢,
(The feature pool) | |best feature ¢, and add it to H,(x)

Re-weight
the training
samples

Output the
ensemble
classifier H,(x)

criterion
achieved ?

Figure 5. Flowchart of the similarity oriented boosting algorithm.

The flowchart of SOBoost is depicted in Fig. 5. It be-
gins with generating training samples. After that, SOBoost
repeatedly learns the component classifiers i (¢¢(+)) on the
weighted versions of the training samples until the perfor-
mance criterion is satisfied. Clearly, there are three key
modules involved in SOBoost: the weak learner, the com-
ponent classifier and the re-weighting function.

(1) The Weak Learner The weak learner is essentially
the criterion for choosing the best feature on the weighted
training set. AUC' (the Area Under the ROC Curve) offers
a good measure for comparing different features.

1
AUCz/ FRR dFAR ()
0

where (FAR, FRR) is a point on the ROC' curve. AUC
corresponds to the summed error rate of a considered clas-
sifier, and therefore seems to be a good candidate for the
weak learner. However, a drawback of AUC is that it gives
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equal weights to different F’AR levels, whereas in our par-
ticular biometric application we concern more on low FAR
points since a false accept is more dangerous than a false re-
ject. Therefore, we suggest using Log-AUC' instead of the
original AUC.
! ' FRR
Log-AUC = | FRRdlog(FAR) :/ —— dFAR (3)
o+ o+ FAR
Log-AUC' assigns higher weights on low FAR points of
the ROC curve and hence the weak learner can give more
preference on features with less false accepting danger. The
best feature is then selected by:

¢, = argmin Log- AUC 4)
ped
0.4, ' ' : -
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Figure 6. The ROCs of the best features selected by Log- AUC
(denoted by SOBoost) and several Adaboost weak learners.

Fig. 6 shows the ROC' curves of the best features se-
lected by Log- AUC' and several famous Adaboost weak
learners during one single example feature selection round.
We can see that the feature selected by Log- AUC is the
best of all, which promises better recognition performance.

(2) The Component Classifier The component classifier
h, outputs a confidence score of  being a positive based on
¢;. According to the similarity rule, a natural requirement
of hy should be: hy(¢r(x1)) > he(Pe(2)), 1E Pp(z1) >
¢+(x2). For this sake, we suggest to construct the compo-
nent classifier using sigmoid function based on the bidirec-
tional cumulative distributions of ¢;.

hy(¢¢) =2sigmf(Cf (¢)—Cyy (¢1), 2, 0)—1  (5)

. _ 1 . . .
v.vhere .s1gmf(x, a,c) = Tropai—o) s a s1gm.o.1d func-
tion with « the slop constant and c¢ the center position, and
Cl(¢1), Cy (1) are the bidirectional cumulative distribu-
tions of the positive and negative samples defined as follows

lop
CH () = / P (60)dén

> 6)
Cy(¢) = ., Py (¢r)doy

As illustrated in Fig. 7 (c) and (d), Eq. 5 is advantageous
because it is tolerant to outlines (e.g. pints B and C'), which
benefits greatly from the cumulative distributions. The sig-
moid function is adopted for its smooth output and its flexi-
bility when tuning o. Other monotonically increasing func-
tions satisfying the similarity rule can also be tried.
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Figure 7. A comparison of the component classifiers of Adaboost
and SOBoost. (a) The probability distributions of an example ¢+
(Similar or even more complicated distributions can often be con-
fronted during boosting especially when some hard samples gain
high weights.); (b) The component classifier constructed by Ad-
aboost (see Table 1); (¢) The bidirectional cumulative distributions
of ¢¢; (d) The component classifier constructed by Eq. 5 of SO-
Boost.

(3) The re-weighting function An important idea un-
der boosting is re-weighting. A distribution over the train-
ing samples is maintained and updated in such a way that
the subsequent component classifier can concentrate on the
hard samples by giving higher weights to the samples that
are wrongly classified by previous classifier. Obviously, the
more rapidly the weights are updated, the faster the learn-
ing procedure will converge. However, a too fast conver-
gence can result in over-fitting to the training set. For trade-
off, we suggest the conservative sigmoid function as the re-
weighting function:

ween () = wy(;) Sigmf(—?tht(qbt(mi)), 3,0) -

where Z; is a normalization factor (chosen so that
{wi1(z;) ¥, will be a distribution). Sigmoid function is
preferred for that we can freely control the speed of weight
updating by adjusting /3.

3.3. The Relation between Adaboost and SOBoost

Although Adaboost and SOBoost share the same frame-
work as shown in Fig. 5, several fundamental differences
exist between them. For example, Adaboost’s component
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Algorithms Adaboost (e.g. Real-Adaboost [7]) SOBoost
Training | * The original feature value * The similarity of corresponding feature values
* Treated as a random variable * Treated as similarity scores
samples | 4 [ack of physical meaning * Have a physical meaning—similarity
Weak 60 = argmin 25, /PE () Pa (5 61 = argmin Log-AUC
learner * Minimize the exponential cost function [7] * Directly minimize the summed error rate
hi(dr) = 0.5 (P (1)) Py (¢1)) he(¢r) =2sigmf(Cf (¢1)—Cy (1), v, 0)—1
Component| * Based on probability distributions * Based on bidirectional cumulative distributions
classifier | * Sensitive to noise * Tolerant to noise
* Maximum likelihood; conflict with similarity rule | x Satisfy similarity rule; flexible by tuning «
Re-weight Wit (i) — wi(w;) exp(—yihe (e (wi))) Wit (i) — wi(z;) sigmf(—yihe(Pe(2:)), B,0)
function | * Aggressive * Conservative; flexible by tuning 3

Table 1. A comparison between Adaboost and SOBoost

classifier (see Table 1) is only optimal in maximum like-
lihood viewpoint [13], which conflicts the similarity rule:
as shown in Fig. 7(b), the sorted confidence of points A,
B, C and D given by Adaboost classifier is B> D > A>
C. However, regarding the inherent similarity meaning of
¢, we can definitely say that the correct order should be
D>C> B> A. SOBoost corrects this "error’ by construct-
ing its component classifier with monotonically increasing
functions instead of Bayesian classifier, and hence satisfies
the similarity rule, see Fig. 7(d). The insight is that the sta-
tistical meaning of the training samples should be subordi-
nate to their physical meaning. Other differences between
Adaboost and SOBoost are listed in Table 1. These differ-
ences make SOBoost superior to Adaboost.

4. Experiments

Experiments are carried out to evaluate the efficiency of
the proposed SOBoost algorithm on the application of re-
gional OM based iris recognition. Two iris image databases
are adopted: CASIA-IrisV3-Lamp and ICE V1.0.

Both iris databases are challenging. CASIA-IrisV3-
Lamp [1] contains 16213 iris images from 819 eyes. It
was collected in an indoor environment with illumination
change, and contains many poor images with heavy occlu-
sion, poor contrast, pupil deformation, etc. To the best of
our knowledge, this is the largest iris database in public do-
main. ICE V1.0 [2, 12] iris database includes two subsets:
ICE-Left and ICE-Right. ICE-Left contains 1528 iris im-
ages from 120 left eyes while ICE-Right contains 1425 iris
images from 124 right eyes. Some of its images are of poor
quality due to defocus, occlusion and oblique view-angle.
This database was also adopted by ICE2005 for iris recog-
nition evaluation [2].

It is interesting to compare SOBoost with Adaboost.
Therefore, four well-known Adaboost algorithms (Discrete-
Adaboost [15], Real-Adaboost [13], Gentle-Adaboost [7]

and JS-Adaboost [9]) are also implemented and tested in
the same experiments.

4.1. Training a SOBoost Classifier

6000 iris images from the CASIA-IrisV3-Lamp iris
database are selected as the training set (denoted by CASIA-
Train). The remaining iris images serve as the test set
(denoted by CASIA-Test), and there is no overlap between
CASIA-Train and CASIA-Test in terms of subjects. After
preprocessing, the normalized iris image is divided into
224 overlapped sub-regions with size 16¥64. On each sub-
region 708 multi-scale ordinal features are extracted. There-
fore, 158592 candidate regional OM features are extracted
in total, providing an overcomplete iris representation. As
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Figure 8. The first four sub-regions and the corresponding ordinal
filters selected by SOBoost.
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described in Section 3.1, hamming distance based differ-
ence image is calculated between two regional OM fea-
tures to serve as the similarity oriented training sample. For
each candidate regional OM feature 56538 intra/positive
and 185440 inter/negative samples are obtained based on
which a SOBoost classifier is learned.

The learned SOBoost classifier consists of 24 regional
OM features. Compared with hundreds or even thousands
of features as reported in [9, 11, 15], we can conclude that
the classifiers (based on single regional OM feature) used
in our experiments are indeed much stronger. Furthermore,
we can also conclude that: (a) Ordinal measure is a power-
ful tool for iris representation; and (b) SOBoost works well
with strong classifiers.

The first four sub-regions learned by SOBoost are shown
in Fig. 8. It implies that the regions close to the pupil and
between (135° < 240°) and (—60° < 45°) are more dis-
criminative than other regions, this is no surprise since these
regions are less possibly occluded by eyelids and usually
have richer textures. Meanwhile, different ordinal filters
are selected on different sub-regions, which demonstrates
the success of applying multi-scale analysis on different iris
sub-regions. Finally, we can see that horizontal ordinal fil-
ters are preferred which suggest angular direction may con-
vey more discriminative information.

4.2. Iris Recognition Accuracy

In the first experiment, we evaluate the efficiency of SO-
Boost on ordinal features. The ROC curves on CASIA-Test
are shown in Fig. 9(b). We can see that the recognition
accuracy is significantly improved by SOBoost compared
with the original OM method [14], which clearly demon-
strates the efficiency of SOBoost. Moreover, the encour-
aging performance on CASIA-Test implies that the learned
SOBoost classifier shows high tolerance to occlusion notic-
ing the large amount of occluded iris images in CASIA-
IrisV3-Lamp iris database. This benefits greatly from the
novel region based iris representation strategy. Since SO-
Boost always tries to learn the most discriminative regions,
the regions with possible noise (e.g. eyelid/eyelash occlu-
sions) will be discarded.

In the second experiment, we compare the generalization
capability of SOBoost and Adaboost. To give a quantitative
evaluation, we define a new measure called Generalization
Index (G-index for short). G-index is calculated as follows:

G-index = Log-AUCrcst

B LOg—AUCTrain (8)

G-index measures a method’s performance variation on the
training and testing set, and the smaller the better.

The ROC' curves obtained by SOBoost, Gentle-
Adaboost, JS-Adaboost, etc. on CASIA-Train and CASIA-
Test are depicted in Fig. 9(a) and (b) respectively. The

T T
% 0.032 Original OM |
ay SOBoost + OM
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Figure 9. Generalization capability of SOBoost and Adaboost on
CASIA-IrisV3-Lamp iris database. (a): ROC curves on CASIA-
Train. (b) ROC curves and G-indexes on CASIA-Test.

corresponding G-index values (normalized by the G-index
of the original OM method) are listed in the legend of
Fig. 9(b). We observe that all boosting methods achieve im-
pressive training performance (much better than the orig-
inal OM method), especially Real-Adaboost and Gentle-
Adaboost. That is not surprising regarding boosting as a
supervised learning method. However, on CASIA-Test the
performance of Adaboost decreases dramatically while SO-
Boost still keeps an encouraging result, which implies that
the generalization capability of SOBoost outperforms its
Adaboost counterparts. This is also confirmed by the G-
Indexes in Fig. 9(b), i.e. the G-index of SOBoost is signifi-
cantly smaller than those of Adaboost variants.

So far, the efficiency and generalization capability of
SOBoost is only demonstrated on CASIA-IrisV3-Lamp iris
database, which is not of much interest since both the train-
ing and testing set are from the same database. To further
evaluate it over a different database, the learned SOBoost
classifier is tested on ICE V1.0 iris database. The ROC
curves on ICE-Left are shown in Fig. 10(a). We can see that
SOBoost again achieves better performance than its Ad-
aboost counterparts. To our knowledge, this is one of the
best results on this database in the literature. The top three
results released by ICE2005 are shown in Fig. 10(b) for ref-
erence. It shows that our SOBoost classifier achieves com-
parable or even better results compared with the top three
results of ICE2005.
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Figure 10. (a): The ROC curves of SOBoost and Adaboost on
ICE-Left iris database. (b): Comparison with three results (de-
noted by T1-T3) of ICE2005.

4.3. Iris Recognition Speed

Although each component classifier of H () in Eq. 1 is
learned optimally, they are simply linearly combined. This
is not efficient for rapid template matching since all the
component classifiers have to be calculated in order to re-
ject an imposter matching attempt as shown in Fig. 11(a).
To tackle this problem, we propose to use the cascade archi-
tecture [8, 15] to reorganize H () into s stage classifiers:

Ty +T>
th+ S bt Z he (9
t=T1+1 t=T-Ts+1

As illustrated in Fig 11(b), each matching attempt is pro-

Component classifiers

--------------

(a) Original SOBoost Classifier

Component classifiers

Mdlchmg
mm O OR0 S 02 O D 02 BE® SO G
Stage-T Stage-2 Stage-3 Stage-4
(imposter) (imposter) (Imposter) (imposter)

(b) Cascaded SOBoost Classifier

Figure 11. A comparison between the architecture of the original
SOBoost classifier and the cascaded SOBoost classifier.

cessed by a sequence of stage classifiers, and if any stage

classifier rejects it, no further process is performed. Such a
cascaded SOBoost classifier allows a majority of imposter
matching attempts to be quickly rejected with fewer com-
ponent classifiers, while spending more computation on
promising genuine matching attempts. Consequently, the
matching speed is expected to be greatly accelerated. Sup-
pose:

- T is the total number of component classifiers in H (z).

- ¢o 1s the computation cost of each component classifier.

- P;,i = 1,...,s is the percentage of the imposter inputs
passing previous stages but are rejected by the ¢th stage, de-
termined by 6; in Fig. 11.

-T;,i =1, ..., s is the number of component classifiers in
stage ¢, and Y [ T; = T.
Then, the computation cost of the original SOBoost classi-
fier will be Coriginai = T'co = 24co. On the contrary, the
cost of the cascade classifier will be

Clrascade = Co ZEP’L( H(l - Pj)) (10)

i=1 j=1

Constructing a cascade is in fact to determine 7; and P; (or
equally 6;). In our experiments, 7" equals 24 and s is set to 4.
Ty —Tyaresetto4, 4,8 and 8. 0, ~ 04 are adjusted so that
the obtained cascade classifier has comparable performance
as the original SOBoost classifier. Under this setting, P} ~
Py are 0.75, 0.68, 0.813 and 1.0 respectively in ICE-Left
iris database. As a result, the matching speed is, according
to Eq. 10, greatly accelerated (Cieuscade = 4.32¢p, about
4.56 times faster than the original SOBoost classifier), while
having noticeable influence on the recognition accuracy.

4.4. Discussions

Three things contribute to the superiority of the proposed
iris recognition method. The first one comes from the effi-
cient regional ordinal feature based iris representation. Di-
viding the iris into overlapped sub-regions takes full advan-
tages of the properties of iris textures, and paves the way
for individual analysis of different iris regions. On the other
hand, ordinal filters provide a powerful tool for representing
the rich iris texture within each sub-region. Moreover, the
optimally learned sub-regions effectively avoid the corrup-
tion of the whole iris code by localized noise like eyelids,
eyelashes and specular reflections.

The second more important contributor is the novel sim-
ilarity oriented boosting algorithm. SOBoost learns the
most efficient regional ordinal features and the correspond-
ing component classifiers for iris recognition. As we know,
boosting is a margin maximizing learning method. How-
ever, a margin based analysis by Schapire and Singer [13]
suggests that it might be a bad idea to boost in a too ag-
gressive mode. For this sake, SOBoost performs more con-
servatively. For instance, it operates on similarity oriented
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training samples, which for the first time breaks through
Adaboost’s dependence on purely statistical optimization.
Based on this, SOBoost constructs its component classifiers
with monotonically increasing functions, which not only
satisfies the similarity rule but also makes it less sensitive
to noise. Moreover, considering the strong classifiers SO-
Boost has to boost, a ROC'-based weak learner is obviously
more natural and more effective. Finally, the less aggressive
and more flexible sigmoid re-weighting function allows bet-
ter trade-off between the convergence speed and stability.
All these desirable conservative properties guarantee SO-
Boost’s efficiency and generalization capability.

The third contributor is the introduction of the cascade
architecture to the learned SOBoost classifier. The ’cas-
cade’ accelerates the matching speed of iris recognition by
rejecting most imposters in early stages with fewer com-
ponent classifiers, and hence greatly enhances iris recogni-
tion’s searching ability towards large-scale deployments.

5. Conclusions

In this paper, we have presented a novel iris recognition
method based on regional ordinal encoding and SOBoost
learning. The main contributions are summarized as fol-
lows: (1) Taking advantages of the properties of iris tex-
tures, a novel iris representation method based on regional
ordinal features is proposed, resulting in an overcomplete
iris feature set for learning. (2) A novel learning algo-
rithm called Similarity Oriented Boosting is developed to
train an efficient and stable iris classifier with fewer regional
ordinal features.(3) The cascade architecture is applied to
the learned SOBoost classifier, which greatly enhances its
searching ability in large scale deployments.

Experimental results on two challenging iris image
databases show that the proposed method achieves state-of-
the-art iris recognition accuracy, while being computation-
ally much more efficient. Furthermore, SOBoost outper-
forms Adaboost in terms of both accuracy and generaliza-
tion capability. In our future work, we will investigate the
application of SOBoost on other iris features and even other
object recognition tasks.
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