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ABSTRACT

Eyelids, eyelashes and shadows are three major challenges for effec-
tive iris segmentation, which have not been adequately addressed in
the current literature. In this paper, we present a novel method to lo-
calize each of them. First, a novel coarse-line to fine-parabola eyelid
fitting scheme is developed for accurate and fast eyelid localization.
Then, a smart prediction model is established to determine an ap-
propriate threshold for eyelash and shadow detection. Experimental
results on the challenging CASIA-IrisV3-Lamp iris image database
demonstrate that the proposed method outperforms state-of-the-art
methods in both accuracy and speed.

Index Terms— Eyelid localization, eyelash detection, iris seg-
mentation, iris recognition, biometrics

1. INTRODUCTION

Iris segmentation is an essential module in iris recognition because it
defines the effective region used for feature extraction, and therefore
is directly related to the recognition accuracy. A particularly impor-
tant issue involved in iris segmentation is the localization of eyelids,
eyelashes and shadows (EES). EES localization is important because
the iris is almost always partially occluded by eyelids, eyelashes and
shadows (see Fig. 1 for example images), which will increase the
danger of false acceptance and false rejection if not properly ex-
cluded.

However, efficient EES localization is difficult. First, the shape
irregularity of eyelids makes accurate eyelid localization challeng-
ing. Second, the variation of the intensity and amount of eyelashes
and shadows (ES) in individual iris images often makes it hard to
determine a proper threshold for ES detection. Although EES occlu-
sion can be partially avoided by excluding a predefined EES region,
this is insufficient and will inevitably cause loss in recognition ac-
curacy. Therefore, an efficient EES localization method is highly
desirable.

So far, only a few researchers have paid attention on EES lo-
calization. Daugman [1] used the so-called integrodifferential op-
erator to fit the eyelids with an arc model. Wildes [2] developed an
edge detection plus Hough transforms framework for eyelid localiza-
tion. Both methods provided many insightful ideas for subsequent
iris segmentation researchers. More recently, Liu [3] et al. proposed
to fit the eyelid by two straight lines, which, however, trades ac-
curacy for simplicity. Regarding the eyelash detection, Kong and
Zhang [4] developed three predefined criteria for eyelash detection.
Kang and Park [5] proposed to detect eyelashes based on focus as-
sessment. And Daugman [6] proposed a statistical inference method
for eyelash detection. To the best of our knowledge, shadows are not
considered by most of iris segmentation methods.

Fig. 1. Successful EES localization results by the proposed method
on various challenging iris images.

Although impressive localization results have been obtained by
the above methods, accurate and fast EES localization is still an
open problem. In this paper, we present a novel algorithm, aim-
ing at fast and accurate eyelid, eyelash and shadow localization. The
basic approach incorporates two major contributions. The first one
is a novel coarse-line to fine-parabola eyelid fitting scheme based
on a learned eyelid curvature model; and the second one is a smart
prediction model for determining an appropriate threshold for eye-
lash and shadow detection. Our experimental results indicate that
the proposed method achieves state-of-the-art localization accuracy
and speed, and brings a significant improvement in iris recognition
accuracy.

The remainder of this paper is organized as follows. In Sec-
tion 2, the novel coarse-line to fine-parabola eyelid fitting scheme is
presented. In Section 3, the smart prediction model for eyelash and
shadow detection is described. The experimental results are given in
Section 4 prior to the conclusions in Section 5.
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2. EYELID LOCALIZATION

Two things make effective eyelid localization difficult. One is the
eyelash occlusion, and the other is the shape irregularity of eyelids.
In our earlier work [7], we have proposed a method based on a 1-D
rank filter to tackle the eyelashes. The idea is that the eyelashes are
mostly vertical thin and dark lines, and therefore can be weakened or
even eliminated by a 1-D horizontal rank filter. After rank filtering,
edge detection is performed on the result iris image along vertical
direction. Only one edge point is reserved in each column so that
most noisy edge points can be avoided. As a result, a raw eyelid
edge map Eraw is obtained as illustrated in Fig. 2(a).

Fig. 2. An illustration of eyelid localization. (a) The raw eyelid edge
map obtained by [7]. (b) The result of curvature noise elimination.
(c) The result of parabolic curve fitting.

However, Eraw often contains several noisy points as labeled
in Fig. 2(a). Usually, there is no high reliable method to eliminate
such noise due to the shape irregularity of eyelids. In this work, a
so-called eyelid curvature model is statistically established to tackle
this problem. The insight is that although the shapes of eyelids vary
considerably from image to image, they possess a common arc struc-
ture. That is, if we join the two intersection points (e.g. points A and
B in Fig. 2(c)) of the upper eyelid and the two vertical lines bound-
ing the iris (l1 and l2 in Fig. 2(c)) with a straight line, all the genuine
eyelid points should be above this line. And generally the closer the
point is to the center, the farther it is above this line. Clearly, if we
can accurately estimate this arc structure and subtract it from the raw
eyelid Eraw, the result should resemble a straight line, which can be
easily fitted with, for example, simple line Hough transforms. For
this sake, the upper and lower eyelid curvature models (Eupper , and
Elower) are statistically established by manually labeling 1000 iris
images from the CASIA-IrisV3-Lamp iris image database [8]. The
learned models are depicted in Fig. 3(a).

Once the eyelid curvature models are established, the upper eye-
lid is localized as follows:

1. Calculate a raw eyelid edge map. Filter the iris image with
a 1-D horizontal rank filter, and then perform vertical edge
detection. An example is depicted in Fig. 2(a) and re-plotted
in Fig. 3(b) (Note that only one edge point is reserved along
each column).

2. Subtract Eupper from the detected Eraw. As mentioned
above, the result of Eraw−Eupper should resemble a straight
line as shown in Fig. 3(b).

3. Fit Eraw − Eupper with line Hough transforms. Although
inaccurate it is, the line fitting provides cues for noise elim-
ination. For instance, only the points that are in accordance
with the best fitting line are reserved as genuine eyelid points,
while other points are eliminated, see Fig. 2(b) and Fig. 3(b).
we call this noise elimination strategy curvature noise elimi-
nation (CNE).

Fig. 3. The mechanics of coarse-line to fine-parabola eyelid fitting.
(a)The learned eyelid curvature models. (b)Curvature noise elimi-
nation after line fitting on Eraw-Eupmodel. (c)The parabolic curve
fitting on Eraw after noise elimination.

4. Fit the remaining points of Eraw with a parabolic curve, see
Fig. 2(c) and Fig. 3(c) for an example.

Consequently, the shape irregularity is efficiently addressed by this
coarse-line to fine-parabola eyelid fitting scheme. Here, CNE is
useful because it improves the localization accuracy than direct
parabolic curve fitting on Eraw by eliminating noisy edge points.

A similar approach is used to locate the lower eyelid, with an-
other lower eyelid curvature model shown in Fig. 3(a).

3. EYELASH AND SHADOW DETECTION

Eyelashes and shadows (ES) are another source of occlusion that
challenges iris segmentation. The basic idea of our solution is to
extract an appropriate threshold for ES detection via a statistically
established prediction model.

The most visible property of ES is that they are generally darker
than their backgrounds (eyelids or iris), a straightforward detection
strategy is therefore thresholding. However, usually it is hard to get
a proper threshold due to the variation of the intensity and amount
of ES between individual iris images. Inspired by the work of Daug-
man [6], we try to get a proper threshold by analyzing the intensity
distributions of different iris regions. As shown in Fig. 4(a), our ap-
proach begins with dividing the candidate iris region into two parts:
ESfree and EScandidate. Then, the intensity histograms of both
regions are respectively calculated (e.g. the ones imposed on the
upper-left corner of Fig. 4(b)). Clearly, if EScandidate region is
occluded by eyelashes and shadows, its histogram should be differ-
ent from that of ESfree region. Furthermore, the more occlusion,
the more difference between them. Therefore, we can predict the
amount of the ES occlusion according to the level of difference be-
tween the two histograms. And considering that eyelashes and shad-
ows are usually the darkest points in the candidate iris region, we
can easily get a proper detection threshold.
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Fig. 4. (a) Adaptive iris division. (b)The prediction model for ES
detection. (c)The ES detection result of (a).

Figure 4(b) shows the relationship between the amount of ES oc-
clusion and the difference level between histograms of ESfree and
EScandidate (estimated on CASIA-IrisV3-Lamp image database).
χ2 distance is adopted to measure the difference between two con-
sidered histograms h1 and h2 as follows:

χ2 =
∑

i

(h1i − h2i)
2

h1i + h2i
(1)

The solid line in Fig. 4(b) is the prediction model learned by
fitting these raw data points with a cubic polynomial curve. Accord-
ing to this prediction model, we can get an appropriate threshold
for ES detection. For example, if the χ2 distance of the histograms
of ESfree and EScandidate is 1.05, we can say that the amount of
the ES occlusion is about 22%. Accordingly, we set the detection
threshold to the intensity up to which the sum of the histogram of
EScandidate is above 22%. Thus, an adaptive ES detection thresh-
old is obtained, which results in an impressive detection result as
shown in Fig. 4(c).

Finally, we further refine the detection result by checking the
connectivity of the candidate points to the upper eyelid. The idea is
that most eyelashes and shadows appear near the upper eyelid [4].
This refinement is necessary because it relaxes the burden of select-
ing the detection threshold. It allows us to not spend too much effort
trying to find an optimal threshold but just a moderately good and
loose one.

Compared with Daguman’s method [6], our method is advanta-
geous because: (a) a more refined division of the candidate iris re-
gion is used as depicted in Fig 4(a); (b) the prediction model is more
efficient in determining an appropriate ES detection threshold; and
(c) the refinement further guarantees the accuracy of ES detection.

4. EXPERIMENTS

Experiments are carried out on CASIA-IrisV3-Lamp iris image
database [8] to evaluate the efficiency of the proposed method. This

database is preferred because it contains many images with heavy
occlusions due to eyelids, eyelashes and shadows. To the best of our
knowledge, it is also the largest iris database in the public domain
(16213 iris images from 819 eyes).

It is interesting to compare our method (denoted by EESproposed)
with other EES localization methods, so Daugman’s methods [1,
6] (denoted by EESDaugman), Wildes’s edge detection plus
Hough transforms method [2] (denoted by EESWildes) and Liu’s
method [3] (denoted by EESLiu) are also implemented and tested
for comparison.

4.1. Accuracy Illustrations

Fig. 5. Localization results by (a) EESDaugman, (b) EESWildes,
(c) EESLiu and (d) EESProposed respectively.

Figure 5 shows the localization results of an example iris
image by different EES localization methods. We can see that
EESProposed obtains more accurate eyelid localization result than
EESLiu. That is because EESLiu uses only two simple lines to
fit the eyelid while EESProposed use more refined parabolic curve
fitting. EESProposed also slightly outperforms EESDaugman and
EESWildes. This is because the integrodifferential operator in
EESDaugman tends to be sensitive to local intensity change, while
the Hough transforms in EESWildes are brittle to noisy edge points.
These drawbacks often lead to local optima while localizing the eye-
lids. In contrast, under the proposed eyelid localization framework,
the 1-D rank filter removes most of the eyelash noise and the curva-
ture noise elimination scheme deals with the shape irregularity very
well, which together guarantee the localization efficiency.

In terms of the accuracy of eyelash and shadow detection,
we can observe that EESProposed achieves better results than
EESDaugman. This can be attributed to the efficient prediction
model in determining the threshold for eyelash and shadow de-
tection. Finally, shadow detection, for the first time, acts as an
independent module in iris segmentation, which enables more pre-

267



cise labeling of the invalid iris region for subsequent encoding and
matching modules.

More segmentation results of EESProposed on several other
challenging iris images are shown in Fig. 1, which clearly demon-
strates the accuracy and robustness of our method to typical iris noise
in practical applications.

4.2. Performance Evaluation

In this subsection, we demonstrate the efficiency of the proposed
method via iris recognition accuracy and its execution speed. Intu-
itively, the more accurate the localization is, the higher the recog-
nition accuracy will be. In our experiments ordinal measure (OM)
filters are adopted to encode the iris texture [9]. Accordingly, Ham-
ming Distance (HD) is adopted as the measure of dissimilarity be-
tween two considered OM codes codeA and codeB:

HD =
‖(codeA

⊗
codeB)

⋂
maskA

⋂
maskB‖

‖maskA
⋂

maskB‖ (2)

where maskA and maskB are the masks of codeA and codeB
respectively. A mask signifies whether any iris region is occluded by
eyelids, eyelashes and shadows, so it reflects the EES localization
results. HD is therefore a fractional measure of dissimilarity after
EES regions are discounted.

Fig. 6. ROC curves on CASIA-IrisV3-Lamp iris database.

The ROC curves of several EES localization methods on
CASIA-IrisV3-Lamp iris image database are shown in Fig. 6. Note
that in order to measure the effect of the EES localization on the
recognition performance, the results without EES localization (i.e.
without a mask in Eq. 2) is also compared in the same experiments,
and is denoted by ProposedNoEES (while the results with EES
localization is denoted with ProposedWithEES). The computation
cost, the equal error rate (EER), and the discriminative index (d’) of
each algorithm are also listed in Table 1 for comparison.

From Fig. 6 and Table 1, we can see that: (1) EES localization
brings a significant improvement on the iris recognition performance
(e.g. EES detection brings 21.2% improvement on d’), which con-
firms that the EES localization is an essential step in iris recognition.
(2) The proposed method outperforms other EES localization meth-
ods in both accuracy and speed. EESproposed obtains the highest
accuracy scores (smallest EER and largest d’), while its computation
cost is much lower than others. From these results we can conclude
that the proposed method is efficient in EES localization and is use-
ful for iris recognition.

Table 1. Performance on CASIA-IrisV3-Lamp iris image Database

Speed (ms) EER(%) d’
Daugman [1, 6] 16 1.08 4.45

Wildes [2] 31 1.29 4.05

Liu [3] 22 1.14 4.11

Proposed NoEES – 1.49 3.78

Proposed WithEES 11 0.92 4.58

5. CONCLUSIONS

In this paper, we have presented an accurate and fast method for
eyelid, eyelash and shadow localization. Our method has made two
major contributions. The first one is a coarse-line to fine-parabola
curve fitting scheme for accurate eyelid localization. The second
one is a novel prediction model for determining a proper threshold
for eyelash and shadow detection. Experimental results show that the
proposed method achieves state-of-the-art localization performance
in both accuracy and speed, and brings a significant improvement in
iris recognition accuracy.
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