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a b s t r a c t

This paper describes the winning algorithm we submitted to the recent NICE.I iris recognition contest.
Efficient and robust segmentation of noisy iris images is one of the bottlenecks for non-cooperative iris
recognition. To address this problem, a novel iris segmentation algorithm is proposed in this paper. After
reflection removal, a clustering based coarse iris localization scheme is first performed to extract a rough
position of the iris, as well as to identify non-iris regions such as eyelashes and eyebrows. A novel inte-
grodifferential constellation is then constructed for the localization of pupillary and limbic boundaries,
which not only accelerates the traditional integrodifferential operator but also enhances its global con-
vergence. After that, a curvature model and a prediction model are learned to deal with eyelids and eye-
lashes, respectively. Extensive experiments on the challenging UBIRIS iris image databases demonstrate
that encouraging accuracy is achieved by the proposed algorithm which is ranked the best performing
algorithm in the recent open contest on iris recognition (the Noisy Iris Challenge Evaluation, NICE.I).

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, non-cooperative iris recognition has attracted much
attention since it greatly extends the applicability of iris recogni-
tion [1–3]. In non-cooperative iris recognition, the user has little
or even no active participation in the image capture process [4].
As a result, the iris images are often captured with more noisy arti-
facts, such as blur, reflections, occlusions, oblique view-angles, etc.,
making non-cooperative iris recognition challenging.

Since 1998, we at CASIA1 have devoted significant efforts to-
wards iris recognition and most recently non-cooperative iris recog-
nition. We have addressed many issues in (non-cooperative) iris
recognition such as image quality evaluation [5], iris segmentation
[6], feature extraction and classification [7–9], coarse iris classifica-
tion [10], iris spoof detection [11] and iris image synthesis [12].
Regarding the hardware design, particular attention has also been
paid on non-cooperative iris recognition. One undergoing project
at CASIA addresses non-cooperative iris recognition in several inter-
esting scenarios such as on-the-move and at-a-distance [13].

During the development, we realized that one of the bottle-
necks for a working non-cooperative iris recognition system is effi-
cient and effective segmentation of noisy iris images. Iris
segmentation is an essential module in iris recognition because it
defines the valid region used for feature extraction, and therefore

is directly related to the recognition accuracy [6]. Thus, a segmen-
tation method that can cope with various types of noise is impor-
tant and desirable especially for non-cooperative iris recognition.

Many researchers have contributed much in iris segmentation,
and encouraging performance has been achieved [1,3,14,15]. In
this paper, we present a novel iris segmentation method, aiming
at noisy iris images in non-cooperative or less-cooperative envi-
ronments. As illustrated in Fig. 1, it incorporates four key modules,
namely coarse iris localization based on clustering, localization of
pupillary and limbic boundaries, eyelid localization and eyelash/
shadow detection.

The remainder of this paper is organized as follows. In Sections
2–5, the technical details of the four modules of the proposed algo-
rithm are presented step by step. Extensive experiments are de-
scribed and discussed in Section 6 prior to the conclusions in
Section 7.

In passing, it should be pointed out that only the red component
of the color iris image is utilized because the iris presents more
sensitivity to infrared wavelength [13], and therefore the red com-
ponent should convey the most useful information for iris
segmentation.

2. Coarse iris localization based on clustering

It has been reported that most mis-localizations occur on non-
iris regions due to the high local contrast (e.g. on eyelashes,
eyebrow or glass frame). A straightforward idea to avoid such
mis-localizations is therefore to exclude the non-iris regions at
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the coarse iris localization step. Obviously, if we can cluster and la-
bel the iris image as candidate iris region, skin region and eyebrow
region at the coarse iris localization step (see Fig. 2(e)), we can eas-
ily avoid such mis-localizations by exclusively performing fine iris
localization on the candidate iris region (rather than on eyelashes,
eyebrow, etc.). The problem then becomes how to cluster the
whole iris image into different parts, and label each part as candi-
date iris region or non-iris regions. In this work, an eight-neighbor
connection based clustering method is proposed to address this
problem.

However, direct clustering on original iris images tends to fail
due to the structural interruptions of specular reflections in the
images. To alleviate this problem, a novel reflection detection and
removal scheme has been proposed based on adaptive thresholding
followed by bi-linear interpolation. Due to the page limitation, we
refer the readers to our earlier work [6] for more details. One exam-
ple of reflection removal is shown in Fig. 2(b). We can see that most
of the reflections have been correctly filled, which paves the way for
the following eight-neighbor connection based clustering.

2.1. Eight neighbor connection based clustering

The objective of the clustering method here is to cluster the
whole iris image into different parts according to their structure.
It works as follows:

2.1.1. Initialization
A common property of iris images is that the intensity of the iris

region is relatively lower than that of the skin region. Accordingly,
we assign the top p1 brightest points as the skin region and the top
p2 darkest points as the candidate iris regions. Clearly, the larger
the p1 and p2, the faster the clustering will converge. However,
p1 and p2 with too large values will induce confusion between
the skin region and the iris region. In principle, p1 ðp2Þ should be
set so that a fraction of the skin (iris) region will be initialized.
Our experiments show that p1 ¼ 30% and p2 ¼ 20% are reasonable
for the NICE iris image database [4]. Note that the eyelash, eyebrow
regions can also be mistaken as candidate iris regions at this stage
since their intensities are relatively low as well. Fig. 2(c) illustrates
clustering initialization, where the yellow region R2 denotes candi-
date skin region, while the black R1 and green R3 regions denote
the candidate iris regions.

2.1.2. Clustering un-clustered points
The next step is to cluster the un-clustered points into different

regions, which is iteratively done as follows:

Step-1: Calculate the average gray level ðgRÞ and standard devi-
ation ðdRÞ of each candidate region R.
Step-2.1: Randomly choose one candidate region R, and calcu-
late the distance of each un-clustered point to this region via
the following point-to-region distance:

Fig. 1. The flowchart of the proposed iris segmentation method.

Fig. 2. Illustration of reflection removal and eight-neighbor connection based clustering. (a) The original iris image. (b) The iris image after specular reflection removal. (c)
Clustering initialization. (d) Clustering result after the first (Step-1 and Step-2) iteration. (e) Semantic labeling. After reflection removal, the original iris image is clustered into
different parts. And the semantic priors enable a coarse identification of each part.
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DðP;RÞ ¼ jgP � gRj
dR

ð1Þ

where gP is the intensity of the un-clustered point.
Step-2.2: Evaluate whether the un-clustered points can be clus-
tered into this candidate region. Point P is clustered into region
R if it satisfies: (1) DðP;RÞ is less than a threshold TP2R (=2.5 in this
work). (2) There exists a valid eight-neighbor connection path
that connects P to R. Take region R1 (labeled as black) in Fig. 2(c)
as an example. Both the ‘�’ and ‘h’ points satisfy criterion 1 (i.e.
DðP;R1Þ < TP2R). However, the ‘�’ points do not meet Criterion 2
because they cannot be eight-neighbor connected to region R1

due to the interruption of un-clustered points. Therefore, they
cannot be clustered into region R1, whereas the ‘h’ points can.
Step-2.3: Repeat Step-2.1 and Step-2.2 for each candidate region.
Fig. 2(d) shows the clustering result after Steps 2.1–2.3, where
most un-clustered points have been clustered into separate
candidate regions.
Step-3: Repeat Step-1 and Step-2 until all the un-clustered
points are clustered into some region, see Fig. 2(e).

From the descriptions, we can see that the proposed clustering
method is essentially a region growing algorithm via the point-
to-region distance and eight-neighbor connection.

2.2. Semantic refinements

An even challenging problem after clustering is to further iden-
tify these clustered regions as candidate iris region or non-iris re-
gions for the purpose of coarse iris localization. Although the
skin region can be easily identified via its intensity, other regions
(e.g. eyelashes, eyebrow, hair and glass frames) remain difficult
to identify. This problem is tackled with the assistance of several
semantic priors, such as:

1. A genuine candidate iris region usually has a ‘–�–’ like shape
whose center is much thicker than its left and right ends, as
shown in Fig. 2(e). This is because the center corresponds to
the iris, whereas the left and right ends are due to eyelashes
or shadows of upper eyelid.

2. The eyebrow region is usually a horizontal dark stripe above the
candidate iris region, see Fig. 2(e).

3. A glass frame usually has a dark and approximately rectangle-
like shape as shown in Fig. 6(b).

With these priors, semantic labeling can be achieved as shown
in Fig. 2(e). A coarse estimation of the iris position is therefore ob-
tained. However, the problem is how to let the computer under-
stand these semantic priors. In this work, shape, intensity and
position of each clustered region are adopted to extract such
semantic information. While the intensity and position are self-ex-
plained, shape is hard to represent. In our original algorithm (sub-
mitted to NICE.I), the shape of each clustered region is represented
via its height-to-width ratio, the height of each column, etc. More
recently, we found that shape-moment or Fourier descriptor
should be a more effective measure [16].

3. Pupillary and limbic boundary localization

Region clustering and semantic refinements enable a coarse
estimation of the iris position. However, we have to further finely
localize the pupillary and limbic boundaries of the iris for the pur-
pose of iris recognition. In this work, the pupillary and limbic
boundaries of the iris are modeled as two non-concentric circles,
and the well-known integrodifferential (ItgDiff for short) operator
is adopted for its robustness to various noisy artifacts [14]:

max
ðr;x0 ;y0Þ

GrðrÞ �
o

or

I
r;x0 ;y0

Iðx; yÞ
2pr

ds
����

���� ð2Þ

However, the original ItgDiff operator suffers greatly from local
optima and heavy computation (due to exhaustive search for max-
imizing Eq. (2)). We propose a novel ItgDiff constellation to tackle
both problems.

3.1. ItgDiff-ring

Inspired by gradient descent, a straightforward solution for
speeding up the ItgDiff operator is to iteratively find the optimal
(shortest) path to maximize Eq. (2). However, this is not trivial be-
cause Eq. (2) does not have an analytic expression. That is, we can-
not directly get the optimal transition direction via differentiating
Eq. (2). Instead, we construct a so-called ItgDiff ring to calculate the
search direction we should step forward.

An example of the ItgDiff ring is shown in Fig. 3(a). The basic
idea is this: suppose P0 is the current search point, we calculate
the ItgDiff operator on its eight-neighbor points, and step forward
towards the one that obtains the highest ItgDiff score. Conse-
quently, we can search along a path that is always locally optimal.

Fig. 3. Illustration of (a) ItgDiff ring, (b) ItgDiff constellation and (c) the search procedure. In (b), the arrowed red line indicates the search index of each validation point. In (c),
the green and red points show the actually evaluated points during ItgDiff search, between which the red ones show the optimal transition path. We can see that only a
fraction of the candidate (gray) points are evaluated instead of an exhaustive ItgDiff search. Also note the usefulness of the ‘‘stop at once” strategy in accelerating the
computation.
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Moreover, we use an aggressive ‘‘stop at once” strategy. That is,
once one neighboring pixel’s ItgDiff score is higher than the current
search point, we stop and turn to this point. Clearly, the ‘‘stop at
once” strategy raises the risk of choosing a sub-optimal path; how-
ever, we found this strategy to be very effective in finding a transi-
tion path very close to the optimal one while saving much
computation time, especially with the assistance of the following
validation constellation.

3.2. ItgDiff-constellation

One drawback of this simple eight-neighbor ItgDiff ring is that it
will almost always be trapped in local optima: it is relatively easy
to find a point whose ItgDiff score is larger than its eight-neigh-
bors’. To avoid local optima, we add several ItgDiff rings with
increasing radii to construct an ItgDiff constellation, see Fig. 3(b).
The inspiration is that while it is highly possible to find an eight-
neighbor optima, it becomes harder and harder when the ItgDiff
constellation grows larger.

Clearly, the larger the ItgDiff constellation, the more likely the
ItgDiff search procedure converges on the global optimal. However,
larger constellation means more computation. In this work, we
adopt three ItgDiff rings with a radius of 1, 3 and 6 whose valida-
tion points are scatted as shown in Fig. 3(b).

Fig. 3(c) shows the search procedure, where Porg is the starting
search point (e.g. obtained via coarse iris localization). Then, we
start the search (validation) procedure according to the red line
in Fig. 3(b). Suppose ItgDiffðP1Þ is larger than ItgDiffðPorgÞ, then
the current search point is updated to P1 according to the ‘‘stop
at once” strategy. The above procedure is repeated and finally con-
verged on the point whose ItgDiff score is larger than all its ItgDiff-
Constellation points. From Fig. 3(c) we can see that only a fraction
of the candidate (gray) points are evaluated instead of an exhaus-
tive ItgDiff search, which greatly accelerates the computation
while guaranteeing a global optimum.

The introduction of the ItgDiff constellation during ItgDiff
search changes the problem as we go along. That is, transition
direction that seems optimal earlier may prove to be suboptimal
on larger ItgDiff ring. This gives justification to not spending too
much effort trying to find the optimal transition direction over
the whole constellation but just a moderately good one according
to the ‘‘stop at once” strategy.

3.3. Boundary refinement

In non-cooperative iris recognition, the pupillary and limbic
boundaries tend to be non-circular or be occluded. It is therefore
necessary to further refine the results by eliminating localization
inaccuracies due to the simple circle model we used. However, tra-
ditional edge map based methods (e.g. Fourier series expansion [2],

cubic smoothing spline [6]) usually fail because of the difficulty in
detecting sufficient valid edge points (on the ambiguous bound-
ary). Instead, we try to detect and eliminate the localization inac-
curacies via intensity statistics [2]. In detail, the intensity
distributions of two consecutive annular rings (e.g. ½Rp�
D;Rp� and ½Rp;Rp þ D�) are calculated. The intersection point of
the two histograms is taken as an adaptive threshold to assign
the brightest points in Hist½Rp�D;Rp � as iris and the darkest points in
Hist½Rp ;RpþD� as pupil.

A similar method is applied to refine the limbic boundary. And
morphological operators are used to consider and evaluate the spa-
tial connection of the refined points [6].

4. Eyelid localization

As pointed out in [6], two issues make accurate eyelid localiza-
tion challenging: one is the eyelash occlusion, and the other is the
shape irregularity of eyelids. In our earlier work [17], a horizontal
1-D rank filter and a eyelid curvature model have been proposed to
tackle both problems, respectively.

Based on the observation that the eyelashes are mostly vertical,
thin and dark (see Fig. 4(a)), we adopted a 1-D horizontal rank filter
(with length L ¼ 7 and rank p ¼ 2 [17]) for eyelash removal.
Fig. 4(b) shows the result of performing the 1-D rank filter on
Fig. 4(a). We can see that most of the eyelashes are weakened or
even eliminated depending on their width.

Meanwhile, horizontal rank filter provides a clearer vertical
boundary, and therefore facilitates eyelid edge detection. Edge
points are then detected with the Canny operator along vertical
direction. To avoid noisy edge points, only one edge point is re-
served in each column as shown in Fig. 4(c). As a consequence, a
raw edge map of the eyelid Eraw is obtained.

However, Eraw often contains some noisy points due to various
noisy artifacts as shown in Fig. 4(c). Usually, there is no highly reli-
able method to eliminate such noise due to the shape irregularity
of eyelids. To tackle this problem, a so-called eyelid curvature
model is statistically established (by manually labeling and averag-
ing the eyelid curves of iris images in the training database), see
Fig. 4(d). The insight is that although the shapes of eyelids vary
considerably from image to image, they possess a common arc
structure. For example, the eyelid in Fig. 4(f) can be decomposed
into an up-right arc and a straight line as shown in Fig. 4(e).
Clearly, if we can accurately estimate this arc structure and sub-
tract it from the raw eyelid Eraw, the result should resemble a
straight line, which can be easily fitted with, for example, simple
line Hough transforms. Note that the line Hough transforms here
provide cues for noise elimination. That is, only the points that
are in accordance with the best fitting line are reserved as genuine
eyelid points, while other points that are distant from the best fit-
ting line are eliminated as noise.

Fig. 4. An illustration of eyelid localization. (a) Original iris image. (b) Eyelashes removal via the 1-D horizontal rank filter. (c) The raw eyelid edge map Eraw. (d) The learned
eyelid curvature models. (e) The decomposition of the eyelid in (f). (f) The genuine eyelid edge map after noise elimination with the curvature model.
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Once these noisy edge points are eliminated from Eraw (see
Fig. 4(f)), a more refined eyelid can be obtained via parabolic curve
fitting. The shape irregularity is therefore effectively addressed by
the eyelid curvature model. Here, the eyelid curvature model is
useful because ‘‘it improves the localization accuracy than direct
parabolic curve fitting on Eraw by eliminating noisy edge points”
[17].

A similar approach is used to locate the lower eyelid, with an-
other lower eyelid curvature model shown in Fig. 4(d). More de-
tails about this eyelid localization method can be found in [17].

5. Eyelash and shadow detection

Eyelashes and shadows (ES) are another source of occlusions
that challenge iris segmentation. In [6], we have proposed a novel
method for ES detection, whose basic idea is to extract an appropri-
ate threshold for ES detection via a statistically established predic-
tion model.

The most visible property of ES is that they are generally darker
than their backgrounds (eyelids or iris), and a straightforward
detection strategy is therefore thresholding. However, usually it
is hard to get a proper threshold due to the variation of the inten-
sity and amount of ES between individual iris images, especially on
noisy ones. In [2], Daugman pointed out that the intensity distribu-
tions of different iris regions are different and can be utilized for
determining a proper threshold for ES detection. For example, in
Fig. 5(a), the candidate iris region is divided into two parts
(ESfree and EScandidate, respectively), and the corresponding intensity
histograms of both regions are shown on the top-left corner of
Fig. 5(b). Clearly, the histogram of EScandidate is quite different from
that of ESfree due to the occlusion of eyelashes and shadows. Fur-
thermore, it is straightforward to assume that the more occlusions,
the larger difference between them. Conversely, we can predict the
amount of the ES occlusions according to the level of difference be-
tween the two histograms.

To validate the above assumption, we calculate the relation-
ships between the amount of ES occlusions and the difference be-
tween histograms of ESfree and EScandidate on 400 iris images from
the NICE.I Training database. The results are shown in Fig. 5(b),
where x-axis is the histogram dissimilarity (measured by v2 dis-
tance2), y-axis denotes the percentage of occlusions in the image
(manually obtained), and the green circles ‘�’ denote the relations
of each specific iris image. Fig. 5(b) experimentally confirms our

assumption: the larger difference between the intensity histograms
of ESfree and EScandidate, the more occlusions in the iris image.

In order to predict the amount of ES occlusion according to the
difference between the two intensity histograms, a prediction
model is learned by fitting these raw data points (the ‘�’s) with a
cubic polynomial curve, shown in red in Fig. 5(b). With the assis-
tance of this prediction model, we can get an appropriate threshold
for ES detection. For example, if the v2 distance of the histograms
of ESfree and EScandidate is 0.82, we can say that the amount of the ES
occlusion is about 39%. Accordingly, we set the detection threshold
to the intensity up to which the sum of the histogram of EScandidate

is above 39%. Thus, an adaptive ES detection threshold is obtained,
which results in an impressive detection result as shown in
Fig. 5(a). We refer the readers to [6] for more details of the predic-
tion model as well as some post-refinement strategies.

6. Experiments

In this section, experiments are carried out on the UBIRIS iris
image databases [4,18] to evaluate the effectiveness of the pro-
posed methods.

6.1. The UBIRIS iris image databases

The UBIRIS iris image databases consist of three subsets, namely
UBIRIS v1.0 Session 1, Session 2 and UBIRIS v2.0 Train, with about
2377 images in total. Many realistic noise factors (e.g. reflections,
luminosity, occlusions, blur, oblique view angle and non-iris im-
age) were introduced especially in UBIRIS v2.0 Train, simulating
non-cooperative imaging environment (e.g. acquired covertly or
from a distance). Therefore, the UBIRIS iris image databases are
suitable for iris segmentation evaluation. Moreover, the binary
ground truth for segmentation of UBIRIS v2.0 Train has also been
manually labeled and provided by the NICE.I Organizing Commit-
tee [4], which enables a quantitative evaluation of the segmenta-
tion accuracy. Some typical noisy iris images from NICE.I Train
are illustrated in Figs. 6 and 7. These images are obviously chal-
lenging for iris segmentation.

6.2. Accuracy of coarse iris localization

In this subsection, we evaluate the accuracy of clustering based
coarse iris localization. Here, the accuracy is obtained by visual
inspection. We consider coarse localization correct when one and
only one candidate iris region covering the whole iris is obtained
on iris images, or no candidate on non-iris images. Based on this
accuracy measurement, the results on different databases are

Fig. 5. Eyelash and shadow detection via the learned prediction model. (a) Adaptive iris division into ESfree and EScandidate. (b) The prediction model for eyelash and shadow
detection. This prediction model provides a coarse estimation of the appropriate threshold for ES detection.

2 The v2 distance between two considered histograms h1 and h2 is calculated by
v2 ¼

P
iðh1i � h2iÞ2=ðh1i þ h2iÞ.
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shown in Table 1. In addition, examples of coarse iris localization
results are shown in Fig. 6.

From Table 1 and Fig. 6 we can see that the clustering based
coarse iris localization scheme is capable of identifying the candi-
date iris region and excluding non-iris regions (e.g. eyebrow, glass
frame and eyelashes). However, it must be pointed out that effec-
tive reflection removal is a necessity because it alleviates the struc-
tural interruptions of reflections, and paves the way for clustering,
see Fig. 6(a). Moreover, one must note that the clustering method
can only provide a raw clustering result by itself. The most impor-
tant issue in coarse iris localization (namely the identification of
the genuine iris region) is achieved via the semantic refinement
scheme described in Section 2.2. This shows the importance and
usefulness of the semantic priors on iris localization, especially
on non-cooperative iris image localization. Therefore, more com-
plicated semantic prior extraction method should be encouraged
in the future.

More interestingly, Table 1 shows that the performance degra-
dation from UBIRIS v1.0 to UBIRIS v2.0 Train is not much for clus-
tering based coarse iris localization, which indicates its robustness
to various noise in non-cooperative environments.

6.3. Convergence of the ItgDiff constellation

In this subsection, we test the convergence ability and the effi-
ciency of the ItgDiff constellation. Clearly, the larger the constella-
tion, the more likely the search procedure globally converges. The
relationship between the size of the ItgDiff constellation and the
convergence ability is shown in Table 2. We can see that the con-
vergence ability greatly increases with the ItgDiff constellation
growing larger. Almost 100% convergence on the global optimum
can be expected when we use an ItgDiff constellation with three
ItgDiff rings and 24 validation points, which is also the setting of
this work.

Another important role of the ItgDiff constellation is to acceler-
ate the computation of the original ItgDiff operator. Traditionally,
we have to exhaustively evaluate all the points of a candidate re-
gion (e.g. the gray points in Fig. 3(c)). However, under the frame-
work of the ItgDiff constellation, only a fraction of the points
need to be evaluated. Accordingly, the ratio of the actually evalu-
ated points to the total candidates can be an indicator of the effi-
ciency of the ItgDiff constellation. The results on UBIRIS iris
image databases show that only about 23% points are actually eval-

uated on average under the ItgDiff constellation framework, which
means it should be (4.3 = 1/0.23) times faster than the original
integrodifferential operator.

6.4. Accuracy illustration and discussions

In this subsection, we quantitatively evaluate the segmentation
accuracy and provide some discussions. According to the NICE.I
evaluation protocol [4], the segmentation error E on image I is cal-
culated by the proportion of disagreeing pixels (through the logical
XOR operator) between O and C:

E ¼ 1
c � r

X
c0

X
r0

Oðc0; r0Þ � Cðr0; c0Þ ð3Þ

where O is the binary segmentation result by our algorithm, and C is
the corresponding binary ground truth image.

Based on the above evaluation protocol, the segmentation error
of the proposed method on NICE.I Train and Test iris image dat-
abases are 1.29% and 1.31%, respectively, which is rather promis-
ing. Several successful iris localizations (in the presence of
eyelids, eyelashes, specular reflections, oblique view angle, glass
frame, non-iris image, etc.) are illustrated in Fig. 7(a)–(h), which
clearly demonstrate the accuracy and robustness of our methods
to typical iris noise in non-cooperative applications.

In our opinion, the main reasons for the promising results are as
follows: (1) The reflection removal scheme paves the way for the
post-processing. (2) Region clustering and semantic refinements
enable identification of the genuine iris region, which significantly
reduces the possibility of mis-localizations on non-iris regions. (3)
The novel ItgDiff constellation guarantees a globally optimal con-
vergence while accelerating the computation. (4) The eyelid curva-
ture model and the ES prediction model are well tuned to NICE.I
images for eyelid, eyelash and shadow localization.

For comparison purpose, we also tried to localize the pupillary
and limbic boundaries via edge map based methods (e.g. the
Hough transforms [15] and the pulling and pushing method [6])
except for the ItgDiff operator. However, experimental results
showed that both edge map based methods degraded greatly when
encountered with the noisy iris images in NICE.I. That is perhaps
because the NICE.I images contain so much noise that edge map
based methods tend to fail due to the lack of valid edge points.
Therefore, more efficient edge detection schemes are desirable
for these edge map based methods on noisy iris images.

Fig. 6. Illustrations of (a) specular reflection removal and (b)–(d): clustering based coarse iris localization.
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Although encouraging performance has been achieved, there
are still some iris images that are segmented not as accurately as
expected as shown in Fig. 7(i)–(l). In Fig. 7(i), the inaccurate seg-
mentation is due to the non-circular geometry of the iris, and in
Fig. 7(j), it is due to incorrect eyelid localization. Accordingly, more
refined boundaries localization schemes should be encouraged to
deal with such problems. In Fig. 7(k), the mis-localization is be-
cause of the clustering module mistaking the bright iris as skin.
In Fig. 7(l), although the hair region has been correctly clustered,

the semantic refinement scheme failed to identify and exclude
the hair. Thus, more efficient semantic prior extraction scheme
should also be encouraged in the future work.

From the above description, we can see that noisy iris image
segmentation still remains an open problem, which deserves more
efforts.

Fig. 7. Illustrations of successful segmentations ((a)–(h)) and inaccurate segmentations ((i)–(l)), where the green points denote false accept points (i.e. points labeled as non-
iris by the ground truth but iris by our method), the red points denote false reject points (i.e. points labeled as iris by the ground truth but non-iris by our method), and the
black points are labeled as iris by both.

Table 1
The accuracy of clustering based coarse iris localization.

Database UBIRIS v.1 Session 1 UBIRIS v.1 Session 2 UBIRIS v.2 Train

Accuracy (%) 100 99.4 99.2

Table 2
Convergence ability of the ItgDiff constellation.

Number of rings
vs. points

UBIRIS v.1 Session 1 UBIRIS v.1 Session 2 UBIRIS v.2 Train

1 M 8 (%) 24.6 18.4 16.2
2 M 16 (%) 60.1 54.3 50.4
3 M 24 (%) 100 99.8 99.6
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7. Conclusions

In this paper, we have presented an efficient and robust algo-
rithm for noisy iris image segmentation in the context of non-coop-
erative and less-cooperative iris recognition and in response to the
NICE.I iris recognition contest. The main contributions are summa-
rized as follows. Firstly, a novel region growing scheme (namely
eight-neighbor connection based clustering) is proposed to cluster
the whole iris image into different parts. The genuine iris region
is then extracted with the assistance of several semantic priors,
and the non-iris regions (e.g. eyelashes, eyebrow, glass frame, hair,
etc.) are identified and excluded as well, which greatly reduces the
possibility of mis-localizations on non-iris regions. Secondly, an
integrodifferential constellation is introduced to accelerate the tra-
ditional integrodifferential operator, and meanwhile, enhance its
global convergence ability for pupillary and limbic boundary local-
ization. Thirdly, a 1-D horizontal rank filter and an eyelid curvature
model are adopted to tackle the eyelashes and shape irregularity,
respectively, during eyelid localization. Finally, the eyelash and
shadow occlusions are detected via a learned prediction model
based on intensity statistics between different iris regions.

Extensive experiments on the challenging UBIRIS iris image dat-
abases have shown that the proposed method achieves state-of-
the-art iris segmentation accuracy, and therefore can be well
adapted for non-cooperative iris recognition.
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